BINOCULARS for efficient, nonmyopic sequential experimental design

Part of Proceedings of the International Conference on Machine Learning 1 pre-proceedings (ICML 2020)

Bibtex »Metadata »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Shali Jiang, Henry Chai, Javier Gonzalez, Roman Garnett

Abstract

<p>Finite-horizon sequential experimental design (SED) arises naturally in many contexts, including hyperparameter tuning in machine learning among more traditional settings. Computing the optimal policy for such problems requires solving Bellman equations, which are generally intractable. Most existing work resorts to severely myopic approximations by limiting the decision horizon to only a single time-step, which can underweight exploration in favor of exploitation. We present BINOCULARS: Batch-Informed NOnmyopic Choices, Using Long-horizons for Adaptive, Rapid SED, a general framework for deriving efficient, nonmyopic approximations to the optimal experimental policy. Our key idea is simple and surprisingly effective: we first compute a one-step optimal batch of experiments, then select a single point from this batch to evaluate. We realize BINOCULARS for Bayesian optimization and Bayesian quadrature -- two notable example problems with radically different objectives -- and demonstrate that BINOCULARS significantly outperforms significantly outperforms myopic alternatives in real-world scenarios.</p>