ConQUR: Mitigating Delusional Bias in Deep Q-learning

DiJia (Andy) Su 1,2 Jayden Ooi 1 Tyler Lu 1 Dale Schuurmans 1,3 Craig Boutilier 1

Abstract

Delusional bias is a fundamental source of error in approximate Q-learning. To date, the only techniques that explicitly address delusion require comprehensive search using tabular value estimates. In this paper, we develop efficient methods to mitigate delusional bias by training Q-approximators with labels that are “consistent” with the underlying greedy policy class. We introduce a simple penalization scheme that encourages Q-labels used across training batches to remain (jointly) consistent with the expressible policy class. We also propose a search framework that allows multiple Q-approximators to be generated and tracked, thus mitigating the effect of premature (implicit) policy commitments. Experimental results demonstrate that these methods can improve the performance of Q-learning in a variety of Atari games, sometimes dramatically.

1. Introduction

Q-learning (Watkins & Dayan, 1992; Sutton & Barto, 2018) lies at the heart of many of the recent successes of deep reinforcement learning (RL) (Mnih et al., 2015; Silver et al., 2016), with recent advances (e.g., van Hasselt, 2010; Bellermare et al., 2017; Wang et al., 2016; Hessel et al., 2017) helping to make it among the most widely used methods in applied RL. Despite these successes, many properties of Q-learning are poorly understood, and it is challenging to successfully apply deep Q-learning in practice. Various modifications have been proposed to improve convergence or approximation error (Gordon, 1995; 1999; Szepesvári, 2004, Melo & Ribeiro, 2007; Maei et al., 2010; Munos et al., 2016), but it remains difficult to reliably attain both robustness and scalability.

Recently, Lu et al. (2018) identified a source of error in Q-learning with function approximation known as delusional bias. This bias arises because Q-learning updates the value of state-action pairs using estimates of (sampled) successor-state values that can be mutually inconsistent given the policy class induced by the approximator. This can result in unbounded approximation error, divergence, policy cycling, and other undesirable behavior. To handle delusion, the authors propose a policy-consistent backup operator that maintains multiple Q-value estimates organized into information sets. Each information set has its own backed-up Q-values and corresponding “policy commitments” responsible for inducing these values. Systematic management of these sets ensures that only consistent choices of maximizing actions are used to update Q-values. All potential solutions are tracked to prevent premature convergence on specific policy commitments. Unfortunately, the proposed algorithms use tabular representations of Q-functions, so while this establishes foundations for delusional bias, the function approximator is used neither for generalization nor to manage the size of the state/action space. Consequently, this approach is not scalable to practical RL problems.

In this work, we develop CONQUR (CONsistent Q-Update Regression), a general framework for integrating policy-consistent backups with regression-based function approximation for Q-learning, and for managing the search through the space of possible regressors (i.e., information sets). With suitable search heuristics, the proposed framework provides a computationally effective means for minimizing the effects of delusional bias, while scaling to practical problems.

Our main contributions are as follows. First, we define novel augmentations of Q-regression to increase the degree of policy consistency across training batches. Since testing exact consistency is expensive, we introduce an efficient soft-consistency penalty that promotes consistency of labels with earlier policy commitments. Second, using information-set structure (Lu et al., 2018), we define a search space over Q-regressors to explore multiple sets of policy commitments. Third, we propose heuristics to guide the search, critical given the combinatorial nature of information sets. Finally,
experimental results on the Atari suite \cite{Bellemare2013} demonstrate that ConQUR can induce (sometimes dramatic) improvements in Q-learning. These results further show that delusion does, in fact, emerge in practical applications of Q-learning. We also show that straightforward consistency penalization on its own (i.e., without search) can improve both standard and double Q-learning.

2. Background

We assume a discounted, infinite horizon \textit{Markov decision process (MDP)}, \(M = (S, A, P, \rho_0, R, \gamma) \). The state space \(S \) can reflect both discrete and continuous features, but we take the action space \(A \) to be finite (and practically enumerable). We consider Q-learning with a function approximator \(Q_\theta \) to learn an (approximately) optimal Q-function \cite{Watkins1989, Sutton2018}, drawn from some approximation class parameterized by \(\Theta \) (e.g., the weights of a neural network). When the approximator is a deep network, we express all past action choices, next states \(s', a, r, s' \), the action space \(A \), and state space \(S \). We sometimes equate a set \(SA \) of state-action pairs with the implied assignment \(\pi(s) = a \) for all \((s, a) \in SA \). When \(SA \) contains multiple pairs with the same state \(s \) but different actions \(a \), it is a \textit{multi-assignment} (we use the term “assignment” when there is no risk of confusion).

For online Q-learning, at transition \((s, a, r, s')\), the Q-update is given by:

\[
\theta \leftarrow \theta + \alpha \left(r + \gamma \max_{a' \in A} Q_\theta(s', a') - Q_\theta(s, a) \right) \nabla_\theta Q_\theta(s, a).
\]

Batch versions of Q-learning are similar, but fit a regressor repeatedly to batches of training examples \cite{Ernst2005, Riedmiller2005}, and are usually more data efficient and stable than online Q-learning. Batch methods use a sequence of (possibly randomized) data batches \(D_1, \ldots, D_T \) to produce a sequence of regressors \(Q_{\theta_1}, \ldots, Q_{\theta_T} = Q_{\theta_T} \), each an (ideally, improving) estimate of the Q-function. For each \((s, a, r, s') \in D_k\), we use the prior estimator \(Q_{\theta_{k-1}} \) to bootstrap the Q-label \(q = r + \gamma \max_{a'} Q_{\theta_{k-1}}(s', a') \). We then fit \(Q_{\theta_k} \) to this data using a regression procedure with a suitable loss function. Once trained, the (implicit) induced policy \(\pi_\theta \) is the greedy policy w.r.t. \(Q_\theta \), i.e., \(\pi_\theta(s) = \arg \max_{a \in A} Q_\theta(s, a) \). Let \(\mathcal{F}(\Theta) \) (resp., \(G(\Theta) \)) be the class of expressible Q-functions (resp., greedy policies).

Intuitively, \textit{delusional bias} occurs whenever a backed-up value estimate is derived from action choices that are not (jointly) realizable in \(G(\Theta) \) \cite{Lu2018}. Standard Q-updates back up values for each \((s, a)\) pair by independently choosing maximizing actions at the corresponding next states \(s' \). However, such updates may be “inconsistent” under approximation: if no policy in \(G(\Theta) \) can jointly express all past action choices, \textit{backed up values may not be realizable by any expressible policy}. \cite{Lu2018} show that delusion can manifest itself with several undesirable consequences (e.g., divergence). Most critically, it can prevent Q-learning from learning the optimal representable policy in \(G(\Theta) \). To address this, they propose a non-delusional \textit{policy consistent} Q-learning (PCQL) algorithm that provably eliminates delusion. We refer to the original paper for details, but review the main concepts.

The first concept is that of \textit{policy consistency}. For any \(S \subseteq S \), an \textit{action assignment} \(\sigma : S \rightarrow A \) associates an action \(\sigma(s) \) with each \(s \in S \). We say \(\sigma \) is \textit{policy consistent} if there is a greedy policy \(\pi \in G(\Theta) \) s.t. \(\pi(s) = \sigma(s) \) for all \(s \in S \). We sometimes equate a set \(SA \) of state-action pairs with the implied assignment \(\pi(s) = a \) for all \((s, a) \in SA \). If \(SA \) contains multiple pairs with the same state \(s \) but different actions \(a \), it is a \textit{multi-assignment} (we use the term “assignment” when there is no risk of confusion).

In (batch) Q-learning, each new regressor uses training labels generated by assuming maximizing actions (under the prior regressor) are taken at its successor states. Let \(\sigma_k \) be the collection of states and corresponding maximizing actions used to generate labels for regressor \(Q_{\theta_k} \) (assume it is policy consistent). Suppose we train \(Q_{\theta_k} \) by bootstrapping on \(Q_{\theta_{k-1}} \). Now consider a training sample \((s, a, r, s')\). Q-learning generates label \(r + \gamma \max_{a'} Q_{\theta_{k-1}}(s', a') \) for input \((s, a)\). Notice, however, that taking action \(a^* = \arg \max_{a'} Q_{\theta_{k-1}}(s', a') \) at \(s' \) may not be \textit{policy consistent} with \(\sigma_k \). Thus Q-learning will estimate a value for \((s, a)\) assuming execution of a policy that cannot be realized given the approximator. PCQL prevents this by ensuring that any assignment used to generate labels is consistent with earlier assignments. This means Q-labels will often \textit{not} be generated using maximizing actions w.r.t. the prior regressor.

The second key concept is that of \textit{information sets}. One will generally not be able to use maximizing actions to generate labels, so tradeoffs must be made when deciding which actions to assign to different states. Indeed, even if it is feasible to assign a maximizing action \(a \) to state \(s \) early in training, say at batch \(k \), since it may prevent assigning a maximizing \(a' \) to \(s' \) later, say, at batch \(k + \ell \), we may want to use a different assignment to \(s \) to give more flexibility when maximizing actions at later states. PCQL does not anticipate the tradeoffs—rather it maintains \textit{multiple information sets}, each corresponding to a different assignment to the states seen in the training data this far. Each gives rise to a \textit{different Q-function estimate}, resulting in multiple hypotheses. At the end of training, the best hypothesis is that with maximum expected value w.r.t. an initial state distribution.

\footnote{We describe our approach using batch Q-learning, but it can accommodate many variants, e.g., where the estimators generating max-actions and value estimates are different, as in double Q-learning \cite{VanHasselt2010, Hasselt2016}; indeed, we experiment with such variants.}

\footnote{While delusion may not arise in other RL approaches (e.g., policy iteration, policy gradient), our contribution focuses on mitigating delusion to derive maximum performance from widely used Q-learning methods.}
PCQL provides strong convergence guarantees, but it is a tabular algorithm: the function approximator restricts the policy class, but is not used to generalize Q-values. Furthermore, its theoretical guarantees come at a cost: it uses exact policy consistency tests—tractable for linear approximators, but impractical for large problems and DQN; and it maintains all consistent assignments. As a result, PCQL cannot be used for large RL problems of the type tackled by DQN.

3. The ConQUR Framework

We develop the ConQUR framework to provide a practical approach to reducing delusion in Q-learning, specifically addressing the limitations of PCQL identified above. ConQUR consists of three main components: a practical soft-constraint penalty that promotes policy consistency; a search space to structure the search over multiple regressors (information sets, action assignments); and heuristic search schemes (expansion, scoring) to find good Q-regressors.

3.1. Preliminaries

We assume a set of training data consisting of quadruples \((s, a, r, s')\), divided into (possibly non-disjoint) batches \(D_1, \ldots, D_T\) for training. This perspective is quite general: online RL corresponds to \(|D| = 1\); offline batch training (with sufficiently exploratory data) corresponds to a single batch (i.e., \(T = 1\)); and online or batch methods with replay are realized when the \(D_t\) are generated by sampling some data source with replacement.

For any batch \(D\), let \(\chi(D) = \{s' : (s, a, r, s') \in D\}\) be the set of successor states of \(D\). An action assignment \(\sigma_D\) for \(D\) is an assignment (or multi-assignment) from \(\chi(D)\) to \(A\), dictating which action \(\sigma_D(s')\) is considered “maximum” when generating a Q-label for pair \((s, a)\); i.e., \((s, a)\) is assigned training label \(r + \gamma Q(s', \sigma(s'))\) rather than \(r + \gamma \max_{a' \in A} Q(s', a')\). The set of all such assignments \(\Sigma(D) = A^{\chi(D)}\) grows exponentially with \(|D|\).

Given a Q-function parameterization \(\Theta\), we say \(\sigma_D\) is \(\Theta\)-consistent (w.r.t. \(D\)) if there is some \(\theta \in \Theta\) s.t. \(\pi_\theta(s') = \sigma(s')\) for all \(s' \in \chi(D)\). This is simple policy consistency, but with notation that emphasizes the policy class. Let \(\Sigma_\Theta(D)\) denote the set of all \(\Theta\)-consistent assignments over \(D\). The union \(\sigma_1 \cup \sigma_2\) of two assignments (over \(D_1, D_2\), resp.) is defined in the usual way.

3.2. Consistency Penalization

Enforcing strict \(\Theta\)-consistency as regressors \(\theta_1, \theta_2, \ldots, \theta_T\) are generated is computationally challenging. Suppose the assignments \(\sigma_1, \ldots, \sigma_{k-1}\), used to generate labels for \(D_1, \ldots, D_{k-1}\), are jointly \(\Theta\)-consistent (let \(\sigma_{\leq k-1}\) denote their multi-set union). Maintaining \(\Theta\)-consistency when generating \(\theta_k\) imposes two requirements. First, one must generate an assignment \(\sigma_k\) over \(D_k\) s.t. \(\sigma_{\leq k-1} \cup \sigma_k\) is consistent. Even testing assignment consistency can be problematic: for linear approximators this is a linear feasibility program whose constraint set grows linearly with \(|D_1 \cup \ldots \cup D_k|\). For DNNs, this is a complex, more expensive polynomial program. Second, the regressor \(\theta_k\) should itself be consistent with \(\sigma_{\leq k-1} \cup \sigma_k\). This too imposes a severe burden on regression optimization: in the linear case, it is a constrained least-squares problem (solvable, e.g., as a quadratic program); while with DNNs, it can be solved, say, using a more involved projected SGD. However, the sheer number of constraints makes this impractical.

Rather than enforcing consistency, we propose a simple, computationally tractable scheme that “encourages” it: a penalty term that can be incorporated into the regression itself. Specifically, we add a penalty function to the usual squared loss to encourage updates of the Q-regressors to be consistent with the underlying information set, i.e., the prior action assignments used to generate its labels.

When constructing \(\theta_k\), let \(D_{\leq k} = \bigcup\{D_j : j \leq k\}\), and \(\sigma \in \Sigma_\Theta(D_{\leq k})\) be the collective assignment used to generate labels for all prior regressors (including \(\theta_k\) itself). The multiset of pairs \(B = \{(s', \sigma(s')) | s' \in \chi(D_{\leq k})\}\), is called a consistency buffer. The assignment need not be consistent (as we elaborate below), nor does regressor \(\theta_k\) need to be consistent with \(\sigma\). Instead, we use the following soft consistency penalty when constructing \(\theta_k\):

\[
C_\theta(s', a) = \sum_{a' \in A} [Q_\theta(s', a') - Q_\theta(s', a)]_+, \quad (2)
\]

\[
C_\theta(B) = \sum_{(s',\sigma(s')) \in B} C_\theta(s', \sigma(s')) , \quad (3)
\]

where \([x]_+ = \max(0, x)\). This penalizes Q-values of actions at state \(s\) that are larger than that of action \(\sigma(s)\). Notice \(\sigma\) is \(\Theta\)-consistent iff \(\min_{\theta \in \Theta} C_\theta(B) = 0\). We add this penalty into our regression loss for batch \(D_k:\)

\[
L_\theta(D_k, B) = \sum_{(s,a,r,s') \in D_k} \left[r + \gamma Q_\theta_{k-1}(s', \sigma(s')) - Q_\theta(s, a)\right]^2 + \lambda C_\theta(B) . \quad (4)
\]

Here \(Q_\theta_{k-1}\) is the prior estimator on which labels are bootstrapped (other regressors may be used). The penalty effectively acts as a “regularizer” on the squared Bellman error, where \(\lambda\) controls the degree of penalization, allowing a tradeoff between Bellman error and consistency with the assignment used to generate labels. It thus promotes consistency without incurring the expense of enforcing strict consistency. It is straightforward to replace the classic Q-

1We suppress mention of \(D\) when clear from context.
We discuss search procedures in Sec. 3.4. As above, assume training data is divided into batches. We discourage inconsistencies in the greedy policy induced by defining the search space and discussing its properties. This scheme is quite general. First, it is agnostic as to variety of ways. Including all max-action choices from all nodes at depth in the search tree is associated with a regressor. Nodes at level \(k \) of the tree are defined as \(\Theta_k \), and its regressor \(\theta_k \) is trained using the data set:

\[
\{ (s, a) \mapsto r + \gamma Q_{\theta_{k-1}}(s', \sigma_k(s')) : (s, a, r, s') \in D_k \}.
\]

The entire search space constructed in this fashion to a maximum depth of \(T \). Algorithm 1 shows the pseudocode of a simple depth-first recursive specification of the induced search tree.

The exponential branching factor in this search tree would appear to make complete search intractable; however, since we only allow \(\Theta \)-consistent "collective" assignments we can bound the size of the tree—it is polynomial in the VC-dimension of the approximator.

Theorem 1. The number of nodes in the search tree is no more than \(O(\text{nnm} \cdot \binom{m}{k}^2 \cdot \text{VCDim}(G)) \) where \(n \) is the number of states in the data set, \(m \) is the number of actions (finite action space), \(\text{VCDim}(\cdot) \) is the VC-dimension [Vapnik, 1998] of a set of boolean-valued functions, and \(G \) is the set of boolean functions defining all feasible greedy policies under \(\Theta \):

\[
G = \{ g_\theta(s, a, a') := 1 [f_\theta(s, a) - f_\theta(s, a') > 0], \forall s, a \neq a' \mid \theta \in \Theta \}.
\]

Proof. Each node is defined by its action assignment to relevant states drawn from (the successor) states \(S' \) in the...
Algorithm 1 CONQUR SEARCH (Generic, depth-first)

Input: Data sets \(D_k, D_{k+1}, \ldots, D_T\); regressor \(\hat{Q}_{k-1}\); and assignment \(\sigma\) over \(D_{\leq k-1} = \cup_{1 \leq j \leq k-1} D_j\) reflecting prior data; policy class \(\Theta\).

1. Let \(\Sigma_{\Theta, \sigma} = \{\sigma'_k \in \Sigma_{\Theta}(D_j) : \sigma_k \cup \sigma \text{ is consistent}\}\)
2. for all \(\sigma'_k \in \Sigma_{\Theta, \sigma}\) do
3. Training set \(S \leftarrow \{\}\)
4. for all \((s, a, r, s') \in D_k\) do
5. \(q \leftarrow r + \gamma \hat{Q}_{k-1}(s', \sigma'_k(s'))\)
6. \(S \leftarrow S \cup \{(s, a, q)\}\)
7. end for
8. Train \(\hat{Q}_k\) using training set \(S\)
9. if \(k = T\) then
10. Return \(\hat{Q}_k\) // terminate
11. else
12. Return SEARCH\((D_{k+1}, \ldots, D_T; \hat{Q}_k; \sigma'_k \cup \sigma; \Theta)\)
13. end if
14. end for

The first factor is a preference for generating high-value assignments. To accurately reflect the intent of (sampled) Bellman backups, we prefer to assign actions to state \(s' \in \chi(D_k)\) with larger predicted Q-values i.e., a preference for \(a\) over \(a'\) if \(\hat{Q}_{k-1}(s', a) > \hat{Q}_{k-1}(s', a')\). However, since the maximizing assignment may be \(\Theta\)-inconsistent (in isolation, jointly with the parent information set, or with future assignments), candidate children should merely have higher probability of a high-value assignment. Second, we need to ensure diversity of assignments among the children. Policy commitments at stage \(k\) constrain the assignments at subsequent stages. In many search procedures (e.g., beam search), we avoid backtracking, so we want the stage-\(k\) commitments to offer flexibility in later stages. The third factor is the degree to which we enforce consistency.

There are several ways to generate high-value assignments. We focus on one natural technique: sampling action assignments using a Boltzmann distribution. Let \(\sigma\) be the assignment of some node (parent) at level \(k - 1\) in the tree. We generate an assignment \(\sigma_k\) for \(D_k\) as follows. Assume some permutation \(s_1', \ldots, s_{|D_k|}'\) of \(\chi(D_k)\). For each \(s_i'\) in turn, we sample \(a_i\) with probability proportional to \(e^{\hat{Q}_{k-1}(s_i', a_i)/\tau}\). This can be done without regard to consistency, in which case we use the consistency penalty when constructing the regressor \(\theta_k\) for this child to “encourage” consistency rather than enforce it. If we want strict consistency, we can use rejection sampling without replacement to ensure \(a_i\) is consistent with \(\sigma_{k-1}' \cup \sigma_{\leq i-1}\) (we can also use a subset of \(\sigma_k\) as a less restrictive consistency buffer)

\(\text{[1]}\) The temperature parameter \(\tau\) controls the degree to which we focus on maximizing assignments versus diverse, random assignments. While sampling gives some diversity, this procedure biases selection of high-value actions to states that occur early in the permutation. To ensure further diversity, we use a new random permutation for each child.

3.4. Search Heuristics

Even with the bound in Thm. \(\text{[1]}\) traversing the search space exhaustively is generally impractical. Moreover, as discussed above, enforcing consistency when generating the children of a node, and their regressors, may be intractable. Instead, various search methods can be used to explore the space, with the aim of reaching a “high quality” regressor at some (depth \(T\)) leaf of the tree. We outline three primary considerations in the search process: child generation, node evaluation or scoring, and the search procedure.

Generating children. Given node \(n_{k-1}'\), there are, in principle, exponentially many action assignments, or children, \(\Sigma_{\Theta}(D_k)\) (though Thm. \(\text{[1]}\) limits this if we enforce consistency). Thus, we develop heuristics for generating a small set of children, driven by three primary factors.

A linear approximator with a fixed set of \(d\) features induces a policy-indicator function class \(\mathcal{G}\) with VC-dimension \(d\), making the search tree polynomial in the size of the MDP. Similarly, a fixed ReLU DNN architecture with \(W\) weights and \(L\) layers has VC-dimension of size \(O(WL \log W)\) again rendering the tree polynomially sized.

Even with this bound, navigating the search space exhaustively is generally impractical. Instead, various search methods can be used to explore the space, with the aim of reaching a “high quality” regressor at some (depth \(T\)) leaf of the tree. We outline three primary considerations in the search process: child generation, node evaluation or scoring, and the search procedure.

Generating children. Given node \(n_{k-1}'\), there are, in principle, exponentially many action assignments, or children, \(\Sigma_{\Theta}(D_k)\) (though Thm. \(\text{[1]}\) limits this if we enforce consistency). Thus, we develop heuristics for generating a small set of children, driven by three primary factors.
scoring children, different search procedures can be applied: best-first search, beam search, local search, etc. all fit very naturally within the ConQUR framework. Moreover, hybrid strategies are possible—one we develop below is a variant of beam search in which we generate multiple children only at certain levels of the tree, then do “deep dives” using consistency-penalized Q-regression at the intervening levels. This reduces the size of the search tree considerably and, when managed properly, adds only a constant-factor (proportional to beam size) slowdown to methods like DQN.

3.5. An Instantiation of the ConQUR Framework

We now outline a specific instantiation of the ConQUR framework that effectively navigates the large search spaces that arise in practical RL settings. We describe a heuristic, modified beam-search strategy with backtracking and priority scoring. We outline only key features and refer to Algorithm 2 for a more detailed specification.

Our search process alternates between two phases. In an expansion phase, parent nodes are expanded, generating one or more child nodes with assignments sampled from the Boltzmann distribution. For each child, we create target Q-labels, then optimize its regressor using consistency-penalized Bellman distribution. For each child, we create target Q-labels, and, when managed properly, adds only a constant-factor (proportional to beam size) slowdown to methods like DQN.

Algorithm 2 Modified Beam Search Instantiation of ConQUR Algorithm

Input: Search control parameters: m, ℓ, c, d, T

1. Maintain list of data batches D_1, \ldots, D_k, initialized empty
2. Maintain candidate pool P of at most m nodes, initialized $P = \{n_0\}$
3. Maintain frontier list F of ℓ^c nodes
4. Maintain for each node n_k^i a regressor θ_k^i and an ancestor assignment σ_k^i
5. for each search level $k \leq T$ do
6. Find top scoring node $n^1 \in P$
7. Use ε-greedy policy extracted from Q_{θ^i} to collect next data batch D_k
8. if k is an expansion level then
9. Select top ℓ scoring nodes $n^1, \ldots, n^\ell \in P$
10. for each selected node n^i do
11. Generate c children $n^{i,1}, \ldots, n^{i,c}$ using Boltzmann sampling on D_k with Q_{θ^i}
12. for each child $n^{i,j}$ do
13. Let assignment history $\sigma^{i,j}$ be $\sigma^i \cup \{\text{new assignment}\}$
14. Determine regressor $\theta^{i,j}$ by applying update (5) from θ^i
15. end for
16. Score and add child nodes to the candidate pool P
17. Assign frontier nodes to set of child nodes, $F = \{n^{i,j}\}$
18. if $|P| > m$ then
19. evict bottom scoring nodes, keeping top m in P
20. end if
21. end for
22. end if
23. if k is a refinement (”dive”) level then
24. for each frontier node $n^{i,j} \in F$ do
25. Update regressor $\theta^{i,j}$ by applying update (5) to θ^j
26. end for
27. end if
28. Run d ”dive” levels after each expansion level
29. end for

3.6. Related Work

Other work has considered multiple hypothesis tracking in RL. One direct approach uses ensembling, with multiple Q-approximators updated in parallel (Faußer & Schwenker, 2015; Osband et al., 2016; Anschel et al., 2017) and combined to reduce instability and variance. Population-based methods, inspired by evolutionary search, have also been proposed. Conti et al. (2018) combine novelty search and quality diversity to improve hypothesis diversity and quality. Khadka & Tumer (2018) augment an off-policy RL method.
with diversified population information derived from an evolutionary algorithm. These techniques do not target a specific weaknesses of Q-learning, such as delusion.

4. Empirical Results

We assess the performance of ConQUR using the Atari test suite (Bellemare et al., 2013). Since ConQUR directly tackles delusion, any performance improvement over Q-learning baselines strongly suggests the presence of delusional bias in the baselines in these domains. We first assess the impact of our consistency penalty in isolation (without search), treating it as a “regularizer” that promotes consistency with both DQN and DDQN. We then test our modified beam search to assess the full power of ConQUR. We do not directly compare ConQUR to policy gradient or actor-critic methods—which for some Atari games offer state-of-the-art performance (Schrittwieser et al., 2019; Kapturowski et al., 2020)—our aim with ConQUR is to improve the performance of widely used Q-learning type algorithms.

4.1. Consistency Penalization

We first study the effect of augmenting both DQN and DDQN with soft-policy consistency in isolation. We train models using an open-source implementation of DQN and DDQN, with default hyperparameters (Guadarrama et al., 2018). We denote our consistency-augmented variants of these algorithms by DQN(λ) and DDQN(λ), respectively, where λ is the penalty weight (see Eq. 4). When λ = 0, these correspond to DQN and DDQN themselves. Our policy-consistency augmentation is lightweight and can be applied readily to any regression-based Q-learning method. Since we do not use search (i.e., do not track multiple hypotheses), these experiments use a small consistency buffer drawn only from the current data batch by sampling from the replay buffer—this prevents getting “trapped” by premature policy commitments. No diversity is used to generate action assignments—standard action maximization is used.

We evaluate DQN(λ) and DDQN(λ) for λ ∈ {0.25, 0.5, 1, 1.5, 2} on 19 Atari games. In training, λ is initialized at 0 and annealed to the desired value to avoid premature commitment to poor assignments. Unsurprisingly, the best λ tends to differ across games depending on the extent of delusional bias. Despite this, λ = 0.5 works well across all games tested. Fig. 2 illustrates the effect of increasing λ on two games. In Gravitar, it results in better performance in both DQN and DDQN, while in Spacel Invaders, λ = 0.5 improves both baselines, but relative performance degrades at λ = 2.

We also compare performance on each of the 19 games for each λ value, as well as using the best λbest (see Fig. 3 Table 3 in Appendix B.3). DQN(λbest) and DDQN(λbest) outperform their “potentially delusional” counterparts in all but 3 and 2 games, respectively. In 9 games, both DQN(λbest) and DDQN(λbest) beat both baselines. With a fixed λ = 0.5, DQN(λ) and DDQN(λ) each beat their respective baselines in 11 games (see Fig. 3 for details). These results suggest that consistency penalization—independent of the full ConQUR framework—can improve the performance of DQN and DDQN by addressing delusional bias. Moreover, promoting policy consistency appears to have a different effect on learning than double Q-learning, which addresses maximization bias. Indeed, consistency penalization, when applied to DQN, achieves greater gains than DDQN in 15 games. Finally, in 9 games DDQN(λ) improves unaugmented DQN(λ). Further experimental details and results can be found in Appendix B.

4.2. Full ConQUR

We test the full ConQUR framework using our modified beam search (Sec. 3.5) on Atari games and the simple MDP (see Fig. 4 in Appendix A) used to demonstrate delusional bias in (Lu et al., 2018). The simple MDP case involves learning a “linear approximator” over specific state-action
features (as described in Lu et al. 2018). Atari games have much more complex representations, and we run ConQUR on these games in two different ways: (a) learning the full Q-network, and (b) learning (tuning) only the final layer of an otherwise pre-trained network. The latter is essentially learning a linear approximator w.r.t. a learned feature representation, which we test for two reasons. First, this allows us to validate whether delusional bias occurs in practice. By freezing the learned representation, any improvements offered by ConQUR when learning a linear Q-function over those same features provides direct evidence that delusion is present in the original trained models, and that ConQUR mitigates its impact (without relying on novel feature discovery). Second, from a practical point of view, this “linear tuning” approach offers a relatively inexpensive way to apply our methodology. By bootstrapping a model trained in standard fashion and extracting performance gains with a relatively small amount of additional training (e.g., linear tuning requires many fewer training samples, as our results show), we can offset the cost of the ConQUR search process itself.

We use DQN-networks with the same architecture as Mnih et al. 2015, trained on 200M frames as our baseline. We use ConQUR to retrain only the last (fully connected) layer (freezing other layers), which can be viewed as a linear Q-approximator over the features learned by the CNN. The pre-trained networks are obtained using the Dopamine package (Castro et al. 2018). We train Q-regressors in ConQUR using only 4M additional frames. We use a splitting factor of $c = 4$ and frontier size 16. The dive phase is always of length nine (i.e., nine batches of data), giving an expansion phase every ten iterations. Regressors are trained using soft-policy consistency (Eq. 4), with the consistency buffer comprising all prior action assignments. We run ConQUR with $\lambda \in \{1, 10\}$ and select the best performing policy. We use larger λ values than in Sec. 4.1 since full ConQUR maintains multiple Q-regressors and can “discard” poor performers. This allows more aggressive consistency enforcement—in the extreme, with exhaustive search and $\lambda \to \infty$, ConQUR behaves like PCQL, finding a near-optimal greedy policy. See Appendix C for further details and results.

We first test two approaches to scoring nodes: (i) policy evaluation using rollouts; and (ii) scoring using the loss function (Bellman error with soft consistency). Results on a small selection of games are shown in Table 4. While rollouts, unsurprisingly, tend to induce better-performing policies, consistent-Bellman scoring is competitive. Since the latter is much less computationally intense, and does not require a simulator (or otherwise sampling the environment), we use it throughout our remaining experiments.

We next compare ConQUR with the value of the pre-trained
Table 1: Results, averaged over 3 random seeds, of training of the pre-trained model.

<table>
<thead>
<tr>
<th>Game</th>
<th>Rollouts</th>
<th>Bellman + Consistency Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>BattleZone</td>
<td>33,796.30</td>
<td>32,618.18</td>
</tr>
<tr>
<td>BeamRider</td>
<td>9,914.00</td>
<td>10,341.20</td>
</tr>
<tr>
<td>Boxing</td>
<td>83.34</td>
<td>83.03</td>
</tr>
<tr>
<td>Breakout</td>
<td>379.21</td>
<td>393.00</td>
</tr>
<tr>
<td>MsPacman</td>
<td>5,947.78</td>
<td>5,365.06</td>
</tr>
<tr>
<td>Seaquest</td>
<td>2,848.04</td>
<td>3,000.78</td>
</tr>
<tr>
<td>SpaceInvader</td>
<td>3,442.31</td>
<td>3,632.25</td>
</tr>
<tr>
<td>StarGunner</td>
<td>55,800.00</td>
<td>56,695.35</td>
</tr>
<tr>
<td>Zaxxon</td>
<td>11,064.00</td>
<td>10,473.08</td>
</tr>
</tbody>
</table>

5. Concluding Remarks

We have introduced ConQUR, a framework for mitigating delusional bias in various forms of Q-learning that relaxes some of the strict assumptions of exact delusion-free algorithms like PCQL to ensure scalability. Its main components are a search procedure used to maintain diverse, promising Q-regressors (and corresponding information sets); and a consistency penalty that encourages “maximizing” actions to be consistent with the approximator class. ConQUR embodies elements of both value-based and policy-based RL: it can be viewed as using partial policy constraints to bias the Q-value estimator, and as a means of using candidate value functions to bias the search through policy space. Empirically, we find that ConQUR can improve the quality of existing approximators by removing delusional bias. Moreover, the consistency penalty applied on its own, in either DQN or DDQN, can improve policy quality.

There are many directions for future research. Other methods for nudging regressors to be policy-consistent include exact consistency (i.e., constrained regression), other regularization schemes that push the regressor to fall within the information set, etc. Further exploration of search, child-generation, and node-scoring strategies should be examined within ConQUR. Our (full) experiments should also be extended beyond those that warm-start from a DQN model. We believe our methods can be extended to both continuous actions and soft max-action policies. We are also interested in the potential connection between maintaining multiple “hypotheses” (i.e., Q-regressors) and notions in distributional RL (Bellemare et al., 2017).
References

