Scalable Exact Inference in Multi-Output Gaussian Processes

Part of Proceedings of the International Conference on Machine Learning 1 pre-proceedings (ICML 2020)

Bibtex »Metadata »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Wessel Bruinsma, Eric Perim Martins, William Tebbutt, Scott Hosking, Arno Solin, Richard Turner

Abstract

<p>Multi-output Gaussian processes (MOGPs) leverage the flexibility and interpretability of GPs while capturing structure across outputs, which is desirable, for example, in spatio-temporal modelling. The key problem with MOGPs is their computational scaling O(n^3 p^3), which is cubic in the number of both inputs n (e.g., time points or locations) and outputs p. For this reason, a popular class of MOGPs assumes that the data live around a low-dimensional linear subspace, reducing the complexity to O(n^3 m^3). However, this cost is still cubic in the dimensionality of the subspace m, which is still prohibitively expensive for many applications. We propose the use of a sufficient statistic of the data to accelerate inference and learning in MOGPs with orthogonal bases. The method achieves linear scaling in m, hence allowing these models to scale to virtually any m, without sacrificing significant expressivity or requiring approximation. This advance opens up a wide range of real-world tasks and can be combined with existing GP approximations in a plug-and-play way. We demonstrate the efficacy of the method on various synthetic and real-world data sets.</p>