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Abstract
Machine-learned predictors, although achieving
very good results for inputs resembling training
data, cannot possibly provide perfect predictions
in all situations. Still, decision-making systems
that are based on such predictors need not only to
benefit from good predictions but also to achieve
a decent performance when the predictions are
inadequate. In this paper, we propose a prediction
setup for arbitrary metrical task systems (MTS)
(e.g., caching, k-server and convex body chasing)
and online matching on the line. We utilize results
from the theory of online algorithms to show how
to make the setup robust. Specifically for caching,
we present an algorithm whose performance, as a
function of the prediction error, is exponentially
better than what is achievable for general MTS.
Finally, we present an empirical evaluation of our
methods on real world datasets, which suggests
practicality.

1. Introduction
Metrical task systems (MTS), introduced by Borodin et al.
(1992), are a rich class containing several fundamental
problems in online optimization as special cases, includ-
ing caching, k-server, convex body chasing, and convex
function chasing. MTS are capable of modeling many prob-
lems arising in computing and production systems (Sleator
& Tarjan, 1985; Manasse et al., 1990), movements of ser-
vice vehicles (Dehghani et al., 2017; Coester & Koutsoupias,
2019), power management of embedded systems as well
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as data centers (Irani et al., 2003; Lin et al., 2013), and are
also related to the experts problem in online learning (see
Daniely & Mansour, 2019; Blum & Burch, 2000).

Initially, we are given a metric space M of states, which can
be interpreted for example as actions, investment strategies,
or configurations of some production machine. We start at a
predefined initial state x0. At each time t = 1, 2, . . . , we are
presented with a cost function `t : M → R+∪{0,+∞} and
our task is to decide either to stay at xt−1 and pay the cost
`t(xt−1), or to move to some other (possibly cheaper) state
xt and pay dist(xt−1, xt) + `t(xt), where dist(xt−1, xt) is
the cost of the transition between states xt−1 and xt. The
objective is to minimize the overall cost incurred over time.

Given that MTS is an online problem, one needs to make
each decision without any information about the future cost
functions. This makes the problem substantially difficult, as
supported by strong lower bounds for general MTS (Borodin
et al., 1992) as well as for many special MTS problems (see
e.g. Karloff et al., 1994; Fiat et al., 1998). For the recent
work on MTS, see Bubeck et al. (2019); Coester & Lee
(2019); Bubeck & Rabani (2020).

In this paper, we study how to utilize predictors (possibly
based on machine learning) in order to decrease the uncer-
tainty about the future and achieve a better performance
for MTS. We propose a natural prediction setup for MTS
and show how to develop algorithms in this setup with the
following properties of consistency (i) and robustness (ii).

(i) Their performance improves with accuracy of the pre-
dictor and is close-to-optimal with perfect predictions.

(ii) When given poor predictions, their performance is com-
parable to that of the best online algorithm which does
not use predictions.

The only MTS that has been studied before in this context of
utilizing predictors is the caching problem. Algorithms by
Lykouris & Vassilvitskii (2018) and Rohatgi (2020) provide
similar guarantees by using predictions about the time of the
next occurrence of the current page in the input sequence.
However, as we show in this paper, such predictions are not
useful for more general MTS, even for weighted caching.

Using the prediction setup proposed in this paper, we can
design robust and consistent algorithms for any MTS. For
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the (unweighted) caching problem, we develop an algorithm
that obtains a better dependency on the prediction error than
our general result, and whose performance in empirical tests
is either better or comparable to the algorithms by Lykouris
& Vassilvitskii (2018) and Rohatgi (2020). This demon-
strates the flexibility of our setup. We would like to stress
that specifically for the caching problem, the predictions in
our setup can be obtained by simply converting the predic-
tions used by Lykouris & Vassilvitskii (2018) and Rohatgi
(2020), a feature that we use in order to compare our results
to those previous algorithms. Nevertheless our prediction
setup is applicable to the much broader context of MTS. We
demonstrate this and suggest practicability of our algorithms
also for MTS other than caching by providing experimen-
tal results for the ice cream problem (Chrobak & Larmore,
1998), a simple example of an MTS. Finally, we extend our
theoretical result beyond MTS to online matching on the
line.

Prediction Setup for MTS. At each time t, the predictor
produces a prediction pt of the state where the algorithm
should be at time t. We define the prediction error with
respect to some offline algorithm OFF as

η =

T∑
t=1

ηt; ηt = dist(pt, ot), (1)

where ot denotes the state of OFF at time t and T denotes
the length of the input sequence.

The predictions could be, for instance, the output of a
machine-learned model or a heuristic which tends to pro-
duce a good solution in practice, but possibly without a
theoretical guarantee. The offline algorithm OFF can be
an optimal one, but also other options are plausible. For
example, if the typical instances are composed of subpat-
terns known from the past and for which good solutions are
known, then we can think of OFF as a near-optimal algo-
rithm which composes its output from the partial solutions
to the subpatterns. The task of the predictor in this case is to
anticipate which subpattern is going to follow and provide
the precomputed solution to that subpattern. In the case of
the caching problem, as mentioned above and explained in
Section 1.3, we can actually convert the predictions used
by Lykouris & Vassilvitskii (2018) and Rohatgi (2020) into
predictions for our setup.

Note that, even if the prediction error with respect to OFF is
low, the cost of the solution composed from the predictions
p1, . . . , pT can be much higher than the cost incurred by
OFF, since `t(pt) can be much larger than `t(ot) even if
dist(pt, ot) is small. However, we can design algorithms
which use such predictions and achieve a good performance
whenever the predictions have small error with respect to
any low-cost offline algorithm. We aim at expressing the

performance of the prediction-based algorithms as a func-
tion of η/OFF, where (abusing notation) OFF denotes the
cost of the offline algorithm. This is to avoid scaling issues:
if the offline algorithm incurs movement cost 1000, predic-
tions with total error η = 1 give us a rather precise estimate
of its state, unlike when OFF = 0.1.

1.1. Our Results

We prove two general theorems providing robustness and
consistency guarantees for any MTS.

Theorem 1. Let A be a deterministic α-competitive online
algorithm for a problem P belonging to MTS. There is a
prediction-based deterministic algorithm for P achieving
competitive ratio

9 ·min{α, 1 + 4η/OFF}

against any offline algorithm OFF, where η is the prediction
error with respect to OFF.

Roughly speaking, the competitive ratio (formally defined
in Section 2) is the worst case ratio between the cost of
two algorithms. If OFF is an optimal algorithm, then the
expression in the theorem is the overall competitive ratio of
the prediction-based algorithm.

Theorem 2. Let A be a randomized α-competitive online
algorithm for an MTS P with metric space diameter D.
For any ε ≤ 1/4, there is a prediction-based randomized
algorithm for P achieving cost below

(1 + ε) ·min{α, 1 + 4η/OFF} · OFF +O(D/ε),

where η is the prediction error with respect to an offline
algorithm OFF. Thus, if OFF is (near-)optimal and η �
OFF, the competitive ratio is close to 1 + ε.

We note that the proofs of these theorems are based on the
powerful results by Fiat et al. (1994) and Blum & Burch
(2000). In Theorem 9, we show that the dependence on
η/OFF in the preceding theorems is tight up to constant
factors for some MTS instance.

For some other specific MTS, however, the dependence on
η/OFF can be improved. In particular, we present in Sec-
tion 4 a new algorithm for caching, a special case of MTS,
whose competitive ratio has a logarithmic dependence on
η/OFF. One of the main characteristics of our algorithm,
which we call TRUST&DOUBT, compared to previous ap-
proaches, is that it is able to gradually adapt the level of
trust in the predictor throughout the instance.

Theorem 3. There is a prediction-based randomized al-
gorithm for (unweighted) caching with a competitive ratio
O(min{1 + log(1 + η

OFF
), log k}) against any algorithm

OFF, where η is the prediction error and k is the cache size.
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Although we designed our prediction setup with MTS in
mind, it can also be applied to problems beyond MTS. We
demonstrate this by employing our techniques to provide an
algorithm of similar flavor for online matching on the line,
a problem not known to be an MTS.

Theorem 4. There is a prediction-based deterministic al-
gorithm for online matching on the line which attains a
competitive ratio O(min{log n, 1 + η/OFF}), where η is
the prediction error with respect to some offline algorithm
OFF.

We also show that Theorem 4 can be generalized to give a
O(min{2n− 1, η/OFF})-competitive algorithm for online
metric bipartite matching.

We show that the predictions used by Lykouris & Vassilvit-
skii (2018) and Rohatgi (2020) for caching do not help for
more general problems like weighted caching:

Theorem 5. The competitive ratio of any algorithm for
weighted caching even if provided with precise predictions
of the time of the next request to each page is Ω(log k).

Note that there are O(log k)-competitive online algorithms
for weighted caching which do not use any predictions (see
Bansal et al., 2012). This motivates the need for a different
prediction setup as introduced in this paper.

We round up by presenting an extensive experimental eval-
uation of our results that suggests practicality. We test the
performance of our algorithms on public data with previ-
ously used models. With respect to caching, our algorithms
outperform all previous approaches in most settings (and
are always comparable). A very interesting use of our setup
is that it allows us to employ any other online algorithm as
a predictor for our algorithm. For instance, when using the
Least Recently Used (LRU) algorithm – which is considered
the gold standard in practice – as a predictor for our algo-
rithm, our experiments suggest that we achieve the same
practical performance as LRU, but with an exponential im-
provement in the theoretical worst-case guarantee (O(log k)
instead of k). Finally we applied our general algorithms to
a simple MTS called the ice cream problem and were able
to obtain results that also suggest practicality of our setup
beyond caching.

Supplementary Material. Due to space constraints, this
paper contains only the intuition behind our results for gen-
eral MTS (Theorems 1 and 2), the algorithm for caching
(Theorem 3), and the results of our empirical experiments.
The formal proofs and full details of all our results are in-
cluded in the supplementary material which contains a copy
of the full version of our paper (Antoniadis et al., 2020).

1.2. Related Work

Our work is part of a larger and recent movement to prove
rigorous performance guarantees for algorithms based on
machine learning. There are already exciting results on this
topic in both classical (see Kraska et al., 2018; Khalil et al.,
2017) and online problems: Rohatgi (2020) on caching,
Lattanzi et al. (2020) on restricted assignment scheduling,
Lykouris & Vassilvitskii (2018) on caching, Purohit et al.
(2018) on ski rental and non-clairvoyant scheduling, Gol-
lapudi & Panigrahi (2019) on ski rental with multiple pre-
dictors, Mitzenmacher (2020) on scheduling/queuing, and
Medina & Vassilvitskii (2017) on revenue optimization.

Most of the online results are analyzed by means of consis-
tency (competitive-ratio in the case of perfect predictions)
and robustness (worst-case competitive-ratio regardless of
prediction quality), which was first defined in this context
by Purohit et al. (2018), while Mitzenmacher (2020) uses
a different measure called price of misprediction. It should
be noted that the exact definitions of consistency and ro-
bustness are slightly inconsistent between different works in
the literature, making it often difficult to directly compare
results.

Results on Caching. The probably closest results to our
work are the ones by Lykouris & Vassilvitskii (2018) and
Rohatgi (2020), who study the caching problem (a special
case of MTS) with machine learned predictions. Lykouris
& Vassilvitskii (2018) introduced the following prediction
setup for caching: whenever a page is requested, the al-
gorithm receives a prediction of the time when the same
page will be requested again. The prediction error is de-
fined as the `1-distance between the predictions and the
truth, i.e., the sum – over all requests – of the absolute
difference between the predicted and the real time of the
next occurrence of the same request. For this prediction
setup, they adapted the classic Marker algorithm in order to
achieve, up to constant factors, the best robustness and con-
sistency possible. In particular, they achieved a competitive
ratio of O

(
1 + min{

√
η/OPT, log k}

)
and their algorithm

was shown to perform well in experiments. Later, Rohatgi
(2020) achieved a better dependency on the prediction er-
ror: O(1 + min{ log kk

η
OPT

, log k}). He also provides a close
lower bound.

Following the original announcement of our work, we
learned about further developments by Wei (2020) and
Jiang et al. (2020). Wei (2020) improves upon the re-
sult of Rohatgi (2020), proving a guarantee of O(1 +
min{ 1k

η
OPT

, log k}) for a robust version of a natural algo-
rithm called Blind Oracle. The paper by Jiang et al. (2020)
proposes an algorithm for weighted caching in a very strong
prediction setup, where the predictor reports at each time
step the time t of the next occurrence of the currently re-
quested page along with all page requests until t. Jiang et al.
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(2020) provide a collection of lower bounds for weaker
predictors (including an independent proof of Theorem 5),
justifying the need for such a strong predictor.

We stress that the aforementioned results use different pre-
diction setups and they do not directly imply any bounds
for our setup. This is due to a different way of measuring
prediction error, see Section 1.3 for details.

Combining Worst-Case and Optimistic Algorithms.
An approach in some ways similar to ours was developed
by Mahdian et al. (2012) who assume the existence of an
optimistic algorithm and developed a meta-algorithm that
combines this algorithm with a classical one and obtains a
competitive ratio that is an interpolation between the ratios
of the two algorithms. They designed such algorithms for
several problems including facility location and load bal-
ancing. The competitive ratios obtained depend on the per-
formance of the optimistic algorithm and the choice of the
interpolation parameter. Furthermore the meta-algorithm
is designed on a problem-by-problem basis. In contrast, (i)
our performance guarantees are a function of the prediction
error, (ii) generally we are able to approach the performance
of the best algorithm, and (iii) our way of simulating mul-
tiple algorithms can be seen as a black box and is problem
independent.

Online Algorithms with Advice. Another model for aug-
menting online algorithms, but not directly related to the
prediction setting studied in this paper, is that of advice com-
plexity, where information about the future is obtained in the
form of some always correct bits of advice (see Boyar et al.,
2017, for a survey). Emek et al. (2011) considered MTS
under advice complexity, and Angelopoulos et al. (2020)
consider advice complexity with possibly adversarial advice
and focus on Pareto-optimal algorithms for consistency and
robustness in several similar online problems.

1.3. Comparison to the Setup of Lykouris&Vassilvitskii

Although the work of Lykouris & Vassilvitskii (2018) for
caching served as an inspiration, our prediction setup cannot
be understood as an extension or generalization of their
setup. Here we list the most important connections and
differences.

Conversion of Predictions for Caching. One can con-
vert the predictions of Lykouris & Vassilvitskii (2018) for
caching into predictions for our setup using a natural al-
gorithm1: At each page fault, evict the page whose next
request is predicted furthest in the future. Note that, if given
perfect predictions, this algorithm produces an optimal so-
lution (Belady, 1966). The states of this algorithm at each

1 Wei (2020) calls this algorithm Blind Oracle and proves
that it is O(1 + 1

k
η

OPT
)-competitive in the setup of Lykouris &

Vassilvitskii (2018).

time are then interpreted as predictions in our setup. We
use this conversion to compare the performance of our al-
gorithms to those of Lykouris & Vassilvitskii (2018) and
Rohatgi (2020) in empirical experiments in Section 5.

Prediction Error. The prediction error as defined by Lyk-
ouris & Vassilvitskii (2018) is not directly comparable to
ours. Here are two examples.

(1) If we modify the perfect predictions in the setup of Lyk-
ouris & Vassilvitskii (2018) by adding 1 to each predicted
time of the next occurrence, we get predictions with error
Ω(T ), where T is the length of the input sequence (poten-
tially infinite). However, the shift by 1 does not change
the order of the next occurrences and the conversion algo-
rithm above will still produce an optimal solution, i.e., the
converted predictions will have error 0 with respect to the
offline optimum.

(2) One can create a request sequence consisting of k + 1
distinct pages where swapping two predicted times of next
arrivals causes a different prediction to be generated by
the conversion algorithm. The modified prediction in the
setup of Lykouris & Vassilvitskii (2018) may only have
error 2 while the error in our setup with respect to the offline
optimum can be arbitrarily high (depending on how far
in the future these arrivals happen). However, our results
provide meaningful bounds also in this situation. Such
predictions still have error 0 in our setup with respect to
a near-optimal algorithm which incurs only one additional
page fault compared to the offline optimum. Theorems 1–3
then provide constant-competitive algorithms with respect
to this near-optimal algorithm.

The first example shows that the results of Lykouris & Vas-
silvitskii (2018); Rohatgi (2020); Wei (2020) do not imply
any bounds in our setup. On the other hand, the recent result
of Wei (2020) shows that our algorithms from Theorems 1–
3, combined with the prediction-converting algorithm above,
areO(1+min{ 1k

η
OPT

, log k})-competitive for caching in the
setup of Lykouris & Vassilvitskii (2018), thus also matching
the best known competitive ratio in that setup: The out-
put of the conversion algorithm has error 0 with respect
to itself and our algorithms are constant-competitive with
respect to it. Since the competitive ratio of the conversion
algorithm is O(1 + 1

k
η

OPT
) by Wei (2020), our algorithms

areO(min{1+ 1
k

η
OPT

, log k})-competitive, where η denotes
the prediction error in the setup of Lykouris & Vassilvitskii
(2018).

Succinctness. In the case of caching, we can restrict our-
selves to lazy predictors, where each predicted cache content
differs from the previous predicted cache content by at most
one page, and only if the previous predicted cache content
did not contain the requested page. This is motivated by
the fact that any algorithm can be transformed into a lazy



Online Metric Algorithms with Untrusted Predictions

version of itself without increasing its cost. Therefore, it is
enough to receive predictions of size O(log k) per time step
saying which page should be evicted, compared to Θ(log T )
bits needed to encode the next occurrence in the setup of
Lykouris & Vassilvitskii (2018). In fact, we need to receive
a prediction only for time steps where the current request
is not part of the previous cache content of the predictor.
In cases when running an ML predictor at each of these
time steps is too costly, our setup allows predictions being
generated by some fast heuristic whose parameters can be
recalculated by the ML algorithm only when needed.

2. Preliminaries
In MTS, we are given a metric space M of states and an
initial state x0 ∈M . At each time t = 1, 2, . . . , we receive
a task `t : M → R+ ∪ {0,+∞} and we have to choose a
new state xt without knowledge of the future tasks, incurring
cost dist(xt−1, xt) + `t(xt). Note that dist(xt−1, xt) = 0
if xt−1 = xt by the identity property of metrics.

Although MTS share several similarities with the experts
problem from the theory of online learning (Freund &
Schapire, 1997; Chung, 1994), there are three important
differences. First, there is a switching cost: we need to pay
cost for switching between states equal to their distance in
the underlying metric space. Second, an algorithm for MTS
has one-step lookahead, i.e., it can see the task (or loss func-
tion) before choosing the new state and incurring the cost
of this task. Third, there can be unbounded costs in MTS,
which can be handled thanks to the lookahead. See Blum
& Burch (2000) for more details on the relation between
experts and MTS.

In the caching problem we have a two-level computer mem-
ory, out of which the fast one (cache) can only store k pages.
We need to answer a sequence of requests to pages. Such a
request requires no action and incurs no cost if the page is
already in the cache, but otherwise a page fault occurs and
we have to add the page and evict some other page at a cost
of 1. Caching can be seen as an MTS with states being the
cache configurations.

To assess the performance of algorithms, we use the compet-
itive ratio – the classical measure used in online algorithms.

Definition 1 (Competitive ratio). Let A be an online algo-
rithm for some cost-minimization problem P . We say that
A is r-competitive and call r the competitive ratio of A, if
for any input sequence I ∈ P , we have

E[cost(A(I))] ≤ r · OPTI +α,

where α is a constant independent of the input sequence,
A(I) is the solution produced by the online algorithm and
OPTI is the cost of an optimal solution computed offline
with the prior knowledge of the whole input sequence. The

expectation is over the randomness in the online algorithm.
If OPTI is replaced by the cost of some specific algorithm
OFF, we say that A is r-competitive against OFF.

2.1. Combining Online Algorithms

Consider m algorithms A0, . . . , Am−1 for some problem P
belonging to MTS. We describe two methods to combine
them into one algorithm which achieves a performance guar-
antee close to the best of them. Note that these methods are
also applicable to problems which do not belong to MTS
as long as one can simulate all the algorithms at once and
bound the cost for switching between them.

Deterministic Combination. The following method was
proposed by Fiat et al. (1994) for the k-server problem, but
can be generalized to MTS. We note that a similar combi-
nation is also mentioned in Lykouris & Vassilvitskii (2018).
We simulate the execution ofA0, . . . , Am−1 simultaneously.
At each time, we stay in the configuration of one of them,
and we switch between the algorithms in the manner of a
solution for the m-lane cow path problem, see Algorithm 1
for details.

Algorithm 1: MINdet (Fiat et al., 1994)

choose 1 < γ ≤ 2; set ` := 0
repeat

i := ` mod m

while cost(Ai) ≤ γ`, follow Ai
` := `+ 1

until the end of the input

Theorem 6 (generalization of Theorem 1 in Fiat et al.
(1994)). Given m online algorithms A0, . . . Am−1 for a
problem P in MTS, the algorithm MINdet achieves cost at
most ( 2γm

γ−1 + 1) ·mini{costAi
(I)}, for any input sequence

I .

A proof of this theorem can be found in supplementary
material. The optimal choice of γ is m

m−1 . Then 2γm

γ−1 + 1
becomes 9 for m = 2, and can be bounded by 2em for
larger m.

Randomized Combination. Blum & Burch (2000) pro-
posed the following way to combine online algorithms based
on the WMR (Littlestone & Warmuth, 1994) (Weighted Ma-
jority Randomized) algorithm for the experts problem. At
each time t, it maintains a probability distribution pt over the
m algorithms updated using WMR. Let dist(pt, pt+1) =∑
i max{0, pti−p

t+1
i } be the earth-mover distance between

pt and pt+1 and let τij ≥ 0 be the transfer of the probabil-
ity mass from pti to pt+1

j certifying this distance, so that
pti =

∑m−1
j=0 τij and dist(pt, pt+1) =

∑
i6=j τij . If we are

now following algorithm Ai, we switch to Aj with proba-
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bility τij/pti. See Algorithm 2 for details. The parameter
D is an upper bound on the switching cost states of two
algorithms.

Algorithm 2: MINrand (Blum & Burch, 2000)

β := 1− ε
2 ; // for parameter ε < 1/2

w0
i := 1 for each i = 0, . . . ,m− 1;

foreach time t do
cti := cost incurred by Ai at time t;

wt+1
i := wti · βc

t
i/D and pt+1

i :=
wt+1

i∑
wt+1

i

;

τi,j := mass transferred from pti to pt+1
j ;

switch from Ai to Aj w.p. τij/pti;

Theorem 7 (Blum & Burch (2000)). Given m on-line al-
gorithms A0, . . . Am−1 for an MTS with diameter D and
ε < 1/2, there is a randomized algorithm MINrand such
that, for any instance I , its expected cost is at most

(1 + ε) ·min
i
{cost(Ai(I))}+O(D/ε) lnm.

3. Robust Algorithms for MTS
The goal of this section is to prove Theorem 1 and Theorem
2. We use algorithms MINdet and MINrand respectively
to combine the online algorithmA with a deterministic algo-
rithm Follow the Prediction (FTP) proposed in the following
lemma. The proofs then follow by using Theorem 6 and
Theorem 7.
Lemma 8. There is a prediction-based deterministic algo-
rithm FTP for any MTS which achieves competitive ratio
1 + 4η

OFF
against any offline algorithm OFF, where η is the

prediction error with respect to OFF.

Here, we only describe the FTP algorithm. The proof of the
lemma can be found in supplementary material.

Algorithm Follow the Prediction (FTP). Intuitively, our
algorithm follows the predictions but still somewhat cau-
tiously: if there exists a state “close” to the predicted one
that has a much cheaper service cost, then it is to be pre-
ferred. Let us consider a metrical task system with a set
of states X . We define the algorithm FTP (Follow the Pre-
diction) as follows: at time t, after receiving task `t and
prediction pt, it moves to the state

xt ← arg min
x∈X
{`t(x) + 2dist(x, pt)}. (2)

In other words, FTP follows the predictions except when it
is beneficial to move from the predicted state to some other
state, pay the service and move back to the predicted state.

Lower Bound. Theorem 9 shows that our guarantees in
Theorems 1 and 2 are tight up to a constant factor (the proof
is included in supplementary material).

Theorem 9. There exists a Metrical Task System instance
in which no randomized (or deterministic) online algorithm
using our prediction setup can be better than min{L, 1 +
η

2 OPT
}-competitive, where L is the optimal competitive ratio

of randomized (or deterministic) online algorithms without
predictions.

4. Logarithmic Error Dependence for
Caching

We describe in this section2 a new algorithm for the caching
problem, which we call TRUST&DOUBT. It achieves a com-
petitive ratio logarithmic in the error (thus overcoming the
lower bound of Theorem 9), while also attaining the optimal
worst-case guarantee of O(log k).

Let rt be the page that is requested at time t and let Pt be the
configuration (i.e., set of pages in the cache) of the predictor
at time t. We assume that the predictor is lazy in the sense
that Pt differs from Pt−1 only if rt /∈ Pt−1 and, in this case,
Pt = Pt−1 ∪ {rt} \ {q} for some page q ∈ Pt−1.

The request sequence can be decomposed into maximal time
periods (phases) where k distinct pages were requested. The
first phase begins with the first request. A phase ends (and a
new phase begins) after k distinct pages have been requested
in the current phase and right before the next arrival of a
page that is different from all these k pages. For a given
point in time, we say that a page is marked if it has been
requested at least once in the current phase. For each page
p requested in a phase, we call the first request to p in that
phase the arrival of p. This is the time when p gets marked.
Many algorithms, including that of Lykouris & Vassilvitskii
(2018), belong to the class of so-called marking algorithms,
which evict a page only if it is unmarked. In general, no
marking algorithm can be better than 2-competitive even
when provided with perfect predictions. As will become
clear from the definition of TRUST&DOUBT below, it may
in some cases evict a page even when it is marked, mean-
ing that it is not a marking algorithm. As can be seen in
our experiments in Section 5, this allows TRUST&DOUBT
to outperform these other algorithms when predictions are
good.

TRUST&DOUBT maintains several sets of pages during its ex-
ecution: A page is called ancient if it is in TRUST&DOUBT’s
cache even though it has been requested in neither the previ-
ous nor the current phase (so far). The set of ancient pages
is denoted by A. Whenever there is a page fault and A 6= ∅,
TRUST&DOUBT evicts a page fromA. Non-ancient pages that
are in TRUST&DOUBT’s cache at the beginning of a phase will
be called stale for the remainder of the phase. A page that is
not stale and arrives in a phase after A becomes empty will
be called clean. By C we denote the set of clean pages that

2We provide a pseudocode in the supplementary material.



Online Metric Algorithms with Untrusted Predictions

have arrived so far in the current phase. TRUST&DOUBT asso-
ciates with each clean page q ∈ C a page pq that is missing
from the predictor’s cache. We also maintain a Boolean
variable trusted(q) for each q ∈ C, indicating whether
TRUST&DOUBT has decided to trust the predictor’s advice
to evict pq (a trusted advice may still be wrong though).
Denote by T = {pq | q ∈ C, trusted(q) = true} and
D = {pq | q ∈ C, trusted(q) = false} the sets of these
predicted evictions that are currently trusted and doubted,
respectively. We will ensure that no page from T is in the
algorithm’s cache, whereas pages in D may or may not be
in the algorithm’s cache. Let U be the set of unmarked
stale pages that are not in T . Let M be the set of marked
pages that are not in T . For each clean page q ∈ C, we
also maintain a threshold tq. Roughly speaking, a larger
threshold indicates that TRUST&DOUBT is willing to trust
the prediction to evict pq less frequently. We partition the
time from the arrival of q ∈ C until the end of the phase
into intervals, which we call q-intervals. The first q-interval
begins right before the arrival of q. The current q-interval
lasts as long as the number of arrivals in this q-interval is at
most tq, and a new q-interval begins once this would stop
being the case. As will be specified below, the threshold tq
starts at 1 for each clean page q of the phase and doubles
after those intervals in which a request to pq occurs (i.e., the
prediction to evict pq was ill-advised and hence we increase
the threshold). The algorithm trusts to evict pq at the start of
each q-interval, but if pq is requested during the q-interval,
then pq will be redefined to be a different page and this
prediction will be doubted for the remainder of the current
q-interval.

As mentioned above, whenever a page fault occurs while
A 6= ∅, TRUST&DOUBT evicts an arbitrary3 ancient page.
Once A becomes empty, we sample a permutation of the
pages in U uniformly at random, and define the priority of
each page in U to be its rank in this permutation. Hereafter,
when a page r is requested, TRUST&DOUBT proceeds as
follows:

1. If r is not in TRUST&DOUBT’s cache, evict the unmarked
page with lowest priority and load r.

2. If r ∈ C and this is the arrival of r, define pr to be
an arbitrary4 page from (U ∪M) \D that is missing
from the predictor’s cache and set trusted(r) := true
and tr := 1.

3. If r = pq ∈ T ∪D for some q ∈ C, redefine pq to be
an arbitrary page from (U ∪M) \ D that is missing
from the predictor’s cache, and set trusted(q) := false.

4. For each q ∈ C for which a new q-interval began with
this request: If trusted(q) = false, set tq := 2tq and
trusted(q) := true. If pq is in TRUST&DOUBT’s cache,

3e.g., prioritize those missing from the predictor’s cache, then
the least recently used

4e.g., the least recently used

evict pq and, of the pages in U that are missing from
the cache, load the one with highest priority.

Remark 10. To simplify analysis, the algorithm is defined
non-lazily here in the sense that it may load pages even when
they are not requested. For instance, the page evicted in step
1 might be immediately reloaded in step 4 (in particular, this
will always be the case when r is clean). An implementation
should only simulate this non-lazy algorithm in the back-
ground and, whenever the actual algorithm has a page fault,
it evicts an arbitrary (e.g., the least recently used) page that
is present in its own cache but missing from the simulated
cache.

The proof of Theorem 3 can be found in supplementary
material.

5. Experiments
We evaluate the practicality of our approach on real-world
datasets for two MTS: caching and ice cream problem. The
source code and datasets are available at GitHub5. Each ex-
periment was run 10 times and we report the mean competi-
tive ratios. The maximum standard deviation we observed
was of the order of 0.001.

5.1. The Caching Problem

Datasets. For the sake of comparability, we used the same
two datasets as Lykouris & Vassilvitskii (2018).

• BK dataset comes from a former social network
BrightKite (Cho et al., 2011). It contains checkins
with user IDs and locations. We treat the sequence of
checkin locations of each users as a separate instance
of caching problem. We filter users with the maximum
sequence length (2100) who require at least 50 evic-
tions in an optimum cache policy. Out of those we
take the first 100 instances. We set the cache size to
k = 10.

• Citi dataset comes from a bike sharing plat-
form CitiBike. For each month of 2017, we consider
the first 25 000 bike trips and build an instance where
a request corresponds to the starting station of a trip.
We set the cache size to k = 100.

Predictions. We first generate predictions regarding the
next time that the requested page will appear, this prediction
being used by previous prediction-augmented algorithms.
To this purpose, we use the same two predictors as Lykouris
& Vassilvitskii (2018). Additionally we also consider a
simple predictor, which we call POPU (from popularity),
and the LRU heuristic adapted to serve as a predictor.

5https://github.com/adampolak/
mts-with-predictions

https://github.com/adampolak/mts-with-predictions
https://github.com/adampolak/mts-with-predictions
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• Synthetic predictions: we first compute the exact next
arrival time for each request, setting it to the end of
the instance if it does not reappear. We then add some
noise drawn from a lognormal distribution, with the
mean parameter 0 and the standard deviation σ, in
order to model rare but large failures.

• PLECO predictions: we use the PLECO model de-
scribed in Anderson et al. (2014), with the same param-
eters as Lykouris & Vassilvitskii (2018), which were
fitted for the BK dataset (but not refitted for Citi).
This model estimates that a page requested x steps
earlier will be the next request with a probability pro-
portional to (x+ 10)−1.8e−x/670. We sum the weights
corresponding to all the earlier appearances of the cur-
rent request to obtain the probability p that this request
is also the next one. We then estimate that such a
request will reappear 1/p steps later.

• POPU predictions: if the current request has been seen
in a fraction p of the past requests, we predict it will be
repeated 1/p steps later.

• LRU predictions: Lykouris & Vassilvitskii (2018) al-
ready remarked on (but did not evaluate experimen-
tally) a predictor that emulates the behavior of the
LRU heuristic. A page requested at time t is predicted
to appear at time −t. Note that the algorithms only
consider the order of predicted times among pages, and
not their values, so the negative predictions pointing to
the past are not an issue.

We then transform these predictions (which are tailored
to the caching problem) to our prediction setup (which is
designed for general MTS) by simulating the algorithm that
evicts the element predicted to appear the furthest in the
future. In each step the prediction to our algorithm is the
configuration of this algorithm. Note that in the case of
LRU predictions, the predicted configuration is precisely
the configuration of the LRU algorithm.

Algorithms. We considered the following algorithms.
Two online algorithms: the heuristic LRU, which is con-
sidered the gold standard for caching, and the O(log k)-
competitive Marker (Fiat et al., 1994). Three robust
algorithms from the literature using the “next-arrival
time” predictions: L&V (Lykouris & Vassilvitskii, 2018),
LMarker (Rohatgi, 2020), and LNonMarker (Rohatgi,
2020). Three algorithms using the prediction setup which
is the focus of this paper: FTP, which naively fol-
lows the predicted state, RobustFtP, which is defined as
MINrand(FTP,Marker), and is an instance of the general
MTS algorithm described in Section 3, and TRUST&DOUBT,
the caching algorithm described in Section 4.

We implemented the deterministic and randomized combi-
nation schemes described in Section 2 with a subtlety for
the caching problem: we do not flush the whole cache when
switching algorithms, but perform only a single eviction per

page fault in the same way as described in Remark 10. We
set the parameters to γ = 1 + 0.01 and ε = 0.01. These
values, chosen from {10−i : i = 0, . . . , 4}, happen to be
consistently the best choice in all our experimental settings.

Results. For both datasets, for each algorithm and each
prediction considered, we computed the total number of
page faults over all the instances and divided it by the opti-
mal number in order to obtain a competitive ratio. Figure 1
presents the performance of a selection of the algorithms
depending on the noise of synthetic predictions for the BK
dataset. We omit LMarker and LNonMarker for readability
since they perform no better than L&V. In supplementary
material, we present the performance of all the algorithms on
the BK and Citi datasets. The experiment suggests that our
algorithm TRUST&DOUBT outperforms previous prediction-
based algorithms as well as LRU. In Table 1 we provide
the results obtained on both datasets using PLECO, POPU,
and LRU predictions. We observe that PLECO predictions
are not accurate enough to allow previously known algo-
rithms to improve over the Marker algorithm. This may be
due to the sensitivity of this predictor to consecutive identi-
cal requests, which are irrelevant for the caching problem.
However, using the simple POPU predictions enables the
prediction-augmented algorithms to significantly improve
their performance compared to the classical online algo-
rithms. Using TRUST&DOUBT with either of the predictions
is however sufficient to get a performance similar or bet-
ter than LRU (and than all other alternatives, excepted for
POPU predictions on the BK dataset). RobustFtP, although
being a very generic algorithm with worse theoretical guar-
antees, achieves a performance which is not that far from
previously known algorithms. Note that we did not use a
prediction model tailored to our setup, which suggests that
even better results can be achieved. When we use the LRU
heuristic as a predictor, all the prediction-augmented algo-
rithms perform comparably to the bare LRU algorithm. For
TRUST&DOUBT and RobustFTP, there is a theoretical guaran-
tee that this must be the case: Since the prediction error with
respect to LRU is 0, these algorithms are O(1)-competitive
against LRU. Thus, TRUST&DOUBT achieves both the practi-
cal performance of LRU with an exponentially better worst-
case guarantee than LRU. Note that Lykouris & Vassilvitskii
(2018) also discuss how their algorithm framework performs
when using LRU predictions, but did not provide both of
these theoretical guarantees simultaneously.

5.2. A Simple MTS: the Ice Cream Problem

We consider a simple MTS example from Chrobak & Lar-
more (1998), named ice cream problem. It it an MTS with
two states, named v and c, at distance 1 from each other,
and two types of requests, V and C. Serving a request while
being in the matching state costs 1 for V and 2 for C, and
the costs are doubled for the mismatched state. The problem
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Figure 1. Comparison of caching algorithms augmented with syn-
thetic predictions on the BK dataset.

Table 1. Competitive ratios of caching algorithms using PLECO,
POPU, and LRU predictions on both datasets.

Dataset BK Citi

LRU 1.291 1.848
Marker 1.333 1.861

Predictions PLECO POPU LRU PLECO POPU LRU

FTP 2.081 1.707 1.291 2.277 1.739 1.848
L&V 1.340 1.262 1.291 1.877 1.776 1.848
LMarker 1.337 1.264 1.291 1.876 1.780 1.848
LNonMarker 1.339 1.292 1.311 1.882 1.800 1.855
RobustFtP 1.351 1.316 1.301 1.885 1.831 1.859
TRUST&DOUBT 1.292 1.274 1.291 1.847 1.774 1.848
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Figure 2. Performance on the ice cream problem with synthetic
predictions.

is motivated by an ice cream machine which operates in two
modes (states) – vanilla or chocolate – each facilitating a
cheaper production of a type of ice cream (requests).

We use the BrightKite dataset to prepare test instances for
the problem. We extract the same 100 users as for caching.
For each user we look at the geographic coordinates of the
checkins, and we issue a V request for each checkin in the
northmost half, and a C request for each checkin in the
southmost half.

In order to obtain synthetic predictions, we first compute the
optimal offline policy, using dynamic programming. Then,
for an error parameter p, for each request we follow the
policy with probability 1 − p, and do the opposite with
probability p.

We consider the following algorithms: the Work Function
algorithm (Borodin et al., 1992; Borodin & El-Yaniv, 1998),
of competitive ratio of 3 in this setting (2n− 1 in general);
FTP, defined in Section 3 (in case of ties in Equation (2), we
follow the prediction); and the deterministic and randomized
combination of the two above algorithms (with the same ε
and γ as previously) as proposed in Section 3.

Figure 2 presents the competitive ratios we obtained. We
can see that the general MTS algorithms we propose in
Section 3 allow to benefit from good predictions while pro-
viding the worst-case guarantee of the classical online al-
gorithm. The deterministic combination is comparable to
the best of the algorithms combined. Quite surprisingly,
the randomized combination performs even better, even
when predictions are completely random. A likely reason
for this phenomenon is that the randomized combination,
when following at the moment the Work Function algorithm,
overrides its choice with non-zero probability only when
Work Function makes a non-greedy move. This makes the
combined algorithm more greedy, which is beneficial in the
case of the ice cream problem.

6. Conclusion
In this paper, we proposed a prediction setup that allowed
us to design a general prediction-augmented algorithm for a
large class of problems encompassing MTS. For the MTS
problem of caching in particular, the setup requires less in-
formation than previously studied ones. Nevertheless, we
can design a specific algorithm for the caching problem in
our setup which offers guarantees similar to previous algo-
rithms and even performs better in most of our experiments.
Future work includes designing specific algorithms for other
MTS problems in our setup, e.g., weighted caching, k-server
and convex body chasing. Another research direction is
to identify more sophisticated predictors for caching and
other problems that will further enhance the performance of
prediction-augmented algorithms.
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