A. Supplementary Material

A.1. Proofs

Here we provide proof outlines for all lemmas and theorems in sections 3.4, and 5.

Lemma 3.1. If \(\exists h^* \in \mathcal{P}_{A,H} : r_a(h^*) = r_{a'}(h^*), \forall a, a' \in A \) then \(r(h^*) = \arg \min_{r \in \mathcal{P}_{A,H}} \|r\|_{\infty} \).

Proof. By contradiction, assume \(\exists h' \in \mathcal{P}_{A,H} : \|r(h')\|_{\infty} < \|r(h^*)\|_{\infty} \). Then we have
\[
r_a(h') \leq \|r(h')\|_{\infty} < \|r(h^*)\|_{\infty} = r_a(h^*), \forall a \in A
\]
And therefore \(r_{h'} < r_{h^*} \rightarrow h^* \notin \mathcal{P}_{A,H} \), which contradicts the hypothesis.

Lemma 3.2. Let \(h_{ER} \in \mathcal{H} \) be an equal risk classifier such that \(r_a(h_{ER}) = r_{a'}(h_{ER}) \forall a, a' \), and let \(h^* \) be the Pareto fair classifier. Additionally, define the Pareto fair post-processed equal risk classifier \(h_{ER}^* : r_a(h_{ER}^*) = \|r(h^*)\|_{\infty} \forall a \in A \), then we have
\[
\|r(h_{ER})\|_{\infty} \geq \|r(h^*)\|_{\infty}, \text{ otherwise } \|r(h_{ER})\|_{\infty} < \|r(h^*)\|_{\infty} \text{ and also } h_{ER} \leq h^* , \text{ which contradicts the definition of } h^*.
\]

The statement therefore follows from \(r_a(h_{ER}) = \|r(h_{ER})\|_{\infty} = r_a(h^*) \forall a \in A \).

Theorem 4.1. Given \(\mathcal{H} \) a convex hypothesis class and \(\{r_a(h)\}_{a \in A} \) convex risk functions then:

1. The Pareto front is convex: \(\forall r, r' \in \mathcal{P}_{A,H}^R, \lambda \in [0,1], \exists r'' \in \mathcal{P}_{A,H}^R : r'' \leq \lambda r + (1 - \lambda)r' \).

2. Every Pareto solution is a solution to Problem 2: \(\forall \hat{r} \in \mathcal{P}_{A,H}^R, \exists \mu : \hat{r} = r(\mu) \).

Proof. We prove the first item of the theorem statement, the second item is a direct application of the results in (Geoffrion, 1968).

Let \(h', h'' \in \mathcal{P}_{A,H} \), with corresponding risk vectors \(r_{h'}, r_{h''} \). Using the convexity of \(r_a(h) \), \(\forall a \in [0,1] \) we have
\[
\lambda r_a(h') + (1 - \lambda)r_a(h'') \geq r_a(\lambda h' + (1 - \lambda)h'') .
\]
Since \(\mathcal{H} \) is convex, \(h^\lambda = \lambda h' + (1 - \lambda) h'' \in \mathcal{H} \). We have two possibilities:

- \(h^\lambda \in \mathcal{P}_{A,H} \), therefore, by definition \(r_{h^\lambda} \in \mathcal{P}_{A,H}^R \) and \(r_{h^\lambda} \leq \lambda r' + (1 - \lambda)r'' \);

- \(h^\lambda \notin \mathcal{P}_{A,H} \), therefore \(\exists \hat{r} \in \mathcal{P}_{A,H}^R \hat{r} \leq r^\lambda \).

In both cases, for all risk vectors \(r', r'' \in \mathcal{P}_{A,H}^R, \lambda \in [0,1] \exists \hat{r} \in \mathcal{P}_{A,H}^R : \hat{r} \leq \lambda r' + (1 - \lambda)r'' \).

Theorem 4.2. Given input features \(X \in \mathcal{X} \) and categorical target and sensitive group variables \(Y \in \mathcal{Y} \) and \(\hat{A} \in \mathcal{A} \) respectively, with joint distribution \(p(X,Y, A) \), and linear weights \(\mu = \{\mu_a\}_{a \in \mathcal{A}} \), the optimal predictor to the linear weighting problem \(h(\mu) \) for both Brier score and Cross-Entropy is
\[
h^\mu(x) = \frac{\sum_{a \in \mathcal{A}} \mu_a p(x|a)p(y|x,a)}{\sum_{a \in \mathcal{A}} \mu_a p(x|a)},
\]
with corresponding risks
\[
r^B(\mu) = E_{X,Y}|a[\|Y - p(y|X,a)\|^2] + E_{X|a}[\|p(y|X,a) - h^\mu(X)\|^2],
\]
\[
r^CE(\mu) = H(Y|X,a) + E_{X|a}[D_{KL}(p(y|X,a)||h^\mu(X))],
\]
where \(p(y|X,a) = \{p(Y = y_i|X, A = a)\}_{i=1}^{|Y|} \) is the probability mass vector of \(Y \) given \(X \) and \(A = a \). \(H(Y|X,A) \) is the conditional entropy \(H(Y|X,A = a) = E_{X|A=a}[H(Y|X = X, A = a)] \).

Proof. We observe that the linear loss function \(\sum_{a \in \mathcal{A}} \mu_a r_a(h) \) can be decomposed as
\[
\sum_{a \in \mathcal{A}} \mu_a r_a(h) = \sum_{a \in \mathcal{A}} \mu_a E_{X|a} \left[E_{Y|X,a}[\ell(h(X), Y)] \right] = \sum_{a \in \mathcal{A}} \mu_a E_{X} \left[\frac{p(x|a)}{P(X)} E_{Y|X,a}[\ell(h(X), Y)] \right] = \sum_{a \in \mathcal{A}} \mu_a E_{X} \left[\frac{p(x|a)}{P(X)} E_{Y|X,a}[\ell(h(X), Y)] \right] = \sum_{a \in \mathcal{A}} \mu_a P(X|a) p(Y|X,a) \ell(h(X), Y)) = \sum_{a \in \mathcal{A}} \mu_a P(X|a) p(Y|X,a) \ell(h(X), Y)) = \sum_{a \in \mathcal{A}} \mu_a P(X|a) p(Y|X,a) \ell(h(X), Y)),
\]
with \(P^\mu(Y|X) = \sum_{a \in \mathcal{A}} \mu_a p(x|a) p(y|X,a) \), and denoting \(p(y|X,a) = \{p(Y = y_i|X, A = a)\}_{i=1}^{|Y|} \) the conditional probability mass vector of \(Y|X, A \).

For both the Cross-Entropy loss \(^CE(h(X), Y) = \|Y - \ell(h(X))\| \) and the Brier score loss \(^B(h(X), Y) = \|Y - \ell(h(X))\|_2 \), the minimizer of \(E_{Y \sim P(Y|X)}[\ell(h(X), Y)] \) is attained at \(h(X) = P(Y|X) \). Therefore, we can plug in this optimal estimator to recover
\[h^\mu(x) = \frac{\sum_{a \in A} \mu_a p(x|a)p(y|x,a)}{\sum_{a \in A} \mu_a p(x|a)}. \]

Plugging in the optimal classifier \(h^\mu(x) \) on the risk formulations we get the expressions for both scores as analyzed next.

Brier Score:

\[
r^a_{BS}(\mu) = \\
= E_{Y,X|a}[\|\delta^Y - h^\mu(X)\|^2] \\
= E_{Y,X|a}[\|\delta^Y - p(y|X,a) + p(y|X,a) - h^\mu(X)\|^2] \\
= E_{Y,X|a}[\|\delta^Y - p(y|X,a)\|^2] + \sum_{i \neq j \neq \ldots} E_{Y,X|a}[\|\delta^Y - p(y|X,a)^{T}\|^2 p(y|X,a) - h^\mu(X)] \\
= r^a_{BSmin} + E_{X|a}[\|p(y|X,a) - h^\mu(X)\|^2] \\
= r^a_{BSmin} + E_{X|a}[\|p(y|X,a) - h^\mu(X)\|^2],
\]

where the equalities are attained by expanding the L2-norm, observing that \(p(y|X,a) \) and \(h(X) \) do not depend on random variable \(Y \), and also that \(E_{Y|X,a}[\delta^Y] = p(y|X,a) \). We also denoted \(r^a_{BSmin} = E_{X,Y|a}[\|\delta^Y - p(y|X,a)\|^2] \), which is the risk attained by the Bayes optimal estimator for group \(a \).

Cross Entropy:

\[
r^a_{CE}(\mu) = \\
= -E_{Y,X|a}[\sum_{i} \delta^Y \log[h^\mu(X)]] \\
= -E_{Y,X|a}[\sum_{i} \delta^Y \log[p(y|X,a)/p(y|X,a)]] + E_{X|a}[\sum_{i} \delta^Y \log[p(y|X,a)/h^\mu(X)]] \\
= r^a_{CEmin} + E_{X|a}[\sum_{i} \delta^Y \log[p(y|X,a)/h^\mu(X)] \\
= r^a_{CEmin} + E_{X|a}[D_{KL}(p(y|X,a)/h^\mu(X))],
\]

where we again use the linearity of the expectation and the equality \(E_{Y,X|a}[\delta^Y] = p(y|X,a) \). We also denote \(r^a_{CEmin} = H(Y|X, A = a) \).

Lemma 4.3. In the conditions of Theorem 4.2 we observe that if \(Y \perp A|X \) then

\[
r^a_{BS}(\mu) = E_{X,Y|a}[\|\delta^Y - p(y|X)\|^2] \forall \mu \\
r^a_{CE}(\mu) = H(Y|X) \forall \mu,
\]

Likewise, if \(H(A|X) \to 0 \) then

\[
r^a_{BS}(\mu) \to E_{X,Y|a}[\|\delta^Y - p(y|X,a)\|^2] \forall \mu \\
r^a_{CE}(\mu) \to H(Y|X,a) \forall \mu.
\]

Proof.

If \(Y \perp A|X \) then

\[
h^\mu(x) = \frac{\sum_{a \in A} \mu_a p(x|a)p(y|x,a)}{\sum_{a \in A} \mu_a p(x|a)},
\]

in which case the resulting expressions for \(r^a_{BS}(\mu) \) and \(r^a_{CE}(\mu) \) are immediate and do not depend on \(\mu \)

\[
\text{If } H(A|X) \to 0 \text{ then we have } p(a|x) = 1, p(a'|x) = 0 \forall a \neq a', x: p(x|a) > 0. \text{ Therefore we can write}
\]

\[
h^\mu(x) = \frac{\sum_{a \in A} \mu_a p(x|a)p(y|x,a)}{\sum_{a \in A} \mu_a p(x|a)},
\]

and again the resulting expressions for \(r^a_{BS}(\mu) \) and \(r^a_{CE}(\mu) \) are immediate from direct substitution. \(\square \)

We now present two auxiliary lemmas that will help us prove Theorem 5.1.

Lemma A.1. Let \(\mathcal{P}^R_{A,\mathcal{X}} \) be a Pareto front, and let \(r(\mu) \in \mathcal{P}^R_{A,\mathcal{X}} \) denote the solution the linear weighting Problem given by Eq.\((2)\). Then \(\forall \mu, \in \mathcal{P}^R_{A,\mathcal{X}}, a \subseteq A, \eta : \eta_i > 0 \forall i \in \mathcal{I}, \eta_i = 0 \forall i \not\in A \setminus \mathcal{I}. \)

Then at least one risk in the \(\mathcal{I} \) coordinates is reduced, or both risk vectors are the same in \(\mathcal{I} \), i.e.,

\[
\exists j \in \mathcal{I} : r_j(\mu + \eta) < r_j(\mu) \vee r_\mathcal{I}(\mu + \eta) = r_\mathcal{I}(\mu).
\]

Proof. Denote \(\Phi(\mu) = \sum_{a \in A} \mu_a r_a(\mu) \), \(\Phi_{A,\mathcal{I}}(\mu) = \sum_{a \in A \setminus \mathcal{I}} \mu_a r_a(\mu) \), and \(r(\mu) = \{r_a(\mu)\}_{a \in \mathcal{I}} \).

By contradiction, we negate the thesis to get

\[
(r_\mathcal{I}(\mu + \eta) \geq r_\mathcal{I}(\mu)) \wedge (\exists j \in \mathcal{I} : r_j(\mu + \eta) > r_j(\mu)).
\]

We discuss 2 cases.

Case 1. \(\Phi_{A,\mathcal{I}}(\mu + \eta) > \Phi_{A,\mathcal{I}}(\mu + \eta) \)

By definition of \(r(\mu), r(\mu + \eta) \) we observe

\[
\sum_{a \in \mathcal{A}} (\mu_a + \eta_a)r_a(\mu) \geq \sum_{a \in \mathcal{A}} (\mu_a + \eta_a)r_a(\mu), \\
\sum_{a \in \mathcal{I}} (\mu_a + \eta_a)r_a(\mu) + \Phi_{A,\mathcal{I}}(\mu) \geq \\
\sum_{a} (\mu_a + \eta_a)(r_a(\mu) - r_a(\mu + \eta)) \geq \\
\Phi_{A,\mathcal{I}}(\mu + \eta) = \Phi_{A,\mathcal{I}}(\mu).
\]
where the inequalities in the underbrackets are a direct result of the case assumptions, these inequalities contradict the hypothesis.

Case \(\Phi_{A\setminus I}(\mu) \leq \Phi_{A\setminus I}(\mu + \eta) \):

We can directly observe that
\[
\sum_{a \in A}(\mu_a + \eta_a)r_a(\mu) = \sum_{a \in I}(\mu_a + \eta_a)r_a(\mu) + \Phi_{A\setminus I}(\mu) \\
\leq \sum_{a \in I}(\mu_a + \eta_a)r_a(\mu) + \Phi_{A\setminus I}(\mu + \eta) \\
< \sum_{a \in I}(\mu_a + \eta_a)r_a(\mu + \eta) + \Phi_{A\setminus I}(\mu + \eta),
\]

which again contradicts the hypothesis.

Lemma A.2. Let \(\mathcal{P}_{A,\mathcal{H}}^R \) be a Pareto front, and let \(r(\mu) \in \mathcal{P}_{A,\mathcal{H}}^R \) denote the solution to the linear weighting Problem given by Eq. (2). Let \(I \subseteq A \) and let \(\mu^I > 0, \mu_{A\setminus I} = 0, ||\mu^I||_1 = 1 \). Then
\[
(\exists i \in I : r_i(\mu^I) < ||r(\mu)||_\infty) \lor (\mu \notin \mu^*).
\]

Proof. By contradiction, assume
\[
(r_i(\mu^I) \geq ||r(\mu)||_\infty, \forall i \in I) \land (\mu \notin \mu^*).
\]
We can then write
\[
\sum_{a \in A} \mu^I_a r_a(\mu^I) \geq \sum_{a \in A} \mu^I_a ||r(\mu)||_\infty \\
> \sum_{a \in A} \mu^I_a ||r(\mu)||_\infty \\
= \sum_{a \in A} \mu^I_a ||r(\mu)||_\infty,
\]
which contradicts the definition of \(r(\mu^I) \).

Theorem 5.1. Let \(\mathcal{P}_{A,\mathcal{H}}^R \) be a Pareto front, and \(r(\mu) \in \mathcal{P}_{A,\mathcal{H}}^R \), denote the solution to the linear weighting Problem 2. For any \(\mu' \not\equiv \arg \min_{\mu \in \Delta_{|A|-1}} ||r(\mu)||_\infty \), and \(\mu^* \in \arg \min_{\mu \in \Delta_{|A|-1}} ||r(\mu)||_\infty \), the sets
\[
N_i = \{ \mu : r_i(\mu) < ||r(\mu')||_\infty \}
\]
satisfy:

1. \(\mu^* \in \bigcap_{i \in I} N_i \);
2. If \(\mu \in N_i \rightarrow \lambda \mu + (1 - \lambda)e^i \in N_i, \forall \lambda \in [0, 1], i = 1, \ldots, |A| \), where \(e^i \) denotes the standard basis vector;
3. \(\forall I \subseteq A, \mu : \mu_{A\setminus I} = 0 \rightarrow \mu \in \bigcup_{i \in I} N_i \);
4. If \(r(\mu) \) is also continuous in \(\mu \), then \(\forall I \subseteq A \) such that \(\mu \in \bigcap_{i \in I} N_i \rightarrow \exists \varepsilon > 0 : B_{\varepsilon}(\mu) \subset \bigcap_{i \in I} N_i \);
5. If \(\mathcal{P}_{A,\mathcal{H}}^R \) is also convex, then \(r(\mu^*) \in \arg \min_{\mu \in \mathcal{P}_{A,\mathcal{H}}^R} ||r(\mu)||_\infty \).

Proof.

Property 1: We can directly observe that
\[
r_a(\mu^*) \leq ||r(\mu^*)||_\infty < ||r(\mu)||_\infty, \forall a \in A,
\]
and therefore \(\mu^* \in \bigcap_{i \in A} N_i \).

Property 2: Direct application of Lemma A.1.

Property 3: Direct application of Lemma A.2.

Property 4: For all \(i \in I \) we have \(r_i(\mu) \leq ||r(\mu')||_\infty \), since \(r_i(\mu) \) is also continuous in \(\mu, \exists \epsilon_i > 0 : \forall \mu' \in B_{\epsilon_i}(\mu) \rightarrow r_i(\mu) < ||r(\mu')||_\infty \). Taking \(\epsilon = \min \epsilon_i \), we have \(B_{\epsilon_i}(\mu) \subseteq \bigcap_{i \in I} N_i \).

Property 5: Immediate since every point in the Pareto front in this condition can be expressed as a solution to the linear weighting Problem 2. Proven in Theorem 4.1 and (Geoffrion, 1968).

A.2. Analysis of Proposed Optimization Method

Here we discuss some of the properties of the APStar Algorithm (Algorithm 1). Key observations regarding the update sequence can be summarized as follows:

- Updates \(\mu^{t+1} = \mu^t + \frac{1}{K} \mu^t \mu^t \mu^t \) always satisfy \(\mu^t \geq 0, ||\mu^t||_1 = 1 \).
- Consecutive updates that do not decrease the minimax risk have a step size that converges to 0: \(||\mu^{t+1} - \mu^t||_2^2 = \frac{1}{K+1} ||\mu^t - \mu^t||_2^2 \leq \frac{1}{K+1} \rightarrow 0 \).
- The update sequence \(\mu^{t+1} = (\mu^t + \eta) \frac{K}{K+1} ; K = K + 1 \) converges to \(\eta \). That is \(\mu^{t+1} \rightarrow \eta \).

So far, we showed that the choice of update sequence always proposes feasible weighting vectors, with progressively smaller step sizes, but that nonetheless can reach any point in the feasible region given sufficient updates.

We can also state that the update directions \(\frac{1}{K+1} \mu^t \) are not fixed points of the algorithm unless they themselves are a viable update vector.

Lemma A.3. Let \(\mu^t \) with corresponding \(||r(\mu^t)||_\infty \) in the conditions of Theorem 5.1. Denote the possible update directions of Algorithm 1 as

\[
\eta^t : \eta_i = \begin{cases} \frac{1}{|I|}, & i \in I, \\ 0 & o.w. \end{cases}
\]
Similarly, denote
\[1^\mu : 1^\mu_r = \begin{cases} 1 & \text{if } r_i(\mu) > \|r(\mu')\|_\infty, \\ 0 & \text{otherwise}. \end{cases} \]

All update directions that are non-viable descent updates are repellors. That is, if \(\mathcal{I} \subseteq \mathcal{A} : \|r(\eta^T)\|_\infty > \|r(\mu')\|_\infty \) then \(\exists \varepsilon : \forall \mu \in B_{\varepsilon}(\eta^T); \frac{1}{\|\mu\|_\infty} \neq \eta^T. \)

Proof. This is a direct corollary of properties 3 and 4 of Theorem 5.1

A full convergence proof of the algorithm would need to show that this algorithm has no cycles. This can be motivated to a point by observing that the update directions are equivalent to performing gradient descent on the following function:

\[
F(\mu) = \sum_{i=1}^{|A|} (1 - \mu_i) 1(r_i(\mu) \geq \bar{r}), \quad \nabla F(\mu) = -\{(r_i(\mu) \geq \bar{r})\}_{i=1}^{|A|} = -1^\mu,
\]

where we abuse the notation \(\nabla F(\mu) \) since the function is not differentiable on the boundaries where \(r_i(\mu) = \bar{r} \). We do note however that even on those points, \(1^\mu \) is a valid descent direction. Function \(F(\mu) \) can be shown to have no non-global minima in the set \(\mu : \mu > 0, \|\mu\|_1 = 1 \), and global minima on all \(\mu \in \bigcap_{i \in \mathcal{A}} N_i \). We do note, however, that gradient descent on discontinuous functions can still produce cycles on pathological cases.

Figure 4 (repeating Figure 3 for convenience) shows examples of iterations of the APStar algorithm across randomly generated star-convex sets satisfying the conditions of Theorem 5.1. We observe that the algorithm converges to a viable update direction in all instances. Convergence for simple cases happens in few iterations, but challenging scenarios can still be appropriately solved with the proposed algorithm; on average, our algorithm is significantly faster than random sampling, especially in challenging scenarios. An explanation on how these distributions are sampled is presented next.

Sampling Star-convex Distributions

Here we describe a simple procedure to sample Star-convex distributions in \(\Delta^2 \) that satisfy the properties of Theorem 5.1.

We note that any point in the \(\Delta^2 \) simplex can be embedded into \(\mathbb{R}^2 \) by using the following function,

\[
f(\mu) : \Delta^2 \to \mathbb{R}^2, \quad f(\mu) = (\frac{2\mu_1 + \mu_2}{2}, \sqrt{2}\mu_2).
\]
Figure 5. Illustration of Star-shaped sets $N_i \in \Delta^2$. The sets N_i are parametrized by the boundary curves C_i, all points that connect the boundary C_i with $f(e^i)$ conform the Star-shaped set N_i.

4 are satisfied by construction, we check that Property 1 is satisfied by verifying that $N_0 \cup N_1 \cup N_2$ contains at least one element.

Property 3 is verified by checking that $N_0 \cap N_1 \cap N_2$ covers the entire triangle in \mathbb{R}^2, and also that

\[
C_0(0) + C_1(\pi/3) > 1,
C_1(0) + C_2(\pi/3) > 1,
C_2(0) + C_0(\pi/3) > 1.
\]

A.3. MMPF Implementation Details

Here we present implementation details to estimate the Minimax Pareto Fair classifier from data. As mentioned in Section 5, the APStar algorithm (Algorithm 1) requires an optimizer to solve the linear weighting problem (Problem 2).

We propose two options, one minimizes it using stochastic gradient descent (SGD), we call this approach joint estimation, and it is described in Algorithm 2. Note that each batch samples the sensitive attributes uniformly in order to reduce the variance of the conditional risk estimators for every group in every batch. The second approach was also presented in Section 5 and is called plug-in. Here each conditional distribution $(p(Y|X,a), p(A|X))$ is estimated independently from the data, and the optimal model for a given weighting vector μ is computed using the expression derived in Theorem 4.2, Algorithm 3 describes this approach.

In both the joint and plug-in approach, the APStar algorithm makes decision based on the risk vector evaluated on the validation datasets. This is done to empirically improve generalization and disallow excessive overfitting.

Algorithm 2 Joint Estimation

Input: Train $D^{tr} = \{(x^i, y^i, a^i)\}_{i=1}^{N_{tr}}$, Validation $D^{val} = \{(x^i, y^i, a^i)\}_{i=1}^{N_{val}}$. Network: h_{θ^*}, Weights: μ, Loss $\ell(\cdot, \cdot)$. Learning Rate: lr, Decay rate = γ, Epochs: n_E, Batch Size: n_B, Maximum Patience = n_P

Set $h^* \leftarrow h_{\theta^*}$, epochs $\leftarrow 0$, patience $\leftarrow 0$

repeat

$t \leftarrow 0$, $h^* \leftarrow h^*$

while $t < \frac{n_E}{n_B}$ do

\[
\{a_i\}_{i=1}^{n_B} \sim U[1, \ldots, |A|], \{x_i, y_i\}_{i=1}^{n_B} \sim D^{tr}
\]

\[
r(h_{\theta}) \leftarrow \left\{ \frac{\sum_{i=1}^{n_B} 1[a_i = a]I(h_{\theta}(x_i), y_i)}{\sum_{i=1}^{n_B} 1[a_i = a]} \right\}_{a \in A}
\]

$\theta \leftarrow \theta - lr \nabla_{\theta} (\mu, r(h_{\theta}))$

$t \leftarrow t + 1$

end while

epochs $\leftarrow 1$ # epoch ended; evaluate on validation

$\bar{r}^{val}(h_{\theta}) \leftarrow \left\{ \frac{\sum_{i \in D^{val}} 1[a_i = a]I(h_{\theta}(x_i), y_i)}{\sum_{i \in D^{val}} 1[a_i = a]} \right\}_{a \in A}$

if $(\mu, \bar{r}^{val}(h_{\theta})) \leq (\mu, r^{val}(h^*))$ **then**

$h^* \leftarrow h^*$; patience $\leftarrow 0$

else

$lr \leftarrow lr \cdot \gamma$; patience $\leftarrow 1$

end if

until epochs $\geq n_E$ or patience $\geq n_P$

return h^*, $r^{val}(h^*)$

Algorithm 3 Plug-in Estimation

Input: Validation $D^{val} = \{(x^i, y^i, a^i)\}_{i=1}^{N_{val}}$, Networks estimating $p(Y|X,a) : \{p_{\theta_a}^{Y|X,a}\}_{a \in A}$ and $p(A|X) : \{p_{\theta_a}^{A}\}_{a \in A}$, Priors $\{p_a\}_{a \in A}$, Weights: μ, Loss $\ell(\cdot, \cdot)$

\[
h^*(x) \leftarrow \frac{\sum_{a \in A} p_{\theta_a}^{Y|X,a}(x) p_a^{Y|X,a} \mu_a}{\sum_{a \in A} p_{\theta_a}^{Y|X,a}(x) p_a^{Y|X,a}}
\]

\[
r^{val}(h^*) \leftarrow \left\{ \frac{\sum_{i \in D^{val}} 1[a_i = a]I(h^*(x), y_i)}{\sum_{i \in D^{val}} 1[a_i = a]} \right\}_{a \in A}
\]

return h^*, $r^{val}(h^*)$

A.4. Synthetic Data Experiments

We tested our approach on synthetic data where the observations are drawn from the following distributions:

\[
A \sim U[1, \ldots, |A|],
X|A = a \sim N(m_a, 1),
Y|X = x, A = a \sim Bern(f_a(x)),
\]

\[
f_a(x) = \rho_0^A \mathbf{1}[x \leq t_a] + \rho_0^A \mathbf{1}[x > t_a].
\]

Note that $f_a(x)$ is a piecewise-constant function. We used Brier Score as our loss function, then the Bayes-optimal classifier for each group is $f_a(x)$, while the optimal classifier for the linear weighting problem can be computed numerically using the expression derived in Theorem 4.2.

For the synthetic experiments presented in this section we chose $|A| = 3$, $\{m_0, m_1, m_2\} = \{-0.5, 0, 0.5\}$, $\{t_0, t_1, t_2\} = \{-0.25, 0, 0.25\}$, $\rho_{0,1,2} = 0.1$, $\rho_{0,1} = 0.9$, and $\rho_2 = 0.8$.

Minimax Pareto Fairness: A Multi Objective Perspective
Figure 6.a shows the conditional distributions \(p(X|a) \) and \(p(Y|X,a) \) obtained with these parameters, along with the minimax Pareto fair classifier.

We evaluate performance of the APStar algorithm performs when \(h^*, r(\mu) \) are computed using the closed form formula in Theorem 4.2, expectations are computed via numerical integration. This enables us to evaluate the performance of the algorithm in the infinite sample and perfect \(h \) optimization regime. We recover the optimal minimax Pareto fair weights \(\mu^* \) via grid search, since a closed form solution for these weights is not available. Figure 6.b and Figure 6.c show how the risk vector \(r(\mu) \) and linear weights \(\mu \) approach the minimax optimal \(r^*, \mu^* \) as a function of iterations of the APStar algorithm. Figure 2 shown in Section 5 was also generated with these parameters.

Figures 6.d and 6.e show the performance of the algorithm as a function of training samples, the classifier is implemented using an NN, and is minimized using SGD. Table 7 in Section A.9 provides the architecture and optimization details. We observe that the optimal classifier is non-linear (see Figure 6.a) which motivates the use of NNs for estimation. Note that relative errors decrease with the number of samples. In both cases, the algorithm is able to effectively converge to the minimax Pareto risk.

The Pareto curve shown in figure 1 (Section 3) was generated with parameters \(|A| = 2, \{m_0, m_1\} = \{-0.5, 0.5\}, \{t_0, t_1\} = \{-0.25, 0.25\}, \{\rho_0^d, \rho_1^d\} = \{0.3, 0.05\}, \{\rho_0^l, \rho_1^l\} = \{0.7, 0.95\} \) and Brier Score risk.

A.5. Plug in vs Joint Estimation Analyses

We empirically compare the performance of the plug-in and joint estimation approaches presented in Section 4. The main advantage of plug-in estimation is that once the conditional classifiers are calculated, evaluating a new weight vector does not require any optimization; in contrast, joint estimation requires a full optimization run for each new weight vector. The main advantage of joint estimation is that it requires a single model, and makes use of all samples to train it; this can be beneficial when samples are scarce, and can be motivated by the transfer learning literature. In our problem setting, we can consider sensitive groups as different domains or tasks, and our goal is to find a model that has the best minimax performance. If the conditional distributions \(p(Y|X,a) \) and \(p(X|a) \) match for every \(a \in A \) \((Y \perp A|X \) and \(X \perp A) \), we are in the optimal transfer learning scenario where all groups benefit from each others’ samples to estimate the target. In this situation, the joint approach would be expected to perform better on the test set than the plug-in approach. From this ideal case we can identify the following two deviations:

- **Case I:** \(Y \perp A|X \) and \(d(p(X|a), p(X|a')) \geq \epsilon, \forall a, a' \in A, \epsilon > 0; \)

- **Case II:** \(X \perp A \) and \(d(p(Y|X,a), p(Y|X,a')) \geq \epsilon, \forall a, a' \in A, \epsilon > 0; \)

where \(d(.,.) \) is some distance or divergence between distributions.

Case I keeps \(Y \perp A|X \), but \(p(X|a) \) differ across a values. It is reasonable to assume that as \(\epsilon \) increases, the difference in the group conditional risks on test data for joint and plug-in estimation will be low. Note that in this scenario, if the hypothesis class is unbounded, there is no trade-off between group risks as shown in Lemma 4.3, hence the Pareto front is the Utopia point; we expect the joint estimation approach to outperform plug-in estimation at the same number of weight updates.

Case II keeps \(X \perp A \), but \(p(Y|X,a) \) differ across a values. In this scenario, there may be a trade-offs between group risks. We argue that in a finite sample scenario, as \(\epsilon \) increases, it is not clear if joint estimation will be better or worse than plug-in since the former may be affected by negative transfer.

Experiments

We empirically examine these cases by choosing \(|A| = 2 \) and simulating synthetic data from the following distribu-
tion:

\[X | 0 \sim N(0, 1), \quad X | 1 \sim N(m_1, 1), \quad m_1 \geq 0, \]
\[Y | X, 0 \sim \text{Ber}(f_0(X)), \quad Y | X, 1 \sim \text{Ber}(f_1(X)), \]
\[A \sim \text{Ber}\left(\frac{1}{2}\right), \]

where

\[f_0(X) = (0.6 + 0.21|x \geq 0|)\text{sign}[\sin(2\pi X) + 1] + 0.2 - 0.11|x \geq 0|, \]
\[f_1(X) = (1 - \lambda)f_0(X) + \lambda[1 - \text{round}(f_0(X))], \]
\[\lambda \in [0, 1]. \]

(6)

Figure 7 shows three examples of synthetic data generated with these distributions, where the input variable X, sensitive variable A, and target Y exhibit various dependencies. Figures 7.a and 7.b show examples of conditional distributions \(p(X|A)\) and \(p(Y = 1|X, A)\) for Cases I and II. Figure 7.c shows an example where both \(X \perp A\) and \(Y \perp A\). Additionally, we plot the MMPF classifier \(h^*(X)\). When \(Y \perp A|X\) we have that \(h^*(X) = p(Y|X)\) and when \(X \perp A\), \(h^*(X)\) is a linear combination of \(p(Y|X, 0)\) and \(p(Y|X, 1)\) with the minimax weight coefficients. These are direct consequences of Theorem 4.2. In Figure 7.c \(h^*(X)\) shows a more complex interaction since both \(p(X|a)\) and \(p(Y|X, a)\) differ between \(a\) values. Asymptotically, since \(p(a = 1|X = \infty) = 1, p(a = 0|X = -\infty) = 1\), we recover \(h^*(\infty) = p(Y|X, 1)\) and \(h^*(-\infty) = p(Y|X, 0)\).

Figure 8 compares the performance of the plug-in and joint estimation approach. On both approaches, we limit the number of weight updates of the APStar algorithm to 15. Figure 8.a compares relative differences in the risk vector as a function of the divergence between \(p(X|0)\) and \(p(X|1)\) for 4k and 9k train samples and Case I \((Y \perp A)\). Figure 8.b compares accuracies under the same conditions. We observe that in this scenario, the benefit of joint estimation is evident, especially with a small number of samples. Note that this gap is reduced as \(D_{KL}(p(X|0)||p(X|1))\) and the number of samples increases; as expected, both methods perform better when more samples are available.

Figures 8.c and 8.d show the same comparisons for Case II. In this scenario there is no clear difference between plug-in and joint estimation, though the former appears to be marginally better; both methods improve performance with additional samples.

UNBALANCED CLASSIFICATION: \(Y = A\)

In balanced risk minimization, we have \(Y = A\). If the risk function is either Cross Entropy or Brier Score, we can apply Theorem 4.1 and recover

\[h^\mu(x) = \left\{ \frac{\mu_{a|x} p(a|x)}{\sum_{a' \in A} \mu_{a'|x} p(a'|x)} \right\}_{a=1}^{\left| A \right|}. \]

This particular scenario is noteworthy because the plug-in approach only needs to estimate \(p(a|x) = p(y|x)\), a Pareto optimal classifiers can be easily derived from \(p(y|x)\) by simply re-weighting each component of the output probability vector. This re-weighting requires no expensive minimization procedure, and enables extensive iterations of the APStar algorithm to find the optimal weight vector \(\mu\). For these types of scenarios, it is advantageous to estimate \(p(y|x)\) by using a Naive or Balanced classifier, and then derive all
optimal classifiers via a simple weighting of the output vector, the optimal weights can still be found using our APStar algorithm.

Observation Summary

We summarize our observations from these experiments and discussions.

- Joint estimation may benefit from transfer learning and seems to be no worse than plug-in estimation even when target conditional distributions do not match. Note that a certain amount of negative transfer may be required by the minimax Pareto Fair classifier, which may negate the advantages of plug-in estimation when target conditional distributions differ.

- Plug-in estimation requires multiple (|A| + 1) models, while joint estimation only requires one; this makes this approach impractical in some scenarios. However, the former approach allows for cheap iterations of the APStar algorithm.

- In the balanced classification problem (Y = A), plug-in estimation requires the same number of models as joint estimation, but is cheaper to evaluate.

A.6 Methods

We compare the performance of the following methods:

Kamishima. (Kamishima et al., 2012) uses logistic regression as a baseline classifier, and requires numerical input (observations), and binary target variable. Fairness is controlled via a regularization term with a tuning parameter η that controls the trade-off between fairness and overall accuracy. η is optimized via grid search with η ∈ (0, 300) as in the original paper. We report results on the hyperparameter configuration that produces the best minimax cross-entropy across sensitive groups.

Feldman. (Feldman et al., 2015) provides a preprocessing algorithm to sanitize input observations. It modifies each input attribute so that the marginal distribution of each coordinate is independent of the sensitive attribute. The degree to which these marginal distributions match is controlled by a λ parameter between 0 and 1. It can handle numerical and categorical observations, as well as non-binary sensitive attributes, and arbitrary target variables. Following (Friedler et al., 2019), we train a linear logistic regressor on top of the sanitized attributes. λ is optimized via grid search with increments of 0.05. We report results on the hyperparameter configuration that produces the best minimax cross-entropy across sensitive groups.

Zafar. (Zafar et al., 2015) Addresses disparate mistreatment via a convex relaxation. Specifically, in the implementation provided in (Friedler et al., 2019), they train a logistic regression classifier with a fairness constraint that minimizes the covariance between the sensitive attribute and the classifier decision boundary. This algorithm can handle categorical sensitive attributes and binary target variables, and numerical observations. The maximum admissible covariance is handled by a hyperparameter c, tuned by logarithmic grid search with values between 0.001 and 1. We report results on the hyperparameter configuration that produces the best minimax cross-entropy across sensitive groups.

Hardt. (Hardt et al., 2016) proposes a post-processing algorithm that takes in an arbitrary predictor and the sensitive attribute as input, and produces a new, fair predictor that satisfies equalized odds. This algorithm can handle binary target variables, an arbitrary number of sensitive attributes, and any baseline predictor, but requires test-time access to sensitive attributes. It does not contain any tuning parameter. We apply this method on top of both the Naive Classifier and our Pareto Fair classifier.

Naive Classifier (Naive). Standard classifier, trained to minimize an expected risk h = arg min_h∈H E_{X,A,Y}[ℓ(h(X), δY)]. The baseline classifier class H is implemented as a neural network and varies by experiment as described in Section A.9, the loss function also varies by experiment and is also described in Section A.9. Optimization is done via stochastic gradient descent.

Balanced Classifier (Balanced). Baseline classifier designed to address undersampling of minority classes, trained to minimize a class-rebalanced expected risk h = arg min_h∈H E_{A∼U[|A|,...,|A|],(X,Y)∼P(X,Y|A)}[ℓ(h(X), δY)]. Like the Naive classifier, it is implemented as a neural network and optimized via stochastic gradient descent. The sole difference with the Naive classifier is that, during training, samples are drawn from the new input distribution A ∼ U[|A|,...,|A|]; X,Y|A ∼ P(X,Y|A), which is achieved by re-weighted sampling of the original training dataset.

Minimax Pareto Fair (MMPF, joint and plug-in). Our proposed methodology, finds a Pareto-optimal model h∗ such that it has minimax Pareto risk r∗. It achieves this by searching for weighting coefficients µ∗ such that r∗ is the solution to the corresponding linear weighted problem (see Eq.2). This method alternates between minimizing a linearly-weighted loss function (Eq.2), and updating the weighting coefficients according to Algorithm 1. The baseline classifier class H is implemented as a neural network and varies by experiment as described in Section A.9, the loss function also varies by experiment and is also described
in Section A.9. The minimization of the weighted loss function at every step of the APStar algorithm is implemented via stochastic gradient descent (joint estimation) or by direct application of the closed form optimal classifier derived in Theorem 4.2 (plug-in estimation). The latter approach requires estimating \(p(a|x), p(y|x,a) \) and \(p(a) \).

A.7. Evaluation Metrics

Here we describe the metrics used to evaluate the performance of all tested methods. We are given a set of test samples \(D_t = \{ \{x_i, y_i\}\}_{i=1}^N \) where \(x_i \in X \) is a realization of our model input and \(y_i \in Y \) the corresponding objective. We assume that \(Y \) is a finite alphabet, as in a classification problem; we will represent the one-hot encoding of \(y_i \) as \(\delta^{y_i} \). Given a trained model \(h : X \rightarrow [0,1]^{|Y|} \) the predicted output for an input \(x_i \) is a vector \(\hat{h}(x_i) : |\hat{h}(x_i)|_1 = 1 \) (e.g., output of a softmax layer). The predicted class is \(\hat{y}_i = \text{arg \, max}_j h_j(x_i) \) and its associated confidence is \(\hat{p}_i = \max_j h_j(x_i) \). Ideally \(\hat{y}_i \) should be the same as \(y_i \). Using these definitions, we compute the following metrics.

Accuracy (Acc): \(\frac{1}{N} \sum_{i=1}^N \mathbf{1}(y_i = \hat{y}_i) \). Fraction of correct classifications in dataset.

Brier Score (BS): \(\frac{1}{N} \sum_{i=1}^N |\delta^{y_i} - \hat{p}_i|^2 \) where \(\delta^{y_i} \) is the one-hot representation of the categorical ground truth value \(y_i \). This quantity is also known as Mean Square Error (MSE).

Cross Entropy (CE): \(-\frac{1}{N} \sum_{i=1}^N \left(\delta^{y_i}, \log \hat{h}(x_i) \right) \) also known as negative log-likelihood (NLL) of the multinomial distribution.

Expected Calibration Error (ECE): \(\frac{1}{N} \sum_{m=1}^M \left| \sum_{i \in B_m} \mathbf{1}(y_i = \hat{y}_i) - \hat{p}_i \right| \) where \(M \) is the number of bins to divide the interval \([0,1]\) such that \(B_m = \{i \in \{1,..,N\} : \hat{p}_i \in \left(\frac{m-1}{M}, \frac{m}{M}\right]\} \) are the group of samples that our model assigns a confidence \(\hat{p}_i \) in the interval \(\left(\frac{m-1}{M}, \frac{m}{M}\right] \). Measures how closely the predicted probabilities match the true base rates.

Maximum Calibration Error (MCE): \(\max_{m \in \{1,..,M\}} \left| \frac{1}{|B_m|} \sum_{i \in B_m} \mathbf{1}(y_i = \hat{y}_i) - \hat{p}_i \right| \). Measures worst-case miscalibration errors.

These metrics are computed independently for each sensitive subgroup on the test set and reported in Section A.10.

A.8. Details on Experiments on Real Data

The following is a description of the data and experiments for each of the real datasets. The information present here is summarized in Table 6.

MIMIC-III. This dataset consists of clinical records collected from adult ICU patients at the Beth Israel Deaconess Medical Center (MIMIC-III dataset) \(\text{Johnson et al., 2016} \). The goal is predicting patient mortality from clinical notes. We follow the pre-processing methodology outlined in \(\text{Chen et al., 2018} \), where we analyze clinical notes acquired during the first 48 hours of ICU admission; discharge notes were excluded, as where ICU stays under 48 hours. TF-idf statistics on the top 10,000 most frequent words in clinical notes are taken as input features.

We identify 8 sensitive groups as the combination of age (under/over 55 years old), ethnicity as determined by the majority group (white/nonwhite); and outcome (alive/deceased). Here we will use the term adult to refer to people under 55 years old and senior otherwise. This dataset shows large sample disparities since 56.7% corresponds to the overall majority group (alive-senior-white) and only 0.4% to the overall minority group (deceased-adult-nonwhite).

We used a fully connected neural network as described in Table 7 as the baseline classifier for our proposed MMPF framework. We compare our results against both the Naive and Naive Balanced algorithms using the same neural network architecture, and use cross-entropy (CE) as our training loss. We also evaluate the performance of Zafar, Feldman and Kamishima applied on the feature embeddings learned by the Naive classifier (results over the original input features failed to converge on the provided implementations).

We report the performance across a 5-fold split of the data, we used a 60/20/20 train-validation-test partition as described on Table 6 and report results over the test set. We denote the overall sensitive attribute as the combination of outcome (A:alive/D:deceased), age (A:adult/S:senior) and ethnicity (W:white, NW:nonwhite) with shorthand notation of the form D/A/W to denote, for example, deceased, white adult. We also note that results on Zafar, Kamishima and Hardt were done over only the sensitive attributes Adult/Senior and White/Nonwhite, outcome was not considered as a sensitive attribute for both methods. This was done because Hardt requires test-time access to sensitive attributes, which would not be possible for the outcome variable, and Zafar attempts to decorrelate sensitive attributes and classification decision boundaries, which is counterproductive when the sensitive attribute includes the correct

Table 6. Basic characteristics of real datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Objective</th>
<th>Sensitive Attribute</th>
<th>Train/Val/Test Splits</th>
<th>Splits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>2 categories: Income</td>
<td>4 categories: Gender(F/M),</td>
<td>60/20/20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>German</td>
<td>Ethnicity(W/NW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>German</td>
<td>2 categories: Credit</td>
<td>60/20/20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MIMIC-III</td>
<td>Mortality(A/D)</td>
<td>60/20/20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>HAM10000</td>
<td>Age (A/S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAM10000</td>
<td>Ethnicity(W/NW)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
decision outcome.

HAM10000. This dataset contains over 10,000 dermatoscopic images of skin lesions over a diverse population (Tschandl et al., 2018). Lesions are classified in 7 diagnostic categories, and the goal is to learn a model capable of identifying the category from the lesion image. The dataset is highly unbalanced since 67% of the samples correspond to a melanocytic nevi lesion (nv), and 1.1% to dermatofibroma (df).

Here we chose to use the diagnosis class as both the target and sensitive variable, casting balanced risk minimization as a particular use-case for the proposed Pareto fairness framework.

We load a pre-trained DenseNet121 network (Huang et al., 2017) and train it to classify skin lesions from dermatoscopic images using our Pareto fairness framework. We compared against the Naive and the Balanced training setup. Note that in the Balanced approach we use a batch sampler where images from each class have the same probability, this can be seen as a naive oversampling technique. Table 7 shows implementation details.

We report the performance across 5-fold split of the data, we used a 60/20/20 train-validation-test partition, and report results over the test set. For each group we follow the original notation: Actinic keratoses and intraepithelial carcinoma / Bowen’s disease (akiec), basal cell carcinoma (bcc), benign keratosis-like lesions (bkl), dermatofibroma (df), melanoma (mel), melanocytic nevi (nv) and vascular lesions (vasc).

Adult. The Adult UCI dataset (Dua & Graff, 2017a) is based on the 1994 U.S. Census and contains data on 32,561 adults. The data contains 105 binarized observations representing education status, age, ethnicity, gender, and marital status, and a target variable indicating income status (binary attribute representing over or under $50,000). Following (Friedler et al., 2019), we take ethnicity and gender as our target sensitive attributes, defining four subgroups (White/Other and Male/Female). We also present results considering just the gender as sensitive attribute (Male/Female). To compare our MMPF framework evenly against the other methods, we limit our hypothesis class to linear logistic regression (MMPF LR). Additionally, we also show results for a Neural Network model (MMPF); a model class that satisfies the convexity property.

German. The German credit dataset (Dua & Graff, 2017a) contains 20 observations collected across 1000 individuals, and a binary target variable assessing the individual’s credit score as good or bad. We consider gender (Male/Female) as the sensitive attribute, which is not included in the data but can be inferred. As in the Adult dataset, we limit our hypothesis class to linear logistic regression to compare evenly across methodologies.

A.9. Neural Network Architectures and Parameters

Table 7 summarizes network architectures and losses. All networks have a softmax output layer. ADAM was used as the training optimizer, with the specified learning rates (lr) and batch size n_B. Logistic Regression was trained using the implementation provided in Sklearn (Pedregosa et al., 2011).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Network Body</th>
<th>Gate</th>
<th>Loss type</th>
<th>Parameters training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic</td>
<td>Dense ResNet (512x512)x2</td>
<td>ELU BS</td>
<td>$n_B=512$</td>
<td>lr=1e-3</td>
</tr>
<tr>
<td>Adult German</td>
<td>Logistic Regression (LR)</td>
<td>CE</td>
<td>$n_B=32$</td>
<td>lr=5e-4</td>
</tr>
<tr>
<td>Adult</td>
<td>Dense ResNet (512x512)x2</td>
<td>- CE</td>
<td>$n_B=512$</td>
<td>lr=1e-6/5e-6</td>
</tr>
<tr>
<td>MMIC-III</td>
<td>FullyConnected 2048x2048</td>
<td>ELU CE/BS</td>
<td>$n_B=32$</td>
<td>lr=5e-6</td>
</tr>
<tr>
<td>HAM10000</td>
<td>DenseNet121 (Huang et al., 2017)</td>
<td>RelU BS</td>
<td>$n_B=32$</td>
<td>lr=5e-6</td>
</tr>
</tbody>
</table>

Table 7 summarizes network architectures and losses for all experiments in this paper (Section 6 and supplementary material). Note that all networks have a standard dense softmax as their final layer. The training optimizer is ADAM (Kingma & Ba, 2014), loss functions were either cross-entropy (CE) or Brier Score (BS), also known as categorical mean square error (MSE).

For joint estimation, the weights μ were initialized uniformly, we selected maximum patience $n_F=20$, a decay rate $\gamma = 0.25$ and a maximum of 500 epochs. All experiments terminated from lack of generalization improvement rather than maximum number of epochs. For the APStar algorithm we picked $\alpha = 0.5$, we allowed a maximum number of 20 iterations. The regularization parameter in the Sklearn implementation of logistic regression was set to $C = 1e6$ following (Friedler et al., 2019).

In the plug-in approach, each conditional probability was estimated with the architectures and parameters specified in Table 7 maximum patience $n_F=20$, a decay rate $\gamma = 0.25$ and a maximum of 500 epochs. Here we allowed the APStar algorithm to have a maximum of 500 iterations since each iteration does not require optimization, only risk evaluation.

A.10. Supplementary Results

Here we present expanded results on all datasets. Accuracy (Acc), Brier Score (BS), Cross-Entropy (CE), Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) are displayed per sensitive group. Mean and standard deviations are reported when available across 5 splits. Disparity between best and worst groups is computed per split, and the mean and standard deviation of this value is reported. Note that this way of computing disparity may lead to seemingly large disparity values, since the worst and best performing group per split may differ.
Table 8. HAM10000 dataset. We underline the worst group metric per method, and bold the one with the best minimax performance. Smallest disparity is also bolded.

<table>
<thead>
<tr>
<th>Group</th>
<th>akiec</th>
<th>bcc</th>
<th>bkl</th>
<th>df</th>
<th>mel</th>
<th>nv</th>
<th>vasc</th>
<th>Disparity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>3.3%</td>
<td>5.1%</td>
<td>11%</td>
<td>11%</td>
<td>1.1%</td>
<td>11.1%</td>
<td>67%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Naive</td>
<td>39.1±5.7%</td>
<td>58.4±7.0%</td>
<td>51.5±4.3%</td>
<td>2.6±3.5%</td>
<td>43.7±4.3%</td>
<td>93.7±1.1%</td>
<td>66.9±6.6%</td>
<td>91.1±3.9%</td>
</tr>
<tr>
<td>Balanced</td>
<td>67.9±6.9%</td>
<td>73.4±4.2%</td>
<td>58.2±9.9%</td>
<td>75.7±7.6%</td>
<td>58.1±5.8%</td>
<td>73.5±1.6%</td>
<td>83.9±8.3%</td>
<td>32.5±6.6%</td>
</tr>
<tr>
<td>MMPF P</td>
<td>64.2±5.1%</td>
<td>66.2±5.8%</td>
<td>63.9±6.8%</td>
<td>69.6±13.5%</td>
<td>67.5±3.9%</td>
<td>64.1±1.0%</td>
<td>71.2±1.0%</td>
<td>19.8±6.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>akiec</th>
<th>bcc</th>
<th>bkl</th>
<th>df</th>
<th>mel</th>
<th>nv</th>
<th>vasc</th>
<th>Disparity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>3.3%</td>
<td>5.1%</td>
<td>11%</td>
<td>1.1%</td>
<td>11.1%</td>
<td>67%</td>
<td>1.4%</td>
<td></td>
</tr>
<tr>
<td>Naive</td>
<td>0.816±0.082</td>
<td>0.586±0.083</td>
<td>0.675±0.068</td>
<td>1.384±0.043</td>
<td>0.808±0.043</td>
<td>0.093±0.015</td>
<td>0.48±0.102</td>
<td>1.29±0.042</td>
</tr>
<tr>
<td>Balanced</td>
<td>0.459±0.089</td>
<td>0.37±0.048</td>
<td>0.579±0.1</td>
<td>0.392±0.106</td>
<td>0.565±0.069</td>
<td>0.361±0.02</td>
<td>0.211±0.106</td>
<td>0.45±0.066</td>
</tr>
<tr>
<td>MMPF P</td>
<td>0.494±0.078</td>
<td>0.463±0.065</td>
<td>0.497±0.074</td>
<td>0.447±0.131</td>
<td>0.447±0.042</td>
<td>0.5±0.015</td>
<td>0.38±0.127</td>
<td>0.228±0.058</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>akiec</th>
<th>bcc</th>
<th>bkl</th>
<th>df</th>
<th>mel</th>
<th>nv</th>
<th>vasc</th>
<th>Disparity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>3.3%</td>
<td>5.1%</td>
<td>11%</td>
<td>1.1%</td>
<td>11.1%</td>
<td>67%</td>
<td>1.4%</td>
<td></td>
</tr>
<tr>
<td>Naive</td>
<td>1.924±0.321</td>
<td>1.19±0.188</td>
<td>1.405±0.142</td>
<td>4.178±0.209</td>
<td>1.589±0.104</td>
<td>0.195±0.029</td>
<td>1.069±0.282</td>
<td>3.983±0.19</td>
</tr>
<tr>
<td>Balanced</td>
<td>0.944±0.172</td>
<td>0.715±0.096</td>
<td>1.199±0.211</td>
<td>0.898±0.295</td>
<td>1.12±0.128</td>
<td>0.787±0.038</td>
<td>0.456±0.281</td>
<td>0.95±0.218</td>
</tr>
<tr>
<td>MMPF P</td>
<td>1.011±0.177</td>
<td>0.913±0.158</td>
<td>0.949±0.135</td>
<td>1.047±0.401</td>
<td>0.85±0.068</td>
<td>1.128±0.033</td>
<td>0.804±0.242</td>
<td>0.615±0.156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>akiec</th>
<th>bcc</th>
<th>bkl</th>
<th>df</th>
<th>mel</th>
<th>nv</th>
<th>vasc</th>
<th>Disparity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>3.3%</td>
<td>5.1%</td>
<td>11%</td>
<td>1.1%</td>
<td>11.1%</td>
<td>67%</td>
<td>1.4%</td>
<td></td>
</tr>
<tr>
<td>Naive</td>
<td>0.211±0.019</td>
<td>0.125±0.026</td>
<td>0.189±0.032</td>
<td>0.598±0.047</td>
<td>0.287±0.03</td>
<td>0.03±0.001</td>
<td>0.156±0.049</td>
<td>0.568±0.047</td>
</tr>
<tr>
<td>Balanced</td>
<td>0.139±0.046</td>
<td>0.078±0.013</td>
<td>0.135±0.063</td>
<td>0.183±0.035</td>
<td>0.119±0.035</td>
<td>0.066±0.014</td>
<td>0.119±0.028</td>
<td>0.143±0.023</td>
</tr>
<tr>
<td>MMPF P</td>
<td>0.133±0.028</td>
<td>0.113±0.029</td>
<td>0.107±0.036</td>
<td>0.213±0.049</td>
<td>0.082±0.023</td>
<td>0.135±0.01</td>
<td>0.133±0.035</td>
<td>0.151±0.034</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>akiec</th>
<th>bcc</th>
<th>bkl</th>
<th>df</th>
<th>mel</th>
<th>nv</th>
<th>vasc</th>
<th>Disparity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>3.3%</td>
<td>5.1%</td>
<td>11%</td>
<td>1.1%</td>
<td>11.1%</td>
<td>67%</td>
<td>1.4%</td>
<td></td>
</tr>
<tr>
<td>Naive</td>
<td>0.616±0.262</td>
<td>0.353±0.124</td>
<td>0.534±0.151</td>
<td>0.962±0.018</td>
<td>0.555±0.091</td>
<td>0.315±0.219</td>
<td>0.521±0.156</td>
<td>0.744±0.082</td>
</tr>
<tr>
<td>Balanced</td>
<td>0.505±0.157</td>
<td>0.383±0.177</td>
<td>0.49±0.22</td>
<td>0.548±0.143</td>
<td>0.272±0.024</td>
<td>0.227±0.06</td>
<td>0.636±0.126</td>
<td>0.474±0.089</td>
</tr>
<tr>
<td>MMPF P</td>
<td>0.369±0.134</td>
<td>0.362±0.156</td>
<td>0.362±0.172</td>
<td>0.59±0.098</td>
<td>0.266±0.032</td>
<td>0.285±0.037</td>
<td>0.556±0.107</td>
<td>0.444±0.058</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Ratio</td>
<td>5.7%</td>
<td>13.3%</td>
<td>12.9%</td>
<td>56.7%</td>
<td>0.4%</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Naive CE</td>
<td>98.7 ± 0.8%</td>
<td>98.8 ± 0.5%</td>
<td>97.6 ± 0.5%</td>
<td>98.1 ± 0.3%</td>
<td>26.1 ± 10.0%</td>
<td>34.5 ± 3.9%</td>
<td>20.6 ± 2.1%</td>
<td>22.6 ± 2.6%</td>
</tr>
<tr>
<td>Naive BS</td>
<td>99.0 ± 0.4%</td>
<td>98.8 ± 0.4%</td>
<td>97.8 ± 0.5%</td>
<td>98.1 ± 0.3%</td>
<td>26.7 ± 9.3%</td>
<td>34.6 ± 4.4%</td>
<td>21.2 ± 1.9%</td>
<td>21.2 ± 1.9%</td>
</tr>
<tr>
<td>Balanced BS</td>
<td>85.8 ± 1.9%</td>
<td>86.2 ± 1.1%</td>
<td>78.4 ± 0.1%</td>
<td>78.5 ± 1.5%</td>
<td>80.1 ± 3.9%</td>
<td>79.2 ± 2.2%</td>
<td>67.3 ± 2.1%</td>
<td>62.2 ± 1.8%</td>
</tr>
<tr>
<td>Zafar</td>
<td>91.9 ± 1.5%</td>
<td>93.9 ± 1.4%</td>
<td>91.6 ± 0.8%</td>
<td>93.2 ± 0.5%</td>
<td>49.2 ± 9.4%</td>
<td>71.7 ± 1.1%</td>
<td>68.1 ± 3.4%</td>
<td>68.1 ± 2.1%</td>
</tr>
<tr>
<td>Feldman</td>
<td>97.4 ± 1.9%</td>
<td>97.7 ± 1.9%</td>
<td>95.2 ± 3.4%</td>
<td>95.6 ± 3.3%</td>
<td>33.0 ± 1.6%</td>
<td>35.4 ± 8.0%</td>
<td>26.7 ± 2.4%</td>
<td>31.7 ± 2.6%</td>
</tr>
<tr>
<td>Kamisaka+H</td>
<td>98.5 ± 1.2%</td>
<td>98.4 ± 0.7%</td>
<td>97.6 ± 0.9%</td>
<td>98.1 ± 0.4%</td>
<td>37.5 ± 0.5%</td>
<td>37.5 ± 0.5%</td>
<td>26.1 ± 2.9%</td>
<td>26.1 ± 2.9%</td>
</tr>
<tr>
<td>MMPF BS+H</td>
<td>72.6 ± 1.7%</td>
<td>72.6 ± 1.7%</td>
<td>74.1 ± 1.9%</td>
<td>74.0 ± 1.5%</td>
<td>81.6 ± 6.5%</td>
<td>82.3 ± 3.9%</td>
<td>73.2 ± 3.9%</td>
<td>73.2 ± 3.9%</td>
</tr>
<tr>
<td>MMPF BS</td>
<td>72.6 ± 1.7%</td>
<td>72.6 ± 1.7%</td>
<td>74.1 ± 1.9%</td>
<td>74.0 ± 1.5%</td>
<td>81.6 ± 6.5%</td>
<td>82.3 ± 3.9%</td>
<td>73.2 ± 3.9%</td>
<td>73.2 ± 3.9%</td>
</tr>
<tr>
<td>MMPF CE</td>
<td>72.6 ± 1.7%</td>
<td>72.6 ± 1.7%</td>
<td>74.1 ± 1.9%</td>
<td>74.0 ± 1.5%</td>
<td>81.6 ± 6.5%</td>
<td>82.3 ± 3.9%</td>
<td>73.2 ± 3.9%</td>
<td>73.2 ± 3.9%</td>
</tr>
<tr>
<td>Kamishama+H</td>
<td>60.0 ± 0.8%</td>
<td>60.2 ± 1.5%</td>
<td>60.2 ± 1.3%</td>
<td>60.2 ± 1.4%</td>
<td>53.9 ± 6.7%</td>
<td>53.9 ± 6.7%</td>
<td>51.6 ± 2.2%</td>
<td>51.6 ± 2.2%</td>
</tr>
<tr>
<td>MMPF BS+H</td>
<td>72.6 ± 1.7%</td>
<td>72.6 ± 1.7%</td>
<td>74.1 ± 1.9%</td>
<td>74.0 ± 1.5%</td>
<td>81.6 ± 6.5%</td>
<td>82.3 ± 3.9%</td>
<td>73.2 ± 3.9%</td>
<td>73.2 ± 3.9%</td>
</tr>
</tbody>
</table>

For the best results, we underline the worst group metric per method, and bold the one with the best minimax performance. Smallest disparity is also bolded. Standard deviations are computed across 5 splits.
Table 10. Adult ethnicity and gender dataset. We underline the worst group metric per method, and bold the one with the best minimax performance. Smallest disparity is also bolded. Standard deviations are computed across 5 splits.

<table>
<thead>
<tr>
<th>type</th>
<th>Female Other</th>
<th>Male Other</th>
<th>Female White</th>
<th>Male White</th>
<th>disc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>6.0%</td>
<td>7.7%</td>
<td>26.1%</td>
<td>60.3%</td>
<td>54.3%</td>
</tr>
<tr>
<td>Naive LR</td>
<td>0.07 ± 0.09</td>
<td>0.21 ± 0.26</td>
<td>0.09 ± 0.02</td>
<td>0.15 ± 0.10</td>
<td>0.07 ± 0.04</td>
</tr>
<tr>
<td>Balanced LR</td>
<td>0.03 ± 0.02</td>
<td>0.10 ± 0.06</td>
<td>0.09 ± 0.03</td>
<td>0.12 ± 0.07</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>Zafar</td>
<td>0.05 ± 0.04</td>
<td>0.20 ± 0.24</td>
<td>0.08 ± 0.02</td>
<td>0.14 ± 0.08</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>Feldman</td>
<td>0.03 ± 0.01</td>
<td>0.20 ± 0.23</td>
<td>0.08 ± 0.02</td>
<td>0.12 ± 0.06</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>Kamishima</td>
<td>0.01 ± 0.01</td>
<td>0.18 ± 0.12</td>
<td>0.08 ± 0.02</td>
<td>0.12 ± 0.06</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>MMPF LR</td>
<td>0.04 ± 0.04</td>
<td>0.22 ± 0.27</td>
<td>0.09 ± 0.03</td>
<td>0.14 ± 0.08</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>MMPF LR P</td>
<td>0.03 ± 0.02</td>
<td>0.26 ± 0.28</td>
<td>0.08 ± 0.02</td>
<td>0.13 ± 0.06</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>MMPF</td>
<td>0.02 ± 0.03</td>
<td>0.20 ± 0.23</td>
<td>0.08 ± 0.02</td>
<td>0.11 ± 0.05</td>
<td>0.03 ± 0.02</td>
</tr>
</tbody>
</table>

| BS comparison |
|---------------|--------------|------------|--------------|------------|------|
| Ratio | 6.0% | 7.7% | 26.1% | 60.3% | 54.3%|
| Naive LR | 0.08 ± 0.01 | 0.20 ± 0.24 | 0.09 ± 0.03 | 0.13 ± 0.07| 0.04 ± 0.02|
| Balanced LR | 0.02 ± 0.01 | 0.15 ± 0.12 | 0.08 ± 0.02 | 0.11 ± 0.06| 0.03 ± 0.02|
| Zafar | 0.05 ± 0.04 | 0.20 ± 0.24 | 0.08 ± 0.02 | 0.12 ± 0.07| 0.04 ± 0.02|
| Feldman | 0.03 ± 0.02 | 0.20 ± 0.23 | 0.08 ± 0.02 | 0.12 ± 0.06| 0.04 ± 0.02|
| Kamishima | 0.01 ± 0.01 | 0.18 ± 0.12 | 0.08 ± 0.02 | 0.12 ± 0.06| 0.04 ± 0.02|
| MMPF LR | 0.04 ± 0.04 | 0.22 ± 0.27 | 0.09 ± 0.03 | 0.14 ± 0.08| 0.04 ± 0.02|
| MMPF LR P | 0.03 ± 0.02 | 0.26 ± 0.28 | 0.09 ± 0.04 | 0.13 ± 0.06| 0.04 ± 0.02|
| MMPF | 0.02 ± 0.03 | 0.20 ± 0.23 | 0.08 ± 0.02 | 0.11 ± 0.05| 0.03 ± 0.02|

| CE comparison |
|---------------|--------------|------------|--------------|------------|------|
| Ratio | 6.0% | 7.7% | 26.1% | 60.3% | 54.3%|
| Naive LR | 0.08 ± 0.01 | 0.20 ± 0.24 | 0.09 ± 0.03 | 0.13 ± 0.07| 0.04 ± 0.02|
| Balanced LR | 0.02 ± 0.01 | 0.15 ± 0.12 | 0.08 ± 0.02 | 0.11 ± 0.06| 0.03 ± 0.02|
| Zafar | 0.05 ± 0.04 | 0.20 ± 0.24 | 0.08 ± 0.02 | 0.12 ± 0.07| 0.04 ± 0.02|
| Feldman | 0.03 ± 0.02 | 0.20 ± 0.23 | 0.08 ± 0.02 | 0.12 ± 0.06| 0.04 ± 0.02|
| Kamishima | 0.01 ± 0.01 | 0.18 ± 0.12 | 0.08 ± 0.02 | 0.12 ± 0.06| 0.04 ± 0.02|
| MMPF LR | 0.04 ± 0.04 | 0.22 ± 0.27 | 0.09 ± 0.03 | 0.14 ± 0.08| 0.04 ± 0.02|
| MMPF LR P | 0.03 ± 0.02 | 0.26 ± 0.28 | 0.09 ± 0.04 | 0.13 ± 0.06| 0.04 ± 0.02|
| MMPF | 0.02 ± 0.03 | 0.20 ± 0.23 | 0.08 ± 0.02 | 0.11 ± 0.05| 0.03 ± 0.02|

| MCE comparison |
|---------------|--------------|------------|--------------|------------|------|
| Ratio | 6.0% | 7.7% | 26.1% | 60.3% | 54.3%|
| Naive LR | 0.08 ± 0.01 | 0.20 ± 0.24 | 0.09 ± 0.03 | 0.13 ± 0.07| 0.04 ± 0.02|
| Balanced LR | 0.02 ± 0.01 | 0.15 ± 0.12 | 0.08 ± 0.02 | 0.11 ± 0.06| 0.03 ± 0.02|
| Zafar | 0.05 ± 0.04 | 0.20 ± 0.24 | 0.08 ± 0.02 | 0.12 ± 0.07| 0.04 ± 0.02|
| Feldman | 0.03 ± 0.02 | 0.20 ± 0.23 | 0.08 ± 0.02 | 0.12 ± 0.06| 0.04 ± 0.02|
| Kamishima | 0.01 ± 0.01 | 0.18 ± 0.12 | 0.08 ± 0.02 | 0.12 ± 0.06| 0.04 ± 0.02|
| MMPF LR | 0.04 ± 0.04 | 0.22 ± 0.27 | 0.09 ± 0.03 | 0.14 ± 0.08| 0.04 ± 0.02|
| MMPF LR P | 0.03 ± 0.02 | 0.26 ± 0.28 | 0.09 ± 0.04 | 0.13 ± 0.06| 0.04 ± 0.02|
| MMPF | 0.02 ± 0.03 | 0.20 ± 0.23 | 0.08 ± 0.02 | 0.11 ± 0.05| 0.03 ± 0.02|
Table 11. Adult gender dataset. We underline the worst group metric per method, and bold the one with the best minmax performance. Smallest disparity is also bolded. Standard deviations are computed across 5 splits.

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
<th>Disparity</th>
<th>Ratio</th>
<th>Naive LR</th>
<th>Balanced LR</th>
<th>Zafar</th>
<th>Feldman</th>
<th>Kamishima</th>
<th>MMPF LR</th>
<th>MMPF LR P</th>
<th>MMPF P</th>
<th>Feldman+H</th>
<th>Kamishima+H</th>
<th>Zafar+H</th>
<th>Balanced LR+H</th>
<th>MMPF LR+H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult gender Acc</td>
<td></td>
<td></td>
<td></td>
<td>32.1%</td>
<td>67.9%</td>
<td>35.9%</td>
<td>92.3±0.03</td>
<td>80.5±0.04</td>
<td>11.9±0.7</td>
<td>92.3±0.03</td>
<td>80.9±0.03</td>
<td>11.6±0.4</td>
<td>92.3±0.03</td>
<td>80.7±0.02</td>
<td>11.6±0.1</td>
<td>92.6±0.04</td>
<td>80.7±0.04</td>
</tr>
<tr>
<td>Adult gender ECE</td>
<td></td>
<td></td>
<td></td>
<td>32.1%</td>
<td>67.9%</td>
<td>35.9%</td>
<td>92.3±0.03</td>
<td>80.5±0.04</td>
<td>11.9±0.7</td>
<td>92.3±0.03</td>
<td>80.9±0.03</td>
<td>11.6±0.4</td>
<td>92.3±0.03</td>
<td>80.7±0.02</td>
<td>11.6±0.1</td>
<td>92.6±0.04</td>
<td>80.7±0.04</td>
</tr>
<tr>
<td>Adult gender ECE</td>
<td></td>
<td></td>
<td></td>
<td>32.1%</td>
<td>67.9%</td>
<td>35.9%</td>
<td>92.3±0.03</td>
<td>80.5±0.04</td>
<td>11.9±0.7</td>
<td>92.3±0.03</td>
<td>80.9±0.03</td>
<td>11.6±0.4</td>
<td>92.3±0.03</td>
<td>80.7±0.02</td>
<td>11.6±0.1</td>
<td>92.6±0.04</td>
<td>80.7±0.04</td>
</tr>
<tr>
<td>Adult gender MCE</td>
<td></td>
<td></td>
<td></td>
<td>32.1%</td>
<td>67.9%</td>
<td>35.9%</td>
<td>92.3±0.03</td>
<td>80.5±0.04</td>
<td>11.9±0.7</td>
<td>92.3±0.03</td>
<td>80.9±0.03</td>
<td>11.6±0.4</td>
<td>92.3±0.03</td>
<td>80.7±0.02</td>
<td>11.6±0.1</td>
<td>92.6±0.04</td>
<td>80.7±0.04</td>
</tr>
</tbody>
</table>

Table 12. German dataset. We underline the worst group metric per method, and bold the one with the best minmax performance. Smallest disparity is also bolded. Standard deviations are computed across 5 splits.

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
<th>Disparity</th>
<th>Ratio</th>
<th>Naive LR</th>
<th>Balanced LR</th>
<th>Zafar</th>
<th>Feldman</th>
<th>Kamishima</th>
<th>MMPF LR</th>
<th>MMPF LR P</th>
<th>MMPF P</th>
<th>Feldman+H</th>
<th>Kamishima+H</th>
<th>Zafar+H</th>
<th>Balanced LR+H</th>
<th>MMPF LR+H</th>
</tr>
</thead>
<tbody>
<tr>
<td>German Acc</td>
<td></td>
<td></td>
<td></td>
<td>32.1%</td>
<td>67.9%</td>
<td>35.9%</td>
<td>92.3±0.03</td>
<td>80.5±0.04</td>
<td>11.9±0.7</td>
<td>92.3±0.03</td>
<td>80.9±0.03</td>
<td>11.6±0.4</td>
<td>92.3±0.03</td>
<td>80.7±0.02</td>
<td>11.6±0.1</td>
<td>92.6±0.04</td>
<td>80.7±0.04</td>
</tr>
<tr>
<td>German CE</td>
<td></td>
<td></td>
<td></td>
<td>32.1%</td>
<td>67.9%</td>
<td>35.9%</td>
<td>92.3±0.03</td>
<td>80.5±0.04</td>
<td>11.9±0.7</td>
<td>92.3±0.03</td>
<td>80.9±0.03</td>
<td>11.6±0.4</td>
<td>92.3±0.03</td>
<td>80.7±0.02</td>
<td>11.6±0.1</td>
<td>92.6±0.04</td>
<td>80.7±0.04</td>
</tr>
<tr>
<td>German BS</td>
<td></td>
<td></td>
<td></td>
<td>32.1%</td>
<td>67.9%</td>
<td>35.9%</td>
<td>92.3±0.03</td>
<td>80.5±0.04</td>
<td>11.9±0.7</td>
<td>92.3±0.03</td>
<td>80.9±0.03</td>
<td>11.6±0.4</td>
<td>92.3±0.03</td>
<td>80.7±0.02</td>
<td>11.6±0.1</td>
<td>92.6±0.04</td>
<td>80.7±0.04</td>
</tr>
<tr>
<td>German ECE</td>
<td></td>
<td></td>
<td></td>
<td>32.1%</td>
<td>67.9%</td>
<td>35.9%</td>
<td>92.3±0.03</td>
<td>80.5±0.04</td>
<td>11.9±0.7</td>
<td>92.3±0.03</td>
<td>80.9±0.03</td>
<td>11.6±0.4</td>
<td>92.3±0.03</td>
<td>80.7±0.02</td>
<td>11.6±0.1</td>
<td>92.6±0.04</td>
<td>80.7±0.04</td>
</tr>
<tr>
<td>German MCE</td>
<td></td>
<td></td>
<td></td>
<td>32.1%</td>
<td>67.9%</td>
<td>35.9%</td>
<td>92.3±0.03</td>
<td>80.5±0.04</td>
<td>11.9±0.7</td>
<td>92.3±0.03</td>
<td>80.9±0.03</td>
<td>11.6±0.4</td>
<td>92.3±0.03</td>
<td>80.7±0.02</td>
<td>11.6±0.1</td>
<td>92.6±0.04</td>
<td>80.7±0.04</td>
</tr>
</tbody>
</table>