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Abstract

Gaussian Process Factor Analysis (GPFA) has
been broadly applied to the problem of identify-
ing smooth, low-dimensional temporal structure
underlying large-scale neural recordings. How-
ever, spike trains are non-Gaussian, which moti-
vates combining GPFA with discrete observation
models for binned spike count data. The draw-
back to this approach is that GPFA priors are
not conjugate to count model likelihoods, which
makes inference challenging. Here we address
this obstacle by introducing a fast, approximate
inference method for non-conjugate GPFA mod-
els. Our approach uses orthogonal second-order
polynomials to approximate the nonlinear terms
in the non-conjugate log-likelihood, resulting in
a method we refer to as polynomial approximate
log-likelihood (PAL) estimators. This approxima-
tion allows for accurate closed-form evaluation of
marginal likelihoods and fast numerical optimiza-
tion for parameters and hyperparameters. We de-
rive PAL estimators for GPFA models with bino-
mial, Poisson, and negative binomial observations
and find the PAL estimation is highly accurate,
and achieves faster convergence times compared
to existing state-of-the-art inference methods. We
also find that PAL hyperparameters can provide
sensible initialization for black box variational in-
ference (BBVI), which improves BBVI accuracy.
We demonstrate that PAL estimators achieve fast
and accurate extraction of latent structure from
multi-neuron spike train data.
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1. Introduction
Recent advances in neural recording technologies have en-
abled the collection of increasingly high-dimensional neural
data-sets. Making sense of such data requires new statistical
methods for extracting shared latent structure underlying
multi-neuron responses. Factor models provide one popular
approach to this problem (Archer et al., 2015; Cunningham
& Yu, 2014; Lakshmanan et al., 2015; Wu et al., 2017; Yu
et al., 2009). These models seek to characterize the structure
underlying neural data in terms of a small number of latent
variables. These models have been widely successful in both
uncovering interpretable structure from neural population
data and providing insight into representations of stimulus
input and behavior in population activity (Wu et al., 2017;
Zhao & Park, 2017; Zhao et al., 2019). However, factor
models can be cumbersome to learn when the prior distribu-
tion over the latent variables and the likelihood governing
the observations are non-conjugate. This arises commonly
for neural data, where binned spiking observations are best
characterized by count models (e.g., binomial, Poisson, and
negative-binomial).

Formally, latent factor models seek to explain shared
structure underlying high-dimensional observations
(y1,y2, . . . ,yT) ∈ RN×T in terms of low-dimensional
latent variables (x1,x2, . . . ,xT) ∈ RP×T , where N > P
and the observations are ordered sequentially in time from
t = 1 to t = T . A popular approach is to model the time
series of latent variables with a Gaussian process (GP),
which makes few assumptions about latent trajectories
beyond the fact that they evolve smoothly in time. When
combined with a Gaussian observations model, the resulting
approach is known as Gaussian Process Factor Analysis
(GPFA) (Yu et al., 2009). Recent work has extended GPFA
to incorporate Poisson observations, which provides a
more appropriate model for spike train data (Buesing et al.,
2012; Macke et al., 2011; Wu et al., 2017; Zhao & Park,
2017; Zhao et al., 2019). However, closed-form inference
under GPFA models is only possible when the model
likelihood and prior are conjugate. Consequently, Poisson
and other non-conjugate models require approximations to
fit hyperparameters or obtain parametric expressions for the
posterior distribution over latents.
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Here, we introduce a novel procedure for learning non-
conjugate GPFA models with count observations, which we
refer to as Polynomial Approximate Log-likelihood (PAL).
This method exploits an idea for rapid inference in gen-
eralized linear models using so-called “approximate suffi-
cient statistics” (Huggins et al., 2017; Zoltowski & Pillow,
2018), and extends it to the latent variable model setting.
The basic idea involves approximating the nonlinear terms
in the model log-likelihood using orthogonal polynomials.
When the polynomial approximation is second-order, the
likelihood term can be explicitly marginalized to obtain a
closed-form expression for the marginal likelihood, and an
approximately Gaussian posterior distribution over the la-
tents. We explicitly derive PAL estimators for three GPFA
models with different count statistics. This includes the
previously implemented Poisson count-observation GPFA
model (Zhao & Park, 2017; Zhao et al., 2019), as well as
GPFA with binomial and negative-binomial observations.
These three distributions (binomial, Poisson, and negative-
binomial) have different dispersion characteristics which
reflect various spiking properties in neurons in different
areas of the brain (Charles et al., 2018; Goris et al., 2014;
Linderman et al., 2016).

We compare our PAL approach to Black Box Variational
Inference (BBVI), a state-of-the-art method for approxi-
mate inference in non-conjugate models that is renowned
for its simplicity and adaptability (Archer et al., 2015; Gao
et al., 2015; Ranganath et al., 2014) and the variational
latent Gaussian Process (vLGP) (Zhao & Park, 2017), a
previous algorithm used for Poisson noise GPFA. We find
that PAL estimation exhibits comparable performance to
these methods, but PAL compares favorably to both of them
in that it provides a closed-form expression for marginal
likelihood that can be optimized directly; it therefore re-
quires no careful tuning of learning rates, number of Monte
Carlo samples, or stopping criteria, and does not suffer from
high-variance estimates due to sampling-based evaluation
of marginal likelihood. We also find that, in each case, PAL
is faster than these existing algorithms and can accurately
recover latent structure in simulated neural data.

We further demonstrate that PAL hyperparameters can be
used to initialize BBVI to stabilize and improve inference.
We use this combined BBVI + PAL on two different multi-
neuron datasets, one from mouse visual cortex and one from
primate parietal cortex, under three different choices of
count model (binomial, Poisson, and negative binomial). We
show that PAL initialized BBVI performs as good or better
than BBVI alone. The PAL approach therefore offers a
promising avenue for future work on non-conjugate models
that arise frequently in the analysis of biological and other
data.

2. Count-GPFA models
Consider a dataset consisting of count observations from N
neurons over T time bins, Y ∈ NN×T . The count-GPFA
model seeks to describe these data in terms of a nonlinearly
transformed linear projection of lower-dimensional latent
variable X ∈ RP×T , P < N , where each latent variable
evolves according to an independent Gaussian process. Thus
the timecourse of the j’th latent variable, which forms the
j’th row of X, has a multivariate normal distribution:

xj ∼ N (0,Kj), (1)

where each K is a T × T covariance matrix whose (t, t′)’th
entry is given by the covariance function k(t, t′). In this
paper, we use the common Gaussian or “squared exponen-
tial” covariance function: k(t, t′) = exp(−(t− t′)2/(2`2)),
which is governed by a single hyperparameter, the “length
scale” `, which controls smoothness of the latent process.

The count-GPFA observation model can then be written:

Y|W,X ∼ P(f(WX)) (2)

where W ∈ RN×P is a loading matrix, f(·) denotes a
nonlinear function that transforms WX to the appropriate
range for a count random variable (e.g., the non-negative
reals), and P denotes a probability distribution for count
data.

Fitting the count-GPFA model to data involves inferring the
loading weights W and hyperparameters θ = {`1, . . . `j}
via numerical optimization of the marginal likelihood:

P (Y|W, θ) =

Z
P (Y|W,X)P (X|θ)dX. (3)

However, non-conjugacy of the count model likelihood
P (Y|W,X) and Gaussian prior over latents P (X|θ)
means that this integral cannot be computed in closed
form. Likewise, the posterior distribution over la-
tents given the data, given by: P (X|Y,W, θ) =
P (Y|X,W)P (X|θ)/P (Y|W, θ), has no closed form ex-
pression, where the desired normalizing constant is the
marginal likelihood. Fitting and inference therefore rely
on approximate inference methods.

3. Polynomial Approximate Log-likelihood
(PAL)

Here we propose Polynomial Approximate Log-likelihood
(PAL), an approximation scheme for efficient inference in
non-conjugate Gaussian latent variable models. The core
idea is to approximate terms in the observation model log-
likelihood that are nonlinear in X using orthogonal polyno-
mials. Our approach is inspired by recent work on “polyno-
mial approximate sufficient statistics” for generalized linear
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Figure 1: Comparison of nonlinear term found in the log-likelihood for binomial, Poisson, and negative-Binomial observation
models (solid) with corresponding second-order Chebyshev approximation (dashed).

models (PASS-GLMs) (Huggins et al., 2017; Zoltowski &
Pillow, 2018). In that work, theX were observed regressors,
and the method provided so-called “approximate suf�cient
statistics” that could be computed with a single pass over
the data.

Here, theX are (unobserved) latent variables instead of
regressors, and the goal of the approximation is ef�cient
marginalization rather than a set of suf�cient statistics. We
consider second-order polynomial approximations to the
log-likelihood, which allow for analytic marginalization
over latents. PAL therefore enables closed-form evaluation
of the approximate marginal likelihood, allowing ef�cient
optimization of parameters and hyperparameters.

We derive PAL estimators for GPFA under three different
non-conjugate observation models: binomial, Poisson, and
negative binomial (NB). These models range from under-
dispersed or “sub-Poisson” for binomial to overdispersed or
“supra-Poisson” for NB, thus spanning the range of disper-
sion behaviors found in different brain areas (Charles et al.,
2018; Gao et al., 2015; Goris et al., 2014; Kara et al., 2000;
Maimon & Assad, 2009; Pillow & Scott, 2012).

All PAL count-GPFA models have the same general form
for the approximate log marginal likelihood (log evidence):

E(y jW ; � ) �
1
2

log j� j +
1
2

� > � � 1� �
1
2

log jK j; (4)

where� denotes an approximate posterior covariance and�
denotes an approximate posterior mean, andK is the prior
covariance over all latents (a block-diagonal matrix, with
one block for each latent). The form of the �rst two terms
varies across models, which we derive for three speci�c
models below. See Table 1 for a summary of the results
for all count-GPFA models. For clarity, we de�neH =
� � 1 � K � 1 in this table to succinctly present approximate
posterior covariances.

3.1. PAL for Poisson-GPFA

We begin with the Poisson observation model, which is the
most common model for spike counts and a popular choice
for latent variable models of spike train data (Duncker &
Sahani, 2018; Wu et al., 2017; Zhao & Park, 2017). For
this model, spike county given a spike rate parameter� is
distributed according to:

P(yj� ) = 1
y! (� � )y e� (� � ) ; (5)

where� is the time bin size (which we set here to 1, re-
sulting in spike rates in units of spikes/bin). We use an
exponential nonlinearity from latents to spike rates, so the
vector of spike rates at timet is:

� t = exp( Wx t ): (6)

This choice of nonlinearity gives rise to a log-likelihood
with a single nonlinear term, although other nonlinearities
can be considered (Zoltowski & Pillow, 2018).

The Poisson log-likelihood for the entire dataset can be
written conveniently in vector form as:

L (y ; x j ~W ) = y > ~Wx � 1> exp( ~Wx ) + const (7)

wherey = vec(Y ) is a NT � 1 vector of concatenated
spike count observations from allN neurons andT time
bins,x = vec(X ) is aPT � 1 vector of concatenated latent
vectors acrossP latent time series,~W = W 
 I T is a
NT � PT Kronecker-structured matrix, and1 is a length-
NT vector of ones.

The only nonlinear term in the log-likelihood is the ex-
ponential termexp( ~Wx ). We therefore approximate the
exponential function with a second-order polynomial:

exp(x) � ax2 + bx + c; (8)

with coef�cientsa, b, andc given by a Chebyshev polyno-
mial approximation toexp(x) over an interval = [ x0; x1],
which we set independently for each neuron (Mason &
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binomial Poisson negative binomial

spike rate� it n� (w i
> x t ) exp(w i

> x t ) exp(w i
> x t )

nonlinear term � log(1 + e� x ) ex log(1 + �e x )
H 2n ~W > diag(a) ~W 2 ~W > diag(a) ~W 2 ~W > diag((� � 1 + y) � a) ~W

posterior mean� � ~W > (y � n � nb) � ~W > (y � b) � ~W > (y � y � b � � � 1b)

Table 1: Summary of PAL expressions for count-GPFA models. Top line gives the spike rate of neuroni at timet given
the latent vectorx t and loading weightsw i for neuroni . Second line gives the nonlinear term of the log-likelihood that
must be approximated under PAL. The third row,H is de�ned byH = � � 1 � K � 1, which succinctly presents posterior
covariances, and the fourth line� shows approximate posterior means.

Handscomb, 2002; Zoltowski & Pillow, 2018). We use
Chebyshev polynomials because they provide ef�cient near-
minimax polynomial approximations (Huggins et al., 2017).
Speci�cally, we computed the truncated Chebyshev expan-
sion of the exponentialexp(x) =

P 2
m =0 = � m Tm where

Tm is the degree-m Chebyshev polynomial of the �rst kind
over[x0; x1] and� m are the expansion coef�cients over that
interval. The coef�cientsa, b, andc are given by collecting
the terms to rewrite the expansion in the monomial basis.

We selected the interval[x0; x1] independently for each neu-
ron by computing the log of the mean �ring rate of each
neuron,log � i . Since the nonlinearity is over the inputWx ,
and the �ring rate is� = exp( Wx ), we take the log of
� i as we wish to center the nonlinear approximation at the
center of the empirical neuronal rate to maximize accuracy.
See Figure 1 as an example of a range centered at 0, corre-
sponding to a simulated GP drawn with mean 0. We then
chose the limits of the range to be[log � i � 2; log � i + 2] ,
resulting in an approximation range extending frome� 2

to e2 times the mean �ring rate. We found that this range
balanced coverage in �ring rate space with approximation
accuracy. After selecting the range centers for each neuron,
we computed the polynomial coef�cients(ai ; bi ; ci ) for neu-
ron i by gridding the interval of interest at a resolution of
dx = 0 :01and solving for the coef�cients that minimize the
least squares between the true function and its polynomial
approximation. For more detail, see (Zoltowski & Pillow,
2018).

Given coef�cients for each neuron, the exponential term in
the Poisson log-likelihood can be approximated:

1> exp( ~Wx )

�
TX

t =1

NX

i =1

�
ai (Wx t ) i � (Wx t ) i + bi (Wx t ) i + ci

�

= x> ~W > diag(a) ~Wx + b> ~W + const; (9)

where� denotes Hadamard (element-wise) multiplication,
and the second line involves the concatentation of the poly-
nomial coef�cients for each neuron and time bin:a =

[a11; : : : aN 1]> , b = [ b11; : : : bN 1]> , and we can ignore
the constantsci .

We now substitute the polynomial approximation into the
log-likelihood and add the log prior, giving:

L (y ; x j ~W ; � ) �

y > ~Wx � x> ~W > diag(a) ~Wx

� b> ~Wx �
1
2

x> K � 1x �
1
2

log jK j: (10)

Since this approximation is quadratic inx we can expo-
nentiate and then analytically marginalizex to obtain an
approximation to the log-likelihood that follows equation
(4) where:

� � 1 = 2 ~W > diag(a) ~W + K � 1 (11)

� = � ~W > (y � b); (12)

and we have dropped terms that do not depend on~W or � .

3.2. PAL for Binomial-GPFA

Deriving the PAL estimator for a binomial observation
model follows a similar logic to the Poisson case. Recall that
for binomial model, spike county is distributed according
to :

P(yjp; n) =
�

n
y

�
py (1 � p)(n � y ) : (13)

For this model, we map latents through a sigmoidal non-
linearity, � (x) = 1 =(1 + exp( � x)) , to obtain the binomial
parameterp, and we set the number-of-trials parameter,n,
to be the maximum number of observed spikes in a single
time bin. The vector of spike rates at timet for this model
is thus given by:

� t = n� (Wx t ): (14)

We can write the log-likelihood in vectorized form as:

L (y jx ; ~W ) = ( � n + y) ~Wx �

n log(1 + exp( � ~Wx )) + const
(15)
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Figure 2: PAL inference for population data from binomial, Poisson, and negative binomial GPFA models.A. One example
simulated neuron (out of 20) are shown for each model. Inferred rate for neurons for PAL inference compared to GPFA (Top).
Latent trajectories recovered for each model (bottom).B. Error of recovered latent structure falls to zero with increasing
numbers of observed neurons, as expected.C. Example PAL �ts for all count-GPFA models compared to standard GPFA
for spiking data from an example neuron. Light grey histogram denotes spike-count observations.

where we have ignored terms that do not depend on~Wx .

The problematic term here is the nonlinear second term,
log(1 + exp( � x)) , which we approximate, as before, using
a second-order Chebyshev polynomial approximation. In
this case, we choose the center of the non-linearity to be the
inverse sigmoid function of the empirical mean rate for each
neuron� � 1(� i ). We use a range of[� � 1(� i ) � 4; � � 1(� i )+
4] for the Chebyshev approximation. As in the Poisson case,
we do this so the range for each neuron is centered at the
average empirical value of input term to the non-linearity,
~Wx . The resulting approximation to the log-likelihood is:

L (y jx ; ~W ) � � nx> ~W > diag(a) ~Wx

+ ( y � n � nb)> ~Wx + const
(16)

As in the Poisson case, we can add the log-prior to the above
expression, exponentiate and marginalize overx to obtain
an approximation to the log marginal likelihood in the same
form as equation (4). In this case, we obtain matrix and
vector terms:

� � 1 = 2n ~W > diag(a) ~W + K � 1

� = � ~W > (y � n � nb):
(17)

3.3. PAL for negative-binomial GPFA

Lastly, we consider a negative binomial observation model,
which covers the over-dispersed spike responses (Goris et al.,
2014; Linderman et al., 2016; Pillow & Scott, 2012). For
negative-binomial GPFA, we parametrize the negative bino-
mial distribution in terms of mean parameterm, and scale

parameterr = 1=� :

P(yjm; � ) =
�( y + � � 1)

�( � � 1)�( y + 1)

� 1
1 + �m

� � � 1 � �m
1 + �m

� y

(18)
This form of the distribution maps to the standard negative-
binomial distribution,p(yjp; r) =

� y+ r � 1
y

�
(1 � p)r py , via

p = r
m + r . Parameterizing the negative binomial model this

way makes for a simple expression of the expected spike
count, which is equal to the model parameterm. Let us
de�ne this mean rate in the factor analytic framework as
m = exp( ~Wx ). This allows us to write the log-likelihood
in vector form as:

L (y j ~W ;x; � ) = y > ~Wx �

(� � 1 + y > ) log(1 + � exp( ~Wx )) + const:
(19)

To derive a PAL estimator, we use a quadratic approximation
to the nonlinear termlog(1 + � exp(x)) on a per-neuron
basis. We set� = 1 for simulations, but this quantity
may be learned in an outer loop. We choose the center
of the nonlinear range to be the same as in the Poisson
case, with the center value being the log of the mean �ring
rate of the neuron (see right panel of Figure 1 for example
of centering with an average log-rate of 0). The range
limits are[log � i � 4; log � i + 4] , where� i is the average
value ofm across time, per neuron. Here, a wider range
can be used as this nonlinearity is accurately captured by
the quadratic approximation. As in the previous cases, we
obtain a quadratic approximate log-likelihood which has the
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Figure 3: Comparison of vLGP, BBVI and PAL-based estimation in count-GPFA models. (Left ) Reconstructed spike
rates for each inference procedure, plotted alongside the spiking activity summed across trials (PSTH). Here, PAL-learned
hyperparameters followed by a MAP estimation (red), BBVI (blue) and vLGP (yellow) all yield very similar and highly
accurate spike rate reconstructions. Each of these closely match true spiking data (gray PSTH). (Middle) MSE of
reconstructed rates shows good performance for all methods. (Right) PAL is faster than competing algorithms.

following form:

L (y jx ; ~W ; � ) � � x ~W > diag((� � 1 + y) � a) ~Wx

+ ( y � y � b � � � 1b)> ~Wx + const
(20)

We then add the log prior and marginalizex to obtain an
approximation to the log marginal likelihood for negative-
binomial GPFA that follows the same form as equation (4)
with

� � 1 = 2 ~W > diag((� � 1 + y) � a) ~W + K � 1 (21)

� = � ~W > (y � y � b � � � 1b) (22)

A summary of the features of all count GPFA models is
given in Table 1. This table lists the nonlinear term for each
model, the expected number of spikes for thei th neuron as a
function of the latents,X , loadings matrixW , and the mean
and covariance of the polynomial-approximated marginal
distribution. We useni to refer to the maximal spike count
for neuroni , andw i to denote thei th column ofW .

3.4. Evaluating PAL performance

To assess the accuracy of the PAL estimator, we �rst ana-
lyzed its performance on simulated data. For 20 trials with
200 time points, we simulated count observations from 20
neurons with 2 latent processes with length scales`1 = 15
and `2 = 60 and each entry ofW drawn uniformly in
[0; 2]. We then �t each model by directly optimizing equa-
tion 4 to obtain parameter estimateŝW and hyperparameter
estimateŝ̀ . Conditioned on these estimates, we then maxi-
mized the conditional posterior to obtain̂X MAP , the MAP
estimate of the latent process. As a control, we compared
PAL performance to standard Gaussian-noise GPFA.

We found that the rates estimated using this procedure were
similar to the true model rates and showed substantial im-
provement above Gaussian GPFA (Figure 2A, top). Addi-
tionally, PAL inference accurately captures latent structure
(Figure 2A, bottom), whereas GPFA cannot. To identify
latent structure in these simulated data, we regress learned
latents onto the true latents as latent factors models are
identi�able only up to a rotation matrix. Accurate identi�ca-
tion of latent structure is a primary feature of this inference
procedure, as latents have functional importance in neuro-
science settings (Duncker & Sahani, 2018; Yu et al., 2009;
Zhao & Park, 2017).

We additionally demonstrate PAL's accuracy by showing
error of recovered latent structure as a function of the num-
ber of observed neurons. For each count-GPFA model, as
we consider more and more data (from 2 to 20 neurons),
PAL more and more accurately recovers latent structure, as
expected (Figure 2B). Fits for real neural data are shown
for an example neuron in Figure 2C. This is the �rst half of
a trail for an example neuron from the rodent dataset (for
more information, see section 5). PAL �ts to count-GPFA
better describe the neural spike-count data than standard
GPFA. The background histogram in light grey in Figure
2C shows the true spike counts, and each of the dotted lines
show the estimated neural �ring rates under each model.
Standard GPFA inference problematically yields negative
rates and fails to capture the quick changes in �ring rate.

4. Comparison to other approaches

Variational inference (Blei et al., 2003) represents a com-
mon alternate approach to performing inference in non-
conjugate factor models. This approach has been previously
used in the setting of Poisson-GPFA (Duncker & Sahani,


