TaskNorm: Rethinking Batch Normalization for Meta-Learning

Part of Proceedings of the International Conference on Machine Learning 1 pre-proceedings (ICML 2020)

Bibtex »Metadata »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

John Bronskill, Jonathan Gordon, James Requeima, Sebastian Nowozin, Richard Turner

Abstract

<p>Modern meta-learning approaches for image classification rely on increasingly deep networks to achieve state-of-the-art performance, making batch normalization an essential component of meta-learning pipelines. However, the hierarchical nature of the meta-learning setting presents several challenges that can render conventional batch normalization ineffective, giving rise to the need to rethink normalization in this setting. We evaluate a range of approaches to batch normalization for meta-learning scenarios, and develop a novel approach that we call TaskNorm. Experiments on fourteen datasets demonstrate that the choice of batch normalization has a dramatic effect on both classification accuracy and training time for both gradient based- and gradient-free meta-learning approaches. Importantly, TaskNorm is found to consistently improve performance. Finally, we provide a set of best practices for normalization that will allow fair comparison of meta-learning algorithms.</p>