Let's Agree to Agree: Neural Networks Share Classification Order on Real Datasets

Part of Proceedings of the International Conference on Machine Learning 1 pre-proceedings (ICML 2020)

Bibtex »Metadata »Paper »

Bibtek download is not availble in the pre-proceeding


Authors

Guy Hacohen, Leshem Choshen, Daphna Weinshall

Abstract

<p>We report a series of robust empirical observations, whereby deep Neural Networks learn the examples in both the training and test sets in a similar order. This phenomenon is observed in all the commonly used benchmarks we evaluated, including many image classification benchmarks, and one text classification benchmark. While this phenomenon is strongest for models of the same architecture, it also crosses architectural boundaries - models of different architectures start by learning the same examples, after which the more powerful model may continue to learn additional examples. We further show that this pattern of results reflects the interplay between the way neural networks learn and benchmark datasets. Thus, when fixing the architecture, we show synthetic datasets where this pattern ceases to exist. When fixing the dataset, we show that other learning paradigms may learn the data in a different order. We hypothesize that our results echo how neural networks discover structure in natural datasets.</p>