A new regret analysis for Adam-type algorithms

Part of Proceedings of the International Conference on Machine Learning 1 pre-proceedings (ICML 2020)

Bibtex »Metadata »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, Volkan Cevher

Abstract

In this paper, we focus on a theory-practice gap for Adam and its variants (AMSgrad, AdamNC, etc.). In practice, these algorithms are used with a constant first-order moment parameter $\beta_{1}$ (typically between $0.9$ and $0.99$). In theory, regret guarantees for online convex optimization require a rapidly decaying $\beta_{1}\to0$ schedule. We show that this is an artifact of the standard analysis, and we propose a novel framework that allows us to derive optimal, data-dependent regret bounds with a constant $\beta_{1}$, without further assumptions. We also demonstrate the flexibility of our analysis on a wide range of different algorithms and settings.