Efficient Domain Generalization via Common-Specific Low-Rank Decomposition

Part of Proceedings of the International Conference on Machine Learning 1 pre-proceedings (ICML 2020)

Bibtex »Metadata »Paper »

Bibtek download is not availble in the pre-proceeding


Vihari Piratla, Praneeth Netrapalli, Sunita Sarawagi


<p>Domain generalization refers to the task of training a model which generalizes to new domains that are not seen during training. We present CSD (Common Specific Decomposition), for this setting, which jointly learns a common component (which generalizes to new domains) and a domain specific component (which overfits on training domains). The domain specific components are discarded after training and only the common component is retained. The algorithm is extremely simple and involves only modifying the final linear classification layer of any given neural network architecture. We show that CSD either matches or beats state of the art approaches for domain generalization based on domain erasure and domain perturbed data augmentation. Further diagnostics on rotated MNIST, where domains are interpretable, confirm the hypothesis that CSD successfully disentangles common and domain specific components and hence leads to better domain generalization.</p>