Composing Molecules with Multiple Property Constraints

Part of Proceedings of the International Conference on Machine Learning 1 pre-proceedings (ICML 2020)

Bibtex »Metadata »Paper »

Bibtek download is not availble in the pre-proceeding


Authors

Wengong Jin, Regina Barzilay, Tommi Jaakkola

Abstract

<p>Drug discovery aims to find novel compounds with specified chemical property profiles. In terms of generative modeling, the goal is to learn to sample molecules in the intersection of multiple property constraints. This task becomes increasingly challenging when there are many property constraints. We propose to offset this complexity by composing molecules from a vocabulary of substructures that we call molecular rationales. These rationales are identified from molecules as substructures that are likely responsible for each property of interest. We then learn to expand rationales into a full molecule using graph generative models. Our final generative model composes molecules as mixtures of multiple rationale completions, and this mixture is fine-tuned to preserve the properties of interest. We evaluate our model on various drug design tasks and demonstrate significant improvements over state-of-the-art baselines in terms of accuracy, diversity, and novelty of generated compounds.</p>