Online Learning with Dependent Stochastic Feedback Graphs

Part of Proceedings of the International Conference on Machine Learning 1 pre-proceedings (ICML 2020)

Bibtex »Metadata »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, Ningshan Zhang


<p>A general framework for online learning with partial information is one where feedback graphs specify which losses can be observed by the learner. We study a challenging scenario where feedback graphs vary stochastically with time and, more importantly, where graphs and losses are dependent. This scenario appears in several real-world applications that we describe where the outcome of actions are correlated. We devise a new algorithm for this setting that exploits the stochastic properties of the graphs and that benefits from favorable regret guarantees. We present a detailed theoretical analysis of this algorithm, and also report the results of a series of experiments on real-world datasets, which show that our algorithm outperforms standard baselines for online learning with feedback graphs.</p>