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Abstract
We study optimal covariate balance for causal in-
ferences from observational data when rich covari-
ates and complex relationships necessitate flexi-
ble modeling with neural networks. Standard ap-
proaches such as propensity weighting and match-
ing/balancing fail in such settings due to miscali-
brated propensity nets and inappropriate covariate
representations, respectively. We propose a new
method based on adversarial training of a weight-
ing and a discriminator network that effectively
addresses this methodological gap. This is demon-
strated through new theoretical characterizations
and empirical results on both synthetic and clin-
ical data showing how causal analyses can be
salvaged in such challenging settings.

1. Introduction
Drawing causal inferences from observational data often
relies on a careful accounting of relevant and systematic
differences between treatment and control groups, or else
any observed variation in response can be dismissed as
spurious correlation rather than a bona-fide causal relation-
ship. For example, hypothetically, differences in lung cancer
incidence in coffee drinkers and non-drinkers might be ex-
plained away by differing rates of cigarette smoking. To
eliminate that possibility, we must contrast groups that are
comparable in their smoking rates, i.e., control for that vari-
able. The approach of controlling for confounders relies
of course on the assumption that no other unobserved con-
founders exist, or, more generally and in terms of a causal
diagram, that these covariates satisfy the back door criterion
(Pearl, 2009).

But controlling for confounders also requires that we under-
stand the way in which they affect treatment, outcome, or
both. The rapid development in training neural networks
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(NNs) holds promise in enabling us to control for potentially
complex relationships and rich covariates. Standard ways of
finding weights that balance covariates for causal inferences
rely either on estimating propensity scores (Rosenbaum &
Rubin, 1983) or on directly minimizing imbalance metrics,
such as kernel maximum mean discrepancy (MMD, Gret-
ton et al., 2009; Kallus, 2016; 2017). But both of these
approaches break down when dealing with rich covariates
and complex relationships that necessitate flexible modeling
with NNs. Propensity scores estimated by deep NNs tend
to be highly volatile and often miscalibrated as probability
estimates. This issue similarly plagues doubly robust ap-
proaches (Kang & Schafer, 2007; Robins et al., 1994). At
the same time, optimal balancing weights rely very crucially
on already having an appropriate representation of the data
to balance.

In this paper, we develop a new approach to the problem
of balancing covariates in such situations. The approach,
termed DeepMatch, solves a game between a weighting and
a discriminator network using adversarial training. Underly-
ing this is a new discriminative discrepancy metric that we
theoretically characterize and relate to existing metrics used
for causal inference. To use it in the context of NNs requires
a few further developments that in the end enable the use of
alternating gradient approaches similar to Goodfellow et al.
(2016). The method is shown to be statistically consistent in
estimating both average and conditional effects. Studying a
case using fully connected networks to learn complex rela-
tionships, a case using convolutional networks to deal with
image confounders, as well as a case with real clinical out-
comes, we demonstrate how DeepMatch can enable strong
causal analyses in these challenging settings.

1.1. Related Literature

There has been intense interest in using machine learning,
and NNs in particular, to estimate causal effects. For the
problem of directly regressing individual effects under un-
confoundedness, Athey & Imbens (2016); Wager & Athey
(2017) study adapting tree-based methods and Johansson
et al. (2016); Shalit et al. (2017) study more effective regular-
ization techniques for NNs. These refine regression-based
approaches that would ignore covariate shifts. They do not
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provide covariate balancing weights that can be used for
estimating other conditional effects or for doubly robust es-
timation. Using another identification condition altogether,
Hartford et al. (2017) use NNs for instrumental-variable
analysis, relying on identifying latent natural experiments
rather than identifying and controlling confounders.

Another strand of work has focused on wrappers that can
leverage machine learning predictors as subroutines. Cher-
nozhukov et al. (2018); Hahn (1998) develop doubly robust
estimators that use flexible estimators such as NNs to en-
able efficient estimation of simpler parameters like average
effects. Künzel et al. (2017); Nie & Wager (2017) develop
meta-learners that combine base learners like NNs to learn
individual causal effects. All of the above rely on having
access to weights that balance covariates and generally use
estimated propensities. But, as discussed below, deep nets,
while good classifiers, yield unwieldy inverse propensity
weights. DeepMatch weights may provide a more stable
alternative for these wrappers.

A variety of work has recently taken the approach of directly
optimizing imbalance metrics for various causal inference
tasks (Athey et al., 2018; Bertsimas et al., 2015; Kallus,
2016; 2017; 2018; Zubizarreta, 2012; 2015). For causal esti-
mation from observational data, these take the form of mini-
mizing metrics like Mahalanobis, Wasserstein, and MMD,
but, as discussed below, this relies on already having an
appropriate representation of the data. DeepMatch proceeds
in the same spirit as these, optimizing directly for balance,
but uses flexible NNs to allow for complex relationships and
balancing deeper, learned representations.

2. Counterfactual Errors, Covariate Balance,
and Representations

We consider an observational study consisting of n obser-
vations {(Xi, Ti, Y

obs
i ) : i = 1, . . . , n} of the variables

(X,T, Y obs), where X ∈ X denotes baseline covariates,
T ∈ {0, 1} treatment assignment, and Y obs ∈ R observed
outcome. For t = 0, 1, we let Tt = {i : Ti = t}
and nt = |Tt|. We also let T1:n = (T1, . . . , Tn) and
X1:n = (X1, . . . , Xn) denote all the observed treatment
assignments and baseline covariates, respectively. We let
Yi(0), Yi(1) ∈ R be the potential outcomes for unit i so
that Y obs

i = Yi(Ti). We further assume unconfoundedness:

Assumption 1. E [Y (0) | T,X] = E [Y (0) | X].

2.1. Estimating Causal Effects

The simplest learning task we consider is to estimate the
average treatment on the treated (ATT):

τ = E [Y (1)− Y (0) | T = 1] = Eτn1
,

τn1
= 1

n1

∑
i∈T1(Yi(1)− Yi(0))

The task is nontrivial because τn1
sums over treated units

but only Yi(1) is observed for treated units and never Yi(0).
This is termed the fundamental problem of causal infer-
ence: counterfactuals are unobserved. Under Asn. 1, this is
solved by comparing treated and control units with similar
covariates, using regression, matching/weighting, or both.

A related task is learning the best-in-C-class conditional
ATT (CATT):

argmin
τ∈C

E
[
(Y (1)− Y (0)− τ(XH))2 | T = 1

]
, (2.1)

where XH is some small subset of interest of the covariates.
Eq. (2.1) is equivalent to the best model in C to represent the
conditional average E

[
Y (1)− Y (0) | XH = xH, T = 1

]
.

CATT is of interest when our observational data con-
tains a lot of very rich data X that can help us justify
Asn. 1, but only much fewer variables are actually available
when we need to make a treatment decision for incoming
units, the heterogeneity of the causal effect is only interest-
ing/reasonable along a particular direction of unit difference,
and/or we need a simple and interpretable model to under-
stand the heterogeneity. One can also consider the ATE and
CATE – the analogous quantities on the general population
without conditioning on T = 1 – and all of the methods we
discuss easily extend. But, for clarity and brevity, we will
focus on ATT and CATT.

Under Asn. 1, many estimators for ATT and CATT
use the propensity score (Rosenbaum & Rubin, 1983).
The propensity score of unit i is e(Xi) where e(x) =
P (T = 1 | X = x). The propensity score is unknown but
it can be estimated by fitting ê(x) as a probabilistic clas-
sifier trained to predict T from X , such as logistic regres-
sion or a NN. Given such a ê(x), one can estimate the
inverse probability weights (IPW) W IPW

i = Ti + (1 −
Ti)(1− ê(Xi))

−1ê(Xi). This gives rise to two popular esti-
mators for ATT: the IPW estimator τ̂W IPW (IPW, Horvitz
& Thompson, 1952) and, given also an estimate µ̂0(x)
of µ0(x) = E[Y (0) | X = x], the doubly robust AIPW
τ̂W IPW,µ̂0

(Hahn, 1998; Robins et al., 1994), which we get
by using Wi = W IPW

i in

τ̂W =
1

n1

n∑
i=1

(−1)1+TiWiY
obs
i , (2.2)

τ̂W,µ̂0
=

1

n1

n∑
i=1

(−1)1+TiWi(Y
obs
i − µ̂0(Xi)). (2.3)

CATT can similarly be estimated by a reweighted loss mini-
mization problem, using Wi = W IPW

i in

τ̂W,C(·) = argmin
τ∈C

n∑
i=1

Wi

(
Y obs
i − 2Ti − 1

2
τ(XH

i )

)2

(2.4)
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Unfortunately, by naı̈vely plugging in the estimate ê(x) into
the denominator, all these estimators are very susceptible to
errors in ê(x): whenever 1− e(x) is small, even minute er-
rors in ê(x) can translate to outsize errors in effect estimates.
This leads to very volatile estimates with high variance and
hence large errors. Practical use requires heuristic stopgaps
like trimming and normalizing the weights. The problem is
not alleviated either by double robustness alone, as observed
by Kang & Schafer (2007) who note that estimators using
inverse propensity weights, whether doubly robust or not,
are unreliable.

This issue is further exacerbated when X is rich so that
reliably predicting T , and hence estimating e(x), requires a
deep NN. Such models are notorious for overconfidence and
miscalibration (Guo et al., 2017). That is, while sign(ê(x)−
1/2) may be a good estimate of sign(e(x)− 1/2), the value
of ê(x) can be far off from e(x) and will generally be close
to 0 or 1, leading to huge errors in 1/ê(x). With simple,
quantitative covariates, in order to avoid the instability of
estimated propensity weights, the standard practice is to
use matching (Iacus et al., 2012; Rosenbaum, 1989), or
more generalized forms of matching and weighting that
leverage modern optimization tools to directly optimize
covariate balance (Athey et al., 2018; Hainmueller, 2012;
Imai & Ratkovic, 2014; Kallus, 2016; 2017; Zubizarreta,
2012; 2015). But as explained below, these methods cannot
address rich covariates and complex relationships.

2.2. Optimal Weighting for Covariate Balance

Since estimated propensity weights W IPW
i are very volatile

as discussed above, we consider replacing them by
other data-driven weights W in eq. (2.2)–(2.4). We fo-
cus on weights that maintain a distribution on control
units, preserving the unit of analysis: W ∈ W ={
W ∈ Rn0

+ :
∑
i∈T0 Wi = n1

}
. Like estimated propensity

weights, we consider choosing the weights W based only
on the covariate and treatment data, W = W (X1:n, T1:n).
Letting σ2

0(x) = Var(Y (0) | X = x), a bias-variance de-
composition shows that, under Asn. 1, the risk of τ̂W for a
particular choice of weights is

E[(τ̂W − τn1)2 | X1:n, T1:n] = E2(W ;µ0, σ
2
0) (2.5)

=
1

n2
1

(∑
i

(−1)TiWiµ0(Xi)

)2

+
1

n2
1

∑
i

W 2
i σ

2
0(Xi),

where for simplicity we let Wi = 1 for i ∈ T1. Simi-
lar expansions are possible for τ̂W,µ̂0 (Kallus, 2016). The
error is decomposed into the squared bias given by covari-
ate imbalance in weighted µ0-moments plus conditional
variance given by a σ2

0-weighted norm of weights. That
neither of these are known suggests a minimax approach
over a function class F ⊂ [X → R] for µ0. Define the
integral probability metric (IPM, Müller, 1997) between

two weighted sets as

IPMF (S+, S−) = supf∈F

∣∣∣∑±∑n±

i=1±w
±
i f(x±i )

∣∣∣ ,
where S± = {(w±1 , x

±
1 ), . . . , (w±n± , x

±
n±)}

Then for an exchange rate λ, choosingW to minimize worst-
case error can be written as (for any σ2)

argmin
W∈W

sup
(λf/σ)∈F,σ2≤σ2

E2(W ; f, σ2) = (2.6)

argmin
W∈W

(
IPM2

F ({( 1
n1
, Xi)}i∈T1 , {(Wi

n1
, Xi)}i∈T0)

+
λ‖W‖22
n2

1

)
2.3. The Role of a Representation

Popular examples of IPMs include the total variation (TV)
distance, given by the IPM for all functions point-wise
bounded by 1; the MMD (Gretton et al., 2006), given by the
IPM for the unit ball of a reproducing kernel Hilbert space
(RKHS); and the Wasserstein distance, given by the IPM
for all 1-Lipschitz functions. The MMD and Wasserstein
distances have been popular for handling both matching
for causal inference and for covariate shift (Gretton et al.,
2009; Kallus, 2016). Specifically, Kallus (2016) proposes
eq. (2.6) as a weighting objective for estimators of the form
in eqs. (2.2)–(2.3) and shows that solving eq. (2.6) with
the Wasserstein metric and λ → 0 corresponds exactly to
the classic pairwise matching approach to causal estimation
(Rosenbaum, 1989). The TV distance, on the other hand,
is uninformative for measuring covariate balance for non-
discrete data: since it corresponds to almost-everywhere
pointwise differences between measures, it is always equal
2 regardless of wsi whenever {x+

i } ∩ {x
−
i } = ∅ and is

therefore not useful for finding covariate-balancing weights.

Balancing covariates based on MMD and Wasserstein IPMs
delicately relies on having an appropriate representation
of X for the task. For example, the MMD measures dis-
tances as the 2-norm distance between the weighted sample
means in a known representation X 7→ K(X, ·). But with
rich covariates like images, it is not clear that a sufficiently
structured such representation is known a priori. Similarly,
minimizing Wasserstein IPM (without further restricting
F using a NN architecture as in (Arjovsky et al., 2017))
leads to pairwise matching on a prespecified metric such as
(potentially kernelized) Euclidean in image pixels. Both of
these are wholly inappropriate for such rich data because
they rely on a functional familyF without the right structure
– loosely including all Lipschitz functions or misguidedly
relying on smoothness in raw pixels, or other very rich data
structure.

A solution might be to first put the data into an appropriate
representation. But this requires learning a representation
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and relies on its sufficiency for Assumption 1. For example,
for image data, one would first use auxiliary labeled data
such as ImageNet to learn a convolutional neural network
(CNN) and extract from it an appropriate hidden represen-
tation. But even if such auxiliary data is available, there is
no guarantee that the learned representation is necessarily
appropriate for the causal estimation task and it is likely to
break Assumption 1 by omitting predictors of both outcome
and treatment.

Instead, in this paper, we will directly imbue F with the
structure of a (potentially deep) NN, such as a CNN. This
will induce a less loose structure more appropriate for the
task and lead to the simultaneous learning and balancing of
a sufficient representation of the covariate data. However,
optimizing eq. (2.6) with respect to such functional families
is problematic – the corresponding IPM is not closed form
and using alternating saddle-point-finding methods directly
on eq. (2.6) fail. We will instead develop a new, discrimi-
native model for covariate balance, relate it the one based
on IPMs, and use adversarial training in order to optimize it.
This will lead to an alternative way to find weights that more
resembles the generator-discriminator game of Goodfellow
et al. (2014).

3. A Discriminative Model of Covariate
Balance

In this section we develop the discriminative distance as
a measure of distance between distributions (for concrete-
ness we focus on finite weighted samples). This serves as
an alternative to IPM distributional distance measures and
is defined in terms of the minimal cross-entropy loss ac-
quirable by a discriminator attempting to classify the two
distributions. After defining the discriminative distance, we
will theoretically characterize it, showing that it is not too
different from the IPM with the same function class. We
will then discuss finding weights that optimize it.

4. Defining the Discriminative Distance
For f : X → R, consider the binary classifier that predicts
the probability of a positive given x as expit(f(x)) where
expit(v) = 1/(1 + e−v). Letting `(v) = log(expit(v)) +
log 2, and given weighted positive and negative samples, S+

and S−, the log likelihood of the classifier relative to the
random classifier is then

L(f ;S+, S−) =
∑
±

n±∑
i=1

w±i `(±f(x±i )).

L(f ;S+, S−) with w±i = 1 is the training objective for
both logistic regression and NN classifiers. Similarly, train-
ing generative adversarial networks corresponds to having
w±i = 1 and letting x+

i be given data and x−i be generated

by a generator network with random inputs. Instead, we
are here interested in training the weights w±i , leaving both
x+
i and x−i as fixed, given data. Maximizing L(f ;S+, S−)

over all f(x) yields the Jensen-Shannon (JS) divergence,
as observed by Goodfellow et al. (2014). But, like the TV
distance, the JS divergence is uninformative for balancing
when {x+

i } ∩ {x
−
i } = ∅ (always 1, regardless of w±i ).

Instead, we will be interested in restricting F in a meaning-
ful way in order to come up with a balancing metric more
similar to IPM but based on a discriminative objective.

Toward that end, define more generally the squared ψ-
discriminative distance (ψ-DD) for ψ ≥ 0 with respect
to F between the weighted samples S+, S− as

DD2
F,ψ(S+, S−) = sup

f∈F,t∈R
Lψ(f, t;S+, S−), (4.1)

Lψ(f, t;S+, S−) = L(tf ;S+, S−)− ψ

2
t2

IfF are all NNs of a fixed architecture with variable weights
with sum of squared weights less than 1, eq. (4.1) corre-
sponds to training a NN classifier with ψ weight decay. If F
is an RKHS unit ball then eq. (4.1) corresponds to kernelized
logistic regression (Jaakkola & Haussler, 1999). Standard
or regularized logistic regression is a special case of either.
Theorem 1. DD2

F,ψ(S+, S−) is finite nonnegative. Hence,
DDF,ψ(S+, S−) is well-defined.

Unlike IPM, DD is not a pseudo-metric because it does not
satisfy the triangle inequality:
Example 1. Let S± = {(1,±1)}, S′ = {( 1

2 , 1), ( 1
2 ,−1)},

and F = {x 7→ ±x}. Then DDF,0(S+, S−) =√
2 log(2) >

√
2 log(27/16) =

∑
±DDF,0(S±, S′). In

fact, the inequality remains strict for ψ-DD with any ψ ≥ 0.

4.1. Characterizing the Discriminative Distance

Next, we argue that DD, while not a metric, is related to,
and sometimes similar to, the IPM. We first give a dual
characterization of DD that relates it directly to the IPM
over the same F .
Theorem 2. Let h(p) = p log(p)+(1−p) log(1−p)+log 2.
Suppose F is a symmetric convex set. (i.e., for all f, f ′ ∈ F ,
p ∈ [0, 1], and sign ±, we have pf ± (1− p)f ′ ∈ F).

If ψ > 0 then DD2
F,ψ(S+, S−) is equal to

inf
0≤p≤1

(
n+∑
i=1

w+
i h(p+

i ) +

n−∑
i=1

w−i h(p−i ) (4.2)

+
ψ−1

2
IPM2

F ({(p+
i w

+
i , x

+
i )}n

+

i=1, {(p−i w
−
i , x

−
i )}n

−

i=1)

)
And, if ψ = 0 then DD2

F,ψ(S+, S−) is equal to

inf
0≤p≤1

n+∑
i=1

w+
i h(p+

i ) +

n−∑
i=1

w−i h(p−i ) (4.3)
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s.t. IPMF ({(p+
i w

+
i , x

+
i )}n

+

i=1, {(p−i w
−
i , x

−
i )}n

−

i=1) = 0

This result can be used to show that DD is zero precisely
when the corresponding IPM is zero.

Theorem 3. DDF,ψ(S+, S−) = 0
⇐⇒ IPMF (S+, S−) = 0.

However, when ψ = 0, they need not induce the same topol-
ogy. The next example shows that the IPM can approach
zero while the discriminative distance remains constant:

Example 2. Fix δ > 0. Let S+ = {(1, δ/2)},
S− = {(1,−δ/2)}, and F = {x 7→ ±x}. Then we
have that IPMF (S+, S−) = δ is arbitrarily small while
DDF,0(S+, S−) =

√
2 log(2) is bounded away from zero.

But when ψ > 0, we can show that they will in fact induce
the same topology on any space of weighted sets such that

M = sup±,i≤n±,f∈F |f(x±i )|,

w =
∑
±
∑n±

i=1 w
±
i

are bounded. Usually, we have w = 2 as each set of weights
sums to 1. If F is all NNs of a given architecture with sum
squared weights no more than 1, then M is bounded over
points x of bounded norm. M is also bounded if F is the
unit ball of an RKHS with a bounded kernel (e.g., RBF). The
next result bounds the ratio between IPM and DD, showing
equivalence if M and w are bounded.

Theorem 4.
2
√

2ψ ≤ IPMF (S+,S−)
DDF,ψ(S+,S−) ≤ max(2M

√
w, 4
√
ψ).

Moreover, we can show that, as ψ grows, IPM and DD
become the same up to scaling.

Theorem 5. For any weighted sets S+, S−,

lim
ψ→∞

2
√

2ψDDF,ψ(S+, S−) = IPMF (S+, S−).

The limit holds uniformly over S+, S− with bounded w, M .

4.2. Optimizing the Discriminative Distance

The last section suggests that DD with respect to F can
be used as a surrogate for covariate balance. In particular,
measuring covariate imbalances using DD, we have shown
that eliminating the DD when F consists of NNs of a given
architecture corresponds exactly to eliminating any estima-
tion bias due to imbalances for any outcomes that can be
well-approximated by such NNs. Therefore, an alternative
criterion for choosing weights is to minimize imbalance as
measured by the DD plus a potential variance regularizer:

W ∗ ∈ argmin
W∈W

(
I2(W ) +

λ

n2
1

‖W‖22
)

(4.4)

Algorithm 1 Conditional Gradient for Eq. (4.4)
input: X1:n, T1:n, λ, K, and an oracle as in eq. (4.5)
Set Wi = 1/n0 for all i ∈ T0
for k = 1, . . . ,K do

Set S+ = {( 1
n1
, Xi)}i∈T1 and S− = {(Wi

n1
, Xi)}i∈T0

Get the corresponding f oracle, toracle in eq. (4.5)
Let i = argmini∈T0(`(−toraclef oracle(Xi)) + 2λ

n2
1
Wi)

W ← (k − 1)/(1 + k)W , Wi ←Wi + 2/(1 + k)
end for
output: W

I2(W ) = DD2
F,ψ({( 1

n1
, Xi)}i∈T1 , {(Wi

n1
, Xi)}i∈T0)

The question then is how to find such weights W that opti-
mize eq. (4.4). We first show the problem is convex.

Theorem 6. The optimization problem eq. (4.4) is convex
for any F , ψ, and λ ≥ 0.

To optimize eq. (4.4), we first consider the simple case
where we have an oracle for the optimization problem
eq. (4.1). Specifically, suppose that, given S+, S− we could
easily find f oracle ∈ cl(F), toracle ∈ R such that

Lψ(f oracle, toracle;S+, S−) = DD2
F,ψ(S+, S−). (4.5)

For example, in the case of F being linear functions or
being an RKHS, this amounts to solving logistic regression
(possibly kernelized), which can be done quickly and easily
for even large (but not huge) problems (Jaakkola & Haussler,
1999). Given such an oracle, we can employ the conditional
gradient algorithm (Frank & Wolfe, 1956; Jaggi, 2013) to
solve eq. (4.4), producing Algo. 1. Note that we can employ
Thm. 2 to show that eq. (4.4) can also be written as a single
convex minimization problem in W and p with an IPM in
the objective (or, in a constraint for ψ = 0). Therefore,
we can also solve eq. (4.4) using an oracle for IPM instead,
albeit with slightly more complicated gradients and twice
the number of optimization variables.

4.3. A Shallow Example

Before developing DeepMatch, we first consider a shal-
low example, that is, one with few dimensions and simple
treatment and outcome models, in order to illustrate DD
and Alg. 1. The example is particularly simplistic and is
meant only for illustration and not as a comparison, which
we do instead in Sec. 6. We consider bivariate covariates
Xi ∼ Uniform[−1, 1]2, let e(Xi) = 0.1 if Xi1 +Xi2 < 0
and otherwise e(Xi) = 0.9, and let outcomes be expo-
nential in Xi: Yi(0) = Yi(1) = eXi1+Xi2 + εi, where
εi ∼ N (0, 1).

Fixing a particular draw of n = 300 units, we plot the covari-
ates in Fig. 1(a). Letting F = {x 7→ α+ βTx : ‖β‖2 ≤ 1},
we plot the IPM (Euclidean distance between means) and
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Figure 1. Results in the illustrative shallow example
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(c) RMSE of different ATT estimators

DD (given by regularized logistic regression) between the
raw (not reweighted) control and treated samples in Fig. 1(b)
for varying ψ ≥ 0. We see that, as Thms. 4 and 5 promise,
the scaled DD converges to IPM from below.

Next, we consider how well Alg. 1 balances covari-
ates for estimating causal effects. For each of n =
100, 150, . . . , 500, we compute the RMSE of 8 different
estimators over 2000 replications and plot the results in
Fig. 1(c). IPW is given by propensities estimated by logistic
regression and IPWn normalizes IPW to sum to 1. AIPW
and AIPWn are the corresponding doubly robust estimators
with µ̂0 given by OLS, which respectively improve on IPW,
IPWn. The raw (unweighted) mean difference, which beats
the IPW, IPWn, and AIPW estimates. An OLS estimate,
which is also equivalent to using unconstrained weights
that minimize the IPM (Kallus, 2016, Thm. 13), beats all
propensity-based estimates. Finally, we compute W ∗ to
minimize DD (ψ = 0) using Alg. 1 (λ = 1) and consider
both τ̂W and τ̂W,µ̂0

. We also consider the same when re-
placing DD with the corresponding IPM with the same F ,
which amounts to using generalized optimal matching with
a linear kernel (GOMlin; Kallus, 2016). These last two
match almost exactly and yield the least error, with double
robustness giving marginal improvements for small n.

5. Going Deep
We are now prepared to develop the DeepMatch method,
which seeks balance complex and deep representation of
the covariate data. DeepMatch does this by seeking weights
that minimize the discriminative distance with respect to a
deep discriminator, i.e., when F is given by all NNs of a
given architecture. There are two barriers to doing this with
the tools we developed so far (Alg. 1). First, as n grows,
additional runs of the conditional gradient algorithm are
necessary to generate a dense set of weights, since the num-
ber of nonzero weights is bounded above by the number of
iterations. Second, each of these runs becomes increasingly
difficult to compute when F is complex, as in the case of a
deep neural network. Computing the corresponding oracle
can be exceedingly difficult because, not only is optimizing
a NN taxing, one usually does not optimize it fully, even to

mere local optimality, and so the weight gradient recovered
may be highly inaccurate and usable.

Instead, DeepMatch relies on alternating descent methods
as are used in adversarial training of GANs (Goodfellow
et al., 2014) to solve minimax problems with NNs. That is,
we will address problem eq. (4.4) by taking alternating (or,
simultaneous) gradient steps in W ∈ W and f ∈ F , each
while treating the other as fixed. However, to apply this
approach here, we will need to make further developments
to make our problem amenable to the standard solution
methods that use stochastic optimization in order to deal
with large datasets and complex objectives. In particular,
we need to be able to solve the problem in mini-batches. To
do this, we first show we can relax constraints that link the
optimization variables across data points and we then show
how we can parametrize the weights using their own NN.

5.1. Relaxing Weight Normalization

One impediment to applying mini-batched descent to prob-
lem eq. (4.4) is the normalization constraint, that weights
have to sum to a certain fixed value, which links the opti-
mization variables across data points i. Not only does this
make stochastic mini-batching difficult, the constraint also
becomes non-convex if we parametrize the weights as we
are going to do in the next section. Therefore, the first step
is to find an alternative way to enforce the normalization
constraint. The next theorem will guide the approach.

Theorem 7. Problem eq. (4.4) is equivalent to

min
φ≥0,W∈W(φ)

I2

(
n1W∑
i∈T0 Wi

)
+ λ

∑
i∈T0 W

2
i

(
∑
i∈T0 Wi)2

, (5.1)

W(φ) = argmin
W≥0

I2(W ) +
∑
i∈T0

(
λ
W 2
i

n2
1

+ φ
Wi

n1

)
. (5.2)

Thm. 7 suggests the following approach to optimizing
eq. (4.4): select a grid of φ values, φ1, . . . , φK ; solve
eq. (5.2) for each φ value; normalize the resulting optimal
set of weights; and chose the best set of weights by plugging
each into the objective of eq. (4.4). We discuss the details
of optimizing eq. (5.2) and choosing the φ grid in Sec. 5.3.
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5.2. Parameterizing W and Choosing an Activation

Next, we parameterize the weights W using their own NN.
That is, we replace the n0 optimization variables given by
W by a NN that produces their values. A question that
arises is what activation to choose for the network’s output.
Choosing a nonnegative activation, such as a ReLU, easily
accommodates the constraint that the weights be nonnega-
tive. However, it may produce weights that are too sparse,
outputting many zeros. Other activations such as logistic
or 1 + tanh are everywhere positive but have limited range,
while the weight variables in eq. (5.2) are unrestricted and
unnormalized.

Instead, we take inspiration from the weight function that
would arise from a direct application of inverse propensity
weighting with propensities that would be estimated by lo-
gistic regression or a NN. Estimating the propensity function
as ê(x) = expit(g(x)), for any function g, leads to the plug-
in importance weight W IPW

i = ê(Xi)
1−ê(Xi) = exp(g(x)). As

previously discussed and illustrated, such plug in weights
lead to unwieldy and inaccurate estimates, but, as a func-
tional form, this suggests exp as the activation on the output
layer for any weight-producing network, which can then be
trained to produce weights directly optimized for accuracy.
This is only a design choice that seems to work – similar
to using softmax for classification NNs – and other choices
exist. Considering some parametric family g(x; θg), such
as NNs of a given architecture, we will solve eq. (5.2) by
transforming Wi = exp(g(Xi; θg)) and optimizing over θg
instead of over W ∈ W .

5.3. Putting It Together

We now use the insights of the last two sections to develop
DeepMatch. Let us express F parametrically and assume
it has the form F = {f(·; θf ) : R(θf ) ≤ 1} for some
degree-2 homogeneous regularizer R (can be zero). And
let us write `i(θf ) = `((−1)Ti+1f(Xi; θf )). Then solving
the parametrized version of eq. (5.2), where we set Wi =
exp(g(Xi; θg)), amounts to solving the following zero-sum
game in θg and θf :

min
θg

max
θf

Lφ(θg, θf ), where (5.3)

Lφ(θg, θf ) =
1

n1

n∑
i=1

ui(θf , θg;ψ, λ, φ)− ψ

2
R(θf ),

ui(θf , θg;ψ, λ, φ) = Ti`i(θf ) + (1− Ti)
(
eg(Xi;θg)`i(θf )

+
λ

n1
e2g(Xi;θg) + φeg(Xi;θg)

)
.

Note each ui depends only on the data Xi, Ti. Note that
if R(θf ) is convex in f(·; θf ) then L(θg, θf ) is convex in
g(·; θg) and concave in f(·; θf ). Consequently, by the von
Neumann minimax theorem, the min and max can be ex-

changed (under some regularity). Note also that L(θg, θf )
is of the form of a sum of loss functions separable over the
data plus some regularization (we can also easily include
regularization in θg).

Using this formulation, we can develop Alg. 2 to find op-
timal weights for balancing covariates with respect to DD
over NN discriminators. For each value of φ, the algorithm
proceeds in two stages. In the first stage we address eq. (5.2)
by seeking an equilibrium to eq. (5.3). To do this, over K1

epochs, we cycle through mini-batches of size B and, for
each, we let θf ascend its gradient and θg descend its (we
use simultaneous updates; alternating is another option). We
can use any stochastic gradient update rule. In our experi-
ments, we use Adam (Kingma & Ba, 2014) with a global
learning rate of 10−4 (for other options see Goodfellow
et al., 2016, Ch. 8). In the second stage, we address eq. (5.1)
by trying to evaluate DD of the resulting weights after nor-
malization. To do this, we simply fix the weights and train
only the discriminator in this stage, over K2 epochs with
mini-batches of size B. Because even for a single φ the first
stage can end up at different weights, we do several (M )
runs of each φ. Finally, we make sure to keep the weights
over all these runs with the best objective so far in eq. (5.1).

A remaining detail is how to choose the grid Φ of φ val-
ues. Due to convexity, Thm. 7 also gives that

∑
iWi(φ) is

monotonic in φ and the optimizer of eq. (4.4) is given by
the root where the sum is exactly n1. Above, we directly
compare objectives rather than use a line search over La-
grange multipliers because our optimization for each φ is
inexact. Nonetheless, we can use this to find an appropriate
range for φ. Picking a tolerance η ∈ (0, 1), we use binary
search to find values φ, φ that give weights that sum ≥ ηn1

and ≤ n1/η, respectively. Then, we make a linear grid of
M values in between.

5.4. Theoretical Characterization

We next prove that if we were to do the optimization exactly,
then we indeed estimate the causal effects of interest. The
rates will depend on the Rademacher complexity of F :

Rn(F) =
1

2n

∑
ξ∈{±1}n

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi; θf )

∣∣∣∣∣ .
For both linear models and NNs, Rn(F) = Op(1/

√
n)

(Bartlett et al., 2017; Golowich et al., 2018; Kakade et al.,
2009).

Theorem 8. Let

Θg =
⋃
φ>0

argmin
θg

max
θf

Lφ(θg, θf )

Wi(θg) = Ti + (1− Ti)
n1e

g(Xi;θg)∑
j∈T0 e

g(Xj ;θg)
,
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Algorithm 2 DeepMatch
input: X1:n, T1:n, ψ, λ, K1, K2, B, M , Φ, regularizer R, net-

work architectures, and a gradient update rule
v∗ ←∞
for φ ∈ Φ, m = 1, . . . ,M do

Randomly initialize the parameters θf , θg of the discriminator
and weight networks

for k = 1, . . . ,K1 do
Shuffle the data into mini-batches I1, . . . , Idn/Be of sizes
|Ij | ∈ {B,B − 1}

for j = 1, . . . , dn/Be do
δg ← n/n1

|Ij |
∑
i∈Ij ∇θgui(θf , θg;ψ, λ, φ)

δf ← n/n1

|Ij |
∑
i∈Ij ∇θfui(θf , θg;ψ, λ, φ)− ψ

2
∇R(θf )

Move θf in direction δf and θg in direction −δg
end for

end for
for i = 1, . . . , n do Wi ← Ti + (1− Ti) n1e

g(Xi;θg)∑
j∈T0

e
g(Xj ;θg)

for k = 1, . . . ,K2 do
Shuffle the data into mini-batches I1, . . . , Idn/Be
for j = 1, . . . , dn/Be do
δf ← 1

n1

∑
i∈Ij Wi∇`i(θf )− ψ

2
∇R(θf )

Move θf in direction δf
end for

end for
v ← 1

n1

∑
i∈Ij Wi`i(θf )− ψ

2
R(θf ) + λ

∑
i∈T0 W

2
i

if v∗ > v then v∗ ← v,W ∗ ←W
end for
output: W ∗

I2(W ) = sup
θf

1

n1

n∑
i=1

Wi`i(θf )− ψ

2
R(θf ), and

W ∗ ∈ argmin
W∈W (Θg)

I2(W ) + λ
∑
i∈T0

W 2
i .

Suppose that Asn. 1 holds, ψ > 0, λ > 0, σ2
0(X) is a.s.

bounded, e(X) is a.s. bounded away from 1, ∃θf : µ0(x) =
f(x; θf ), and ∃θg : e(x) = expit(g(x; θg)). Then,

τ̂W∗ − τ = Op(Rn(F) + 1/
√
n)

6. Experiments
We next proceed to evaluate DeepMatch empirically in three
examples, one fully synthetic, one with synthetic outcomes
and treatment, and one with real covariate and outcome data.
In each we consider two tasks: learning ATT and CATT. We
consider several NN-based strategies: a regression approach
based on estimating µ̂0(x) using a NN, an IPW approach
based on estimating ê(x) using a NN, an AIPW approach
combining these (only for ATT), and the same after normal-
ized propensities (A/IPWn). Each network has a different
and appropriate output activation and loss. The architectures
change in each example. We also include three straw-man
comparisons: the raw unweighted control sample, general-
ized optimal matching with a linear kernel (GOMlin; Kallus,

2016), and entropy balancing (E-bal; Hainmueller, 2012).
The latter two represent optimal weighting methods with
the wrong representation as both rely essentially on a linear
representation. These stand mostly to highlight the complex
relationships in the experiments given below, which are par-
ticularly chosen to highlight the need for NN models, as
these methods give state-of-the-art performance in simpler
settings with known or easily kernelizable representations.

We compare all of these to DeepMatch with the same net-
work architectures as the NN-based methods, ψ = 0, and λ
either 0 or 1. All NN-based methods use the same architec-
tures, with possibly a different final activation, as detailed
in each of the following sections. We use K1 = 20 epochs
with mini-batches of 100 to train all networks and for the
first stage of DeepMatch and we use K2 = 10 epochs for
the second stage. We use M = 5 and a grid of 50 φ values
based on η = 0.01. For CATT, we let C be linear functions
on a univariate XH and ask how well we estimate its co-
efficient. For weighting methods, we solve eq. (2.4). For
regression, we regress on imputed effect. All results are
based on 100 replications with n = 1000. DeepMatch took
on average 17x longer to train than the basic propensity and
regression networks, for which we also used more epochs
to train fully as they only required one training run.

6.1. A Fully Connected Example

We first consider a fully synthetic example specifically
geared to highlight the issues with standard approaches.
In the next examples, we will consider real covariate
and outcome data. We consider 6-dimensional covariates
Xi ∼ Uniform[−2, 2]6 and a treatment model involv-
ing the XOR of signs: e(Xi) = 0.05 if

⊕6
j=1(Xij >

0) and otherwise e(Xi) = 0.95. We let outcomes be
Yi(t) = exp(

∑6
j=1Xij) + Ti

∑6
j=1Xij − Ti + εi where

εi ∼ N (0, 1). We let XH =
∑6
j=1Xij . All NNs are fully

connected with 5 hidden layers of 6, 3, 3, 2, and 2 neurons
and ReLU activations (enough to model the XOR). (Simpler
3-layer NNs got similar results but the above is fairer to
A/IPW, which needs more layers specify the XOR.)

We see (Tab. 1) that inverse-propensity-based approaches
yield very volatile estimates, where normalizing or aug-
menting does help but only marginally. Using DeepMatch
(DM) reduces MSE significantly. Combining it with the NN
regression in a doubly robust estimator (DM-DR) reduces
error slightly further. Using λ > 0 provides somewhat
better results by controlling variance, but does not make a
substantial difference in MSE.

6.2. A Convolutional Example

We next consider an example with confounding image data
using the MNIST dataset (LeCun, 1998) and solutions based



DeepMatch

Table 1: Fully connected Table 2: Convolutional Table 3: Clinical (Twins)

(a) ATT (b) CATT (a) ATT (b) CATT (a) ATT (in 0.01s) (b) CATT

Method

B
ias

SE

R
M

SE

B
ias

SE

R
M

SE

B
ias

SE

R
M

SE

B
ias

SE

R
M

SE

B
ias

SE

R
M

SE

B
ias

SE

R
M

SE

Raw -8.33 6.44 10.53 -10.22 8.35 13.20 3.90 0.06 3.90 -0.44 0.03 0.44 3.36 0.97 3.50 0.31 0.22 0.38
GOMlin -9.60 6.49 11.59 -11.36 7.44 13.58 3.24 0.14 3.25 -0.36 0.05 0.36 0.57 2.68 2.74 0.27 0.48 0.56
E-bal -7.80 6.11 9.90 -9.67 6.88 11.87 3.75 0.15 3.76 -0.37 0.05 0.37 -3.22 5.14 6.06 0.21 0.48 0.53

IPW -8.25 6.29 10.38 -10.19 7.77 12.82 6.43 0.06 6.43 1.05 0.01 1.05 -0.16 4.87 4.87 0.14 0.55 0.56
IPWn -8.34 6.37 10.50 -10.26 7.84 12.91 3.32 0.41 3.35 -0.39 0.14 0.42 -0.09 4.44 4.44 0.13 0.54 0.56
Regress 9.42 4.00 10.24 8.37 2.40 8.71 2.61 0.17 2.62 -0.33 0.06 0.34 2.12 6.50 6.84 0.24 0.15 0.28
AIPW -8.07 6.22 10.19 – – – 2.61 0.17 2.62 – – – 0.09 4.74 4.74 – – –
AIPWn -8.14 6.30 10.30 – – – 2.61 0.13 2.61 – – – 0.52 4.00 4.03 – – –

DM0 -0.45 4.26 4.28 -2.70 4.54 5.29 2.24 0.96 2.44 -0.30 0.12 0.32 1.64 1.26 2.06 0.21 0.28 0.35
DM 1

2
0.85 3.89 3.98 -1.25 3.68 3.89 2.49 0.65 2.57 -0.28 0.08 0.30 1.58 1.31 2.05 0.22 0.28 0.36

DM0 DR -0.55 4.03 4.06 – – – 2.59 0.14 2.59 – – – 2.15 1.09 2.41 – – –
DM 1

2
DR 0.62 3.76 3.82 – – – 2.59 0.14 2.60 – – – 2.06 1.13 2.35 – – –

on CNNs. First we draw n digits uniformly at random.
For each one we uniformly draw a random image labeled
with that digit from the MNIST dataset and let the pixels
Xi ∈ R28×28 be the covariates. Let N(X) ∈ {0, . . . , 9}
be the digit corresponding to the image and let XH be the
sum of pixel brightnesses. To introduce a complex form
of confounding, for each digit 0–4 separately, we take the
10% lightest images (smallest XH) and label them treated
Ti = 1 and the rest as untreated Ti = 0. We do the same for
5–9 but take 90% lightest images as treated. We generate
outcomes as Yi(t) = clip[0,9](N(X) + εi) + TiX

H − Ti
where εi ∼ Uniform{−1, 0, 1}. All NNs have two 5 × 5
conv layers with volume depths 32 and 64 followed by a
fully connected layer of 1024 neurons. The results (Tab. 2)
show similar trends as Tab. 1 and demonstrate that Deep-
Match can also improve causal estimates in settings with
rich data and complex confounding.

6.3. Twins: Real Outcome Data

We next consider an example with real rather than simulated
outcomes. We use the Twins dataset of 71345 twin births
in the US between 1989–1991 as used by (Louizos et al.,
2017). We let each birth be a unit, Y (0), Y (1) ∈ {0, 1}
be the mortality of the lighter and heavier twin, respec-
tively, and Ti = 1 indicate being the heavier twin. Xi has
“46 covariates relating to the parents, the pregnancy and
birth: mother and father education, marital status, race and
residence; number of previous births; pregnancy risk fac-
tors such as diabetes, renal disease, smoking and alcohol
use; quality of care during pregnancy; whether the birth
was at a hospital, clinic or home; and number of gestation
weeks prior to birth” (Louizos et al., 2017). After encoding
categoricals using dummies we have 161 covariates. We
let e(Xi) = 0.95 if the pregnancy gestated less than the
median period or the XOR over 10 variables with high im-

pact on mortality (see appendix) being less than their mean;
otherwise e(Xi) = 0.05. We let XH be the risk factor
oligo/hydramnios. We use the same architectures as in the
fully-connected example but with logistic output for the out-
come NN. Again, all methods share the same architecture,
aside from the final activation.

For estimating the ATT, we observe (Tab. 3) similar trends,
where DeepMatch provides much more accurate estimates,
even with real outcomes. Again, increasing λ reduces
SE and increases bias, but does not materially affect to-
tal RMSE. For estimating CATT, in this particular example,
eq. (2.4) with linear C is not a good estimator, perhaps be-
cause of the binary outcomes. Nonetheless, DeepMatch
provides the best results among the weighting methods that
use eq. (2.4).

7. Conclusions
Training balancing weights against an adversarial discrimi-
nator, each represented by a NN, provided a way to balance
covariates that may be rich and/or have complex relation-
ships with outcomes and treatments – a challenging setting
for standard approaches to causal inference. Both theory
and empirical results uniformly demonstrated that Deep-
Match yields stable balancing weights that lead to improved
causal estimates even when an appropriate representation is
unavailable a priori. A limitation is the heavy computational
burden of searching over the Lagrange multiplier for weight
normalization, alleviating which with new algorithms or
approximations remains future work.
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A. Proofs
Proof of Thm. 1. Note that t = 0 is feasible in eq. (4.1) and, since `(0) = log(1/2) + log(2) = 0, it gives objective
value 0, so DD2

F,ψ(S+, S−) ≥ 0. On the other hand, `(·) ≤ log(2) so that the objective in eq. (4.1) is bounded above:
DD2
F,ψ(S+, S−) ≤

∑
s=±

∑ns

i=1 w
s
i log(2) <∞.

Proof of Thm. 2. Letting

F|x = {(f(xsi ))s=±,i≤ns) : f ∈ F ∪ −F}, F |x = {(t, t′f) : f ∈ F|x, t ≥ t′ ≥ 0},

we can rewrite DD2
F,ψ({(w+

i , x
+
i )}n+

i=1, {(w
−
i , x

−
i )}n−i=1) as

sup
(t,f)∈F |x,z∈Rn++n− :zsi=sfsi

∑
s=±

n+∑
i=1

wsi `(z
s
i )−

ψ

2
t2. (A.1)

First, we show that F |x ⊂ Rn++n− is convex so that eq. (A.1) is a convex program. Let (t0, (t
′
0f0)), (t1, (t

′
1f1)) ∈ F|x.

Letting t = λt0 + (1− λ)t1, t′ = λt′0 + (1− λ)t′1, and f = (λt′0/t
′)f0 + (1− λt′0/t′)f1, we have t ≥ t′, f ∈ F|x due to

convexity of F , and t′f = λt′0f0 + (1− λ)t′1f1. Next we show that (1,0) ∈ relint(F |x). Let any (t, t′f) ∈ F|x be given.
Let µ = 2t/(2t− 1) if t > 1 and otherwise µ = 2. Then µ ∈ (1, 2] and µ/(2µ− 1) ≥ t so that (1− µ)t+ µ ≥ (µ− 1)t ≥
(µ− 1)t′ ≥ 0. Note that −f ∈ F|x by symmetry of F . Therefore,

(1− µ)(t, t′f) + µ(1,0) = ((1− µ)t+ µ, (µ− 1)t′(−f)) ∈ F |x

So, by Thm. 6.4 of Rockafellar (1997), (1,0) ∈ relint(F |x). Letting z be defined by its constraint, we then have a Slater
point. Note that `∗(p) = infz(pz − `(z)) = −h(p) − log(2) for p ∈ [0, 1] and otherwise `∗(p) = −∞. By Prop. 5.3.2
(strong duality) of Bertsekas (1999), we have that eq. (A.1) is equal to

inf
γ∈Rn++n−

sup
(t,f)∈F |x,z∈Rn++n−

∑
s=±

n+∑
i=1

(wsi `(z
s
i )− γsi zsi ) +

∑
s=±

n+∑
i=1

sγsi f
s
i −

ψ

2
t2

= inf
p∈Rn++n−

∑
s=±

n+∑
i=1

sup
zsi

wsi (`(z
s
i )− psi zsi ) + sup

t≥t′≥0

(
t′ sup
f∈F|x

∑
s=±

n+∑
i=1

swsi p
s
if
s
i −

ψ

2
t2

)

= inf
0≤p≤1

∑
s=±

n+∑
i=1

wsih(psi ) + sup
t≥0

(
t IPMF ({(p+

i w
+
i , x

+
i )}n

+

i=1, {(p−i w
−
i , x

−
i )}n

−

i=1)− ψ

2
t2
)
,

which yields the stated result for the two cases, ψ > 0 and ψ = 0, after taking sup over t ≥ 0.

Proof of Thm. 3. Fix x and w. Write DDF,ψ and IPM2
F for shorthand for the distances between the two weighted samples

and let

H2(p) =

n+∑
i=1

w+
i h(p+

i ) +

n−∑
i=1

w−i h(p−i ), D2(p) = IPM2
F ({(p+

i w
+
i , x

+
i )}n

+

i=1, {(p−i w
−
i , x

−
i )}n

−

i=1),

so that DDF,ψ = inf0≤p≤1H
2(p) + (ψ−1/2)D2(p). Note that for p ∈ [0, 1], D2(p1) = p2 IPM2

F . Note also that h(p) is
4-strongly convex with a unique minimum at p = 1/2 so that h(p) ≥ 2(p−1/2)2 ≥ 0 and h(p) = 0 ⇐⇒ p = 1/2. Hence,
the objective in eq. (4.2) is nonnegative for all p and therefore, by Thm. 2, DD2

F,ψ ≥ 0 and so DDF,ψ is its well-defined
square-root or infinite when DD2

F,ψ is infinite.

Now suppose IPMF = 0. Then D2(1/2) = IPM2
F /4 = 0 and H2(1/2) = 0. Therefore, since p = 1/2 is feasible in

eqs. (4.2) and (4.3), we have that DD2
F,ψ = 0.

Now suppose DD2
F,ψ = 0. Then there exists p such that D2(p) = H2(p) = 0 since both functions are nonnegative.

Since H2(p) = 0 and wsih(p2
i ) are nonnegative functions, we have wsih(psi ) = 0 and hence wsi > 0 =⇒ psi = 1/2 and

consequently wsi p
s
i = wsi /2. Therefore, 0 = D2(p) = D2(1/2) = IPM2

F /4.
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Proof of Thm. 4. Reusing the notation from the proof of Thm. 3, for any p, we have∣∣∣∣D(p)− 1

2
IPMF

∣∣∣∣ = sup
f∈F

∣∣∣∣∣∑
s=±

ns∑
i=1

swsi p
s
if(xsi )

∣∣∣∣∣− 1

2
sup
f∈F

∣∣∣∣∣∑
s=±

ns∑
i=1

swsi f(xsi )

∣∣∣∣∣
≤ sup
f∈F

∣∣∣∣∣∑
s=±

ns∑
i=1

swsi

(
psi −

1

2

)
f(xsi )

∣∣∣∣∣
≤M

∑
s=±

ns∑
i=1

wsi

∣∣∣∣psi − 1

2

∣∣∣∣
≤M

√√√√∑
s=±

ns∑
i=1

wsi

√√√√∑
s=±

ns∑
i=1

wsi

(
psi −

1

2

)2

≤M

√√√√∑
s=±

ns∑
i=1

wsi

√√√√1

2

∑
s=±

ns∑
i=1

wsih(psi )

≤ M
√
w√

2
H(p).

First, consider ψ = 0. Let p be such that DDF,ψ = H(p) and D(p) = 0. Applying the above bound, we get

IPMF ≤
√

2M
√
wDDF,ψ

≤ 2M
√
wDDF,ψ

≤ max(2M
√
w, 4

√
ψ) DDF,ψ .

Next, consider ψ > 0. Let p be such that DD2
F,ψ = H(p) + ψ−1D2(p)/2. Applying Jensen’s inequality to the above

bound, we get

IPMF ≤M
√

2wH(p) + 2D(p)

≤
√

4M2wH2(p) + 8D2(p)

=
√

4M2wH2(p) + 16ψψ−1D2(p)/2

≤ max(2M
√
w, 4

√
ψ) DDF,ψ .

On the other hand, because 1/2 is feasible in eq. (4.2),

8ψDD2
F,ψ ≤ 8ψH2(1/2) + 4D2(1/2) = IPM2

F

and so 2
√

2ψDDF,ψ ≤ IPMF .

Proof of Thm. 5. We reuse the notation from the proof of Thm. 3. Thm. 4 showed that 2
√

2ψDDF,ψ ≤ IPMF . To prove
the present result, we further show that whenever ψ ≥ wM2, we have

√
1− ψ−1wM2 IPMF ≤ 2

√
2ψDDF,ψ. Toward

that end, let D2(p) = H2(p) + ψ−1D2(p)/2 and let p∗ be such that DD2
F,ψ = D2(p∗). Let W ∈ R(n++n−)×(n++n−)

be the diagonal matrix with wsi on its diagonal. WLOG, W � 0 because otherwise we can consider the equivalent
problem after removing all the points with zero weight. Note that H2 is a convex twice-differentiable function, that
∂2

∂γ2h(p) = 1/p + 1/(1 − p) ≥ 4, and therefore ∇2H2(p) is diagonal with entries bounded below by 4wsi . Since D2 is
also convex, we have that D2(p)− 2(p− p∗)TW (p− p∗) is convex and therefore also has an optimum at p∗. Therefore,

D2(p∗) ≤ D2(1/2)− 2(p− 1/2)TW (p− 1/2).

Let g ∈ ∂D2(1/2) be any subderivative of D2 at 1/2. Then, by Cauchy-Schwartz and the above,

D2(1/2)−D2(p2) ≤ gT (p∗ − 1/2)
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= gTW−1/2W 1/2(p∗ − 1/2)

≤
√
gTW−1g

√
(p∗ − 1/2)W (p∗ − 1/2)

≤
√
gTW−1g

√
D2(1/2)−D2(p∗)/

√
2.

Therefore,
D2(1/2)−D2(p∗) ≤ gTW−1g/2.

Note that ∂H2(1/2) = 0 so that ∂D2(1/2) = (2ψ)−1∂D2(1/2) = ψ−1D(1/2)∂D(1/2) = (2ψ)−1 IPMF ∂D(1/2).
Moreover,

∣∣∣(∂D(p))s,i

∣∣∣ =

∣∣∣∣∣∣
∂p sup

f∈F|x

∣∣∣∣∣∣
∑
s,i

swsi p
s
if
s
i

∣∣∣∣∣∣

s,i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∂p sup

f∈F|x∪−F|x

∑
s,i

swsi p
s
if
s
i


s,i

∣∣∣∣∣∣
≤ wsi sup

f∈F|x∪−F|x
|fsi | ≤ wsiM.

Therefore,
IPM2

F
8ψ

−DD2
F,ψ = D2(1/2)−D2(p∗) ≤ gTW−1g/2 ≤ IPM2

F
8ψ2

wM2,

which, when ψ ≥ wM2, yields 2
√

2ψDD2
F,ψ ≥

√
1− ψ−1wM2 IPMF and hence the result.

Proof of Thm. 6. Since W is a convex set, it remains only to be shown that the objective is convex. The second term,
λ
n1
‖W‖22, is clearly convex when λ ≥ 0. The first term is the supremum over linear forms in W and is therefore also

convex.

Proof of Thm. 7. By Thm. 6, eq. (4.4) is convex. Since Wi = n1/n0 gives a Slater point, strong duality holds and there
exists an optimal Lagrange multiplier φ∗ such that eq. (4.4) is equivalent toW(φ∗) and any optimizer W ∗ ∈ W(φ∗) also
optimizes eq. (4.4). It must therefore already satisfy the constraint

∑
i∈T0 W

∗
i = n1 and hence its objective in eq. (5.1) is

exactly the same as in eq. (4.4). For any other W ∈
⋃
φ≥0W(φ), the objective in eq. (5.1) is the same as the objective of

n1W∑
i∈T0

Wi
in eq. (4.4), where the latter is feasible. So. by its optimality in eq. (4.4), W ∗ also optimizes eq. (5.1).

We use the following lemma in the proof of Thm. 8.

Lemma 9. For nonnegative random variables Zn ≥ 0 and any sub-sigma algebra G,

E[Zn | G] = Op(1) =⇒ Zn = Op(1).

Note that when G = σ(Z1, . . . ) is the complete sigma algebra then E[Zn | G] = Zn and the result is trivial and when
G = {∅,Ω} is the trivial sigma algebra then E[Zn | G] = E[Zn] and the result is direct from Markov’s inequality. The
lemma provides a proof for the in-between cases.

Proof of Lemma 9. Suppose E[Zn | G] = Op(1). Let ν > 0 be given. Then E[Zn | G] = Op(1) says that there exist N,M
such that P(E[Zn | G] > M) ≤ ν/2 for all n ≥ N . Let M0 = max{M, 2/ν}. Then, for all n ≥ N ,

P(Zn > M2
0 ) = P(Zn > M2

0 ,E[Zn | G] > M0) + P(Zn > M2
0 ,E[Zn | G] ≤M0)

= P(Zn > M2
0 ,E[Zn | G] > M0) + E[P(Zn > M2

0 | G)I [E[Zn | G] ≤M0]]

≤ ν/2 + E
[
E[Zn | G]

M2
0

I [E[Zn | G] ≤M0]

]
≤ ν/2 + 1/M0 ≤ ν.
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Proof of Thm. 8. Let Z =
∑
i∈T0

e(Xi)
1−e(Xi) and W̃i = n1

Z
e(Xi)

1−e(Xi) . First, note that by assumption W̃ ∈ W(Θg) is feasible.
Moreover,

IPMF ({( 1
n1
, Xi)}i∈T1 , {( W̃i

n1
, Xi)}i∈T0) = sup

f∈F

∣∣∣∣∣
n∑
i=1

(
Ti
n1
− (1− Ti)e(Xi)

Z(1− e(Xi))

)
f(Xi)

∣∣∣∣∣
=
n1

Z
sup
f∈F

∣∣∣∣∣ 1

n1

n∑
i=1

(
ZTi
n1
− (1− Ti)e(Xi)

(1− e(Xi))

)
f(Xi)

∣∣∣∣∣
≤ n1

Z
sup
f∈F

∣∣∣∣∣ 1

n1

n∑
i=1

(
ZTi
n1
− Ti

)
f(Xi)

∣∣∣∣∣
+
n1

Z
sup
f∈F

∣∣∣∣∣ 1

n1

n∑
i=1

(
Ti −

(1− Ti)e(Xi)

(1− e(Xi))

)
f(Xi)

∣∣∣∣∣
≤ n1

Z
M

∣∣∣∣ Zn1
− 1

∣∣∣∣︸ ︷︷ ︸
A

+
n1

Z

n

n1
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(
Ti −

(1− Ti)e(Xi)

(1− e(Xi))

)
f(Xi)

∣∣∣∣∣︸ ︷︷ ︸
B

We will next bound each of the two terms, A and B.

Note that E [Z] = n1. By assumption, there exists η with 1− e(x) > η > 0. Therefore, since E
[
e2(Xi)/(1− e(Xi))

2
]
<

1/η2, Chebychev’s inequality yields |Z − n1| = Op(
√
n) and hence

∣∣∣ Zn1
− 1
∣∣∣ = Op(1/

√
n). Since this also means that

n1/Z →p 1, Slutsky’s theorem yields that A = Op(1/
√
n).

Next, let ∆n = supf∈F

∣∣∣ 1
n

∑n
i=1

(
Ti − (1−Ti)e(Xi)

(1−e(Xi))

)
f(Xi)

∣∣∣. Note that ∆n satisfies bounded differences with ci =

2M/(nη). Therefore, by McDiarmid’s inequality, ∆n ≤ E∆n +Op(1/
√
n). Since E

[
Ti − (1−Ti)e(Xi)

(1−e(Xi))

]
= 0, symmetriza-

tion yields that

E∆n ≤ 2ET1:n,X1:n
Eξ1:n sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

ξi

(
Ti −

(1− Ti)e(Xi)

(1− e(Xi))

)
f(Xi)

∣∣∣∣∣ ,
where ξi are iid Rademacher random variables. Finally, by the Ledoux-Talagrand comparison lemma (Ledoux & Talagrand,
1991, Thm. 4.12), since

∣∣∣Ti − (1−Ti)e(Xi)
(1−e(Xi))

∣∣∣ ≤ 1/η we have from the above that

E∆n ≤
2

η
ERn(F),

Finally, since Rn(F) satisfies bounded differences itself with ci = 2M/n, McDiarmid’s inequality yields that ERn(F) ≤
Rn(F) +Op(1/

√
n). Since n1/Z →p 1 and n/n1 →p 1/P (T1 = 1), Slutsky’s theorem yields B = Op(Rn(F) + 1/

√
n).

All together, we see that IPMF ({( 1
n1
, Xi)}i∈T1 , {( W̃i

n1
, Xi)}i∈T0) = Op(Rn(F) + 1/

√
n). Consequently, for any ψ > 0,

by Thm. 4, we have that DDF,ψ({( 1
n1
, Xi)}i∈T1 , {( W̃i

n1
, Xi)}i∈T0) = Op(Rn(F) + 1/

√
n).

Next, note that since E
[
e4(Xi)/(1− e(Xi))

4
]
< 1/η4, Chebychev’s inequality yields 1

n

∑n
i=1 e

2(Xi)/(1 − e(Xi))
2 =

Op(1), which, since n2
1/Z

2 →p 1, yields by Slutsky’s theorem that ‖W̃‖22 = Op(n). We conclude that the objective of W̃
in eq. (4.4) satisfies

DD2
F,ψ({( 1

n1
, Xi)}i∈T1 , {( W̃i

n1
, Xi)}i∈T0) + λ

n2
1
‖W̃‖22 = Op(R

2
n(F) + 1/n).

Since W ∗ is optimal and W̃ is feasible, we must therefore also have

DD2
F,ψ({( 1

n1
, Xi)}i∈T1 , {(

W∗i
n1
, Xi)}i∈T0) + λ

n2
1
‖W ∗‖22 = Op(R

2
n(F) + 1/n),

and, since each term is nonnegative and by Thm. 4 for ψ > 0, consequently

IPMF ({( 1
n1
, Xi)}i∈T1 , {(

W∗i
n1
, Xi)}i∈T0) = Op(Rn(F) + 1/

√
n),

1

n2
1

‖W ∗‖22 = Op(R
2
n(F) + 1/n).



DeepMatch

Because µ0 = f(x; θf ) and R(·) is degree-2 homogeneous, we have that |B(W ∗, µ0)| ≤
R(θf )IPMF ({( 1

n1
, Xi)}i∈T1 , {(

W∗i
n1
, Xi)}i∈T0) and since σ2(X) ≤ σ2 is almost surely bounded we have V 2(W ;σ2) ≤

σ
(

1
n1

+ 1
n2
1
‖W ∗‖

)
. By eq. (2.5) (see Kallus, 2016, Thm. 1), E

[
(τ̂W − τn1

)2 | X1:n, T1:n

]
= Op(R

2
n(F) + 1/n). Hence,

by Jensen’s, inequality E [|τ̂W − τn1
| | X1:n, T1:n] = Op(Rn(F) + 1/

√
n). Therefore, by Lemma 9, we then must also

have that τ̂W∗ − τn1
= Op(Rn(F) + 1/

√
n). Noting that, by LLN, τn1

− τ = Op(1/
√
n) completes the proof.

A.1. Detail on twins example

The 10 high-impact variables included in the treatment model are

1. gestat10: gestational age

2. hydra: risk factor for hydramnios/oligohydramnios

3. incervix: risk factor for incompetent cervix

4. nprevistq: quintile number of prenatal visits

5. csex: sex of child

6. anemia: risk factor for Anemia

7. uterine: risk factor for uterine bleeding

8. dfageq: octile age of father

9. mager8: mom age

10. adequacy: adequacy of care


