#### Bounding the fairness and accuracy of classifiers from population statistics

Part of Proceedings of the International Conference on Machine Learning 1 pre-proceedings (ICML 2020)

Bibtek download is not availble in the pre-proceeding

#### Authors

*Sivan Sabato, Elad Yom-Tov*

#### Abstract

<p>We consider the study of a classification model whose properties are impossible to estimate using a validation set, either due to the absence of such a set or because access to the classifier, even as a black-box, is impossible. Instead, only aggregate statistics on the rate of positive predictions in each of several sub-populations are available, as well as the true rates of positive labels in each of these sub-populations. We show that these aggregate statistics can be used to lower-bound the discrepancy of a classifier, which is a measure that balances inaccuracy and unfairness. To this end, we define a new measure of unfairness, equal to the fraction of the population on which the classifier behaves differently, compared to its global, ideally fair behavior, as defined by the measure of equalized odds. We propose an efficient and practical procedure for finding the best possible lower bound on the discrepancy of the classifier, given the aggregate statistics, and demonstrate in experiments the empirical tightness of this lower bound, as well as its possible uses on various types of problems, ranging from estimating the quality of voting polls to measuring the effectiveness of patient identification from internet search queries. The code and data are available at https://github.com/sivansabato/bfa.</p>