Self-Modulating Nonparametric Event-Tensor Factorization

Zheng Wang 1 Xinqi Chu 2 Shandian Zhe 1

Abstract
Tensor factorization is a fundamental framework to analyze high-order interactions in data. Despite the success of the existing methods, the valuable temporal information are severely underused. The timestamps of the interactions are either ignored or discretized into crude steps. The recent work although formulates event-tensors to keep the timestamps in factorization and can capture mutual excitation effects among the interaction events, it overlooks another important type of temporal influence, inhibition. In addition, it uses a local window to exclude all the long-term dependencies. To overcome these limitations, we propose a self-modulating nonparametric Bayesian factorization model. We use the latent factors to construct mutually-governed, general random point processes, which can capture various short-term/long-term, excitation/inhibition effects, so as to encode the complex temporal dependencies into factor representations. In addition, our model couples with a latent Gaussian process to estimate and fuse nonlinear yet static relationships between the entities. For efficient inference, we derive a fully decomposed model evidence lower bound to dispense with the huge kernel matrix and costly summations inside the rate and log rate functions. We then develop an efficient stochastic optimization algorithm. We show the advantage of our method in four real-world applications.

1. Introduction
Interactions between multiple entities (or nodes) are common in real-world applications. For example, consumers’ activities can be viewed as interactions between customers, service items and providers. These (high-order) interactions are naturally represented by tensors and analyzed by tensor factorization, which learns a set of latent factors to represent each participant. With the factor representations, we can discover the hidden structures within the entities, e.g., clusters and outliers, and extract useful features to make predictions (in downstream tasks).

While many excellent methods for tensor factorization have been proposed (Tucker, 1966; Harshman, 1970; Chu and Ghahramani, 2009; Kang et al., 2012; Choi and Vishwanathan, 2014), they mainly conduct a multilinear decomposition, and might be inadequate to capture more complex, nonlinear relationships. More importantly, they severely underuse the valuable temporal information along with the data. Most methods either drop the time stamps of the interactions, summarizing the events as a count tensor (Chi and Kolda, 2012; Hansen et al., 2015; Hu et al., 2015b), or discretize the time stamps into crude steps (e.g., weeks or months), ignoring the temporal dependencies within the same step (Xiong et al., 2010; Schein et al., 2015; 2016). Recently, Zhe and Du (2018) formulated event-tensors (where the tensor entries are sequences of interaction events) to preserve the accurate timestamps. They used Hawkes processes to estimate the fine-grained, triggering effects between the interactions. However, their approach overlooks inhibition, another ubiquitous effect between the events, and can still miss important temporal patterns. In addition, to compromise on the computational cost, they use a small time window to restrict the range of dependent events, and cannot capture long-term temporal influences of the interactions.

To overcome these limitations, we propose a self-modulating nonparametric Bayesian factorization model for event tensors, which not only can capture static, nonlinear relationships of the entities, but also is flexible enough to capture a variety of short-term and long-term, excitation and inhibition effects among the interaction events, encoding these complex temporal effects into the factor representations. Specifically, we use the latent factors to construct a set of mutually-governed, general random point processes to sample the observed interaction events. We first use a latent Gaussian process (GP) to sample a function of the factor representations to determine the type of temporal effect between each pair of interactions. The strength of the effect is further modelled as a kernel (similarity) function of their factors. In this way, both the type and strength of the effect are absorbed into the factors, from which we can discover...
the underlying temporal structures. We then couple with another latent GP to sample the base rate as a (nonlinear) function of the factors, in order to estimate and fuse complex yet static relationships between the entities. We use a scaled softplus function to additively integrate all the positive and negative influences from previous interactions to construct the rate function. For efficient inference, we take advantage of the convexity and log concavity of the rate function, and use the sparse variational GP framework (Hensman et al., 2013) and Jensen’s inequality to derive a fully decomposed model evidence lower bound (ELBO). Based on the ELBO, we develop an efficient stochastic optimization algorithm. The complexity of our algorithm is only proportional to the size of the mini-batches, while it captures all the long-term dependencies among the interactions.

For evaluation, we examined our method on three real-world datasets. Our model nearly always achieves better predictive performance than the existing methods using Poisson processes, time factors, and Hawkes processes to incorporate temporal information. The training curve shows that our inference algorithm converges reasonably fast and is quite stable. Finally, by looking into the latent factors estimated by our approach, we found interesting and meaningful structures both within the entities and within the events. We also found interesting temporal influence patterns.

2. Background

Tensor Factorization. We denote a K-mode tensor by $\mathcal{Y} \in \mathbb{R}^{d_1 \times \ldots \times d_K}$. The k-th mode includes d_k entities or nodes (e.g., customers). Each entry is indexed by a tuple $i = (i_1, \ldots, i_K)$ and stands for the interaction of the corresponding K nodes. The entry value is denoted by y_i. To decompose \mathcal{Y}, we introduce K latent tensor matrices $\mathcal{U} = \{U_1^1, \ldots, U_K^K\}$ to represent all the tensor nodes. Each $U_k^k = [u_{i_1}^k; \ldots; u_{i_K}^k]$, which is $d_k \times r_k$, and each u_k^k are the r_k latent factors of node t in mode k. We aim to use \mathcal{U} to recover the observed entries in \mathcal{Y}. A classical approach is Tucker decomposition (Tucker, 1966), which assumes $\mathcal{Y} = \mathcal{W} \times_1 U_1^1 \times_2 \ldots \times_K U_K^K$, where $\mathcal{W} \in \mathbb{R}^{r_1 \times \ldots \times r_K}$ is a parametric tensor, and \times_k is the mode-k tensor matrix product (Kolda, 2006), which resembles the ordinary matrix-matrix product. If we set all $r_k = r$ and \mathcal{W} to be diagonal, Tucker decomposition becomes CANDECOMP/PARAFAC (CP) decomposition (Harshman, 1970). While numerous tensor factorization methods have been proposed, e.g., (Chu and Graharamani, 2009; Kang et al., 2012; Choi and Vishwanathan, 2014), most of them are inherently based on the CP or Tucker form. However, since both forms are nonlinear to the latent factors, they are incapable of capturing more complicated, nonlinear relationships in data.

Factorization with Temporal Information. Real-world tensors are often supplemented with detailed temporal information, namely, the timestamps of the observed interactions. To incorporate these information, traditional methods either drop the timestamps to perform count tensor decomposition (Chi and Kolda, 2012; Hu et al., 2015b), or discretize the timestamps into time steps, e.g., weeks or months, augment the tensor with a time mode (Xiong et al., 2010; Schein et al., 2015; 2016), and jointly estimate the time factors. Both approaches can be viewed as using Poisson processes to model the interaction events, $p(y_i) \propto \exp(-\lambda t \cdot T \lambda_{i}^{n})$, where y_i is the interaction count in entry i (with/without a time step), and λ_i is the event rate. The factorization is performed on $\{\lambda_i\}$ or $\{\log(\lambda_i)\}$, typically with Tucker/CP forms. Despite their simplicity and convenience, these methods disregard the rich and vitral temporal dependencies between the interactions, due to the independent increment assumption in Poisson processes. To mitigate this issue, Zhe and Du (2018) formulated event-tensor to maintain all the accurate timestamps. In an event-tensor, each entry is an event sequence of a particular interaction, rather than a numerical value. Zhe and Du (2018) modelled the observed entries as a set of mutually excited Hawkes processes (Hawkes, 1971). The rate of the events in each entry i is

$$ \lambda_i(t) = \lambda_i^0 + \sum_{s_n \in A(t)} k(x_{i_n}, x_i) h_0(t - s_n) \quad (1) $$

where λ_i^0 is the background rate, $A(t)$ is a local time window that specifies the range of dependent events happened before t (e.g., 50 past events nearest to t), i_n is the entry to which the interaction at time s_n belongs, x_{i_n} and x_i are the latent factors associated with entry i_n and i respectively, $k(\cdot, \cdot)$ is a kernel function that measures their similarity, and $h_0(\cdot)$ is a base triggering kernel that measures how the triggering effect decays along with time. From the rate function (1), we can see that the model can capture the (local) excitation effects of the previously happened interactions on the current one, and the triggering strength are (partly) encoded into the latent factors — the closer the corresponding factors of the two entries, the stronger the strength.

3. Model

Although the model in (Zhe and Du, 2018) can capture fine-grained, mutual triggering effects between the interactions, it ignores another type of important and ubiquitous effect — inhibition. For example, a customer who has recently purchased a Sonata is unlikely to buy a Sonata; people who voted for one president candidate are unlikely to support another one in a short term. In practice, among the interaction events can be mixed excitation and inhibition effects, resulting in complex temporal dependencies. In addition, the model uses a local time window $A(t)$ to specify a small range of the dependent events for each interaction (see (1)). Although this can save much computational cost for the rate function and its logarithm in model estimation
Self-Modulating Nonparametric Event-Tensor Factorization

It is a nonparametric function prior that accounts for the long-term influences of the interaction events on each other, and hence can miss many interesting and valuable temporal patterns. To overcome these problems, we propose a self-modulating nonparametric event-tensor factorization model, presented as follows.

3.1. Notations for Event-Tensor

First, let us supplement a few notations. In the event-tensor, for each observed entry \(i \), we denote its event sequence by \(y_i = [s_1^i, \ldots, s_n^i] \), i.e., the time stamps when the interaction \(i \) occurred, and \(n_i \) is the number of occurrences. Note that each entry represents a particular type of interaction. We can merge the event sequences of all the observed entries into a single sequence, \(S = [(s_1^1, \ldots, s_{n_1}^1), \ldots, (s_{n_N}^1, 1_N)] \), where \(s_1 \leq \ldots \leq s_{n_N} \) are all the time stamps, each \(i_n \) indexes the entry that event \(s_n \) belongs to, i.e., the particular interaction occurred at \(s_n \).

3.2. Self-Modulating Nonparametric Factorization

We now consider using the latent factors \(U \) to construct a general random point process to accommodate both the triggering and inhibition effects among the interaction events. One basic assumption in (Zhe and Du, 2018) (see (1)) is that the closer (or more similar) the factor representations of two interactions, the stronger their mutual excitation effects. This is true in many applications, for example, “the event that user A purchased commodity B may excite A’s friend C to purchase B as well”. Obviously, the factors of A and C are expected to be close because they are in the same community (i.e., friends) and so are the factor representations for the interactions (A, B) and (C, B). However, in many other cases, closer factor representations may on the contrary lead to stronger inhibition effects. For example, the event that user A has purchased Surface laptop B can strongly suppress A to buy MacBook C (aforementioned); the event that athlete A has won the champion of Game B deprives of the possibility that his competitor C wins B. Therefore, to model the strength of the temporal influence of a previously occurred interaction \(j \) on the current one \(i \), we still use a kernel function of their factor representations, \(k(x_j, x_i) \), where \(x_1 = [u_1^1, \ldots, u_1^{K_1}] \) and \(x_2 = [u_2^j, \ldots, u_2^{K_j}] \). However, to detect the type of the influence, we consider learning a discriminating function of the factor representations, \(g(x_j, x_i) \), where \(g(x_j, x_i) > 0 \) indicates that \(j \) will trigger the occurrence of \(i \) and otherwise inhibit. To flexibly estimate \(g(\cdot) \), we place a Gaussian process (GP) prior (Rasmussen and Williams, 2006) — a nonparametric function prior that accommodates various complex functions. Hence, the latent function values \(g \) for every pair of observed entries will follow a multivariate Gaussian distribution,

\[
p(\mathbf{g}|U) = \mathcal{N}(\mathbf{g}|\mathbf{0}, \kappa_g(\mathbf{X}_g, \mathbf{X}_g)), \tag{2}
\]

where each row of the input matrix \(\mathbf{X}_g \) corresponds to a pair of entries, and are the concatenation of the associated factors, \(\kappa_g(\cdot, \cdot) \) is the covariance (kernel) function.

Now, we define a raw rate function for each entry \(i \) that integrates both the triggering and suppressing effects from the previous interactions,

\[
\tilde{\lambda}_i(t) = \lambda_0^i + \sum_{s_n < t} \tanh(g(x_{i_n}, x_i)) k(x_{i_n}, x_i) h_0(t - s_n) \tag{3}
\]

where \(\lambda_0^i \) is the background rate and \(h_0(\cdot) \) is a base kernel that describes how the strength of the influence decays with time. In our experiments, we chose the commonly used exponential decay kernel, \(h_0(\Delta) = \exp(-\Delta) \). Note that we use \(\tanh(\cdot) \) to squeeze the values of \(g(\cdot) \) into \([-1, 1]\) without changing the sign. The reason is that we use \(g(\cdot) \) to just determine the influence types (excitation or inhibition); for better interpretability, we do not want to confound it with the influence strength (which are modelled by the other components — \(k(\cdot, \cdot) \) and \(h_0(\cdot) \)).

Next, to obtain a positive rate function so as to build a valid point process, we use a scaled soft-plus function \(\gamma_s(\cdot) \) to transform the raw rate \(\tilde{\lambda}_i(t) \),

\[
\lambda_i(t) = \gamma_s(\tilde{\lambda}_i(t)) = s \log(1 + \exp(\frac{\tilde{\lambda}_i(t)}{s})) \tag{4}
\]

where \(s > 0 \). It is trivial to show that when \(s \to \infty \), \(\lambda_i(t) \to \max(\tilde{\lambda}_i(t), 0) \). Therefore, the scaled soft-plus can considerably maintain the additive structure in our raw rate definition in (3). While other transformation operators are also possible, e.g., \(\exp(\cdot) \), we found empirically that the scaled softplus exhibits superior and excellent performance.

Finally, to estimate the complex yet static relationships between the entities and fuse the relationships into the latent factors, we model the background rate \(\lambda_0^i \) in each entry \(i \) as a nonlinear function of the associated factors, \(f(x_i) \). To this end, we place another GP prior over \(f(\cdot) \). Then the background rate values \(f \) for all the observed entries are sampled from a multivariate Gaussian distribution,

\[
p(f|U) = \mathcal{N}(f|\mathbf{0}, \kappa_f(\mathbf{X}_f, \mathbf{X}_f)), \tag{5}
\]

where each row of \(\mathbf{X}_f \) are the concatenated factors associated with one entry, and \(\kappa_f(\cdot, \cdot) \) is the covariance (or kernel) function. Note that we do not need to constrain \(f(\cdot) > 0 \), because via the soft-plus function \(\gamma_s(\cdot) \), we will always obtain a non-negative event rate.

We place a standard Gaussian prior over all the latent factors \(U \). Given the observed interaction events \(S \) (from all the
we develop a stochastic mini-batch optimization algorithm (Vere-Jones, 2007).

The estimation of our model is challenging. First, the ex-

ample is huge covariance matrices. We introduce pseudo inputs

sampling pseudo outputs. Then we can augment our model by jointly

are computed on

Gaussian distribution, and the covariance (kernel) matrices

properties of our rate function to derive a fully decomposed

does not have a closed form and is intractable to compute.

cause the GP likelihoods (2) and (5) require us to compute

large, the computation is prohibitively costly. Second, the

spectrally and their inverse, where

calculation of each rate

needs to go through all the previously happened interactions

that the last row is the likelihood of our mutually governed

is the total time span across all the events. Note

entries), the joint probability of our model is given by

\[p(S, g, f, U) = \prod_k \prod_{i_k} \mathcal{N}(u_{i_k}^k | 0, I) \]

\[\cdot \mathcal{N}(g | 0, \kappa_g(X_g, Z_g)) \mathcal{N}(f | 0, \kappa_f(X_f, X_f)) \]

\[\cdot \prod_i \exp \left(- \int_0^T \lambda_i(t) dt \right) \prod_{n=1}^N \lambda_{ii}(s_n), \quad (6) \]

where \(T \) is the total time span across all the events. Note

\[p(b_g) = \mathcal{N}(b_g | 0, \kappa_g(Z_g, Z_g)), \quad p(g | b_g) = \mathcal{N}(g | m_{gb}, \Sigma_{gb}) \]

\[m_{gb} = \kappa_g(X_g, Z_g) \kappa_g(Z_g, Z_g)^{-1} b_g \quad \text{and} \quad \Sigma_{gb} = \kappa_g(X_g, X_g) - \kappa_g(X_g, Z_g) \kappa_g(Z_g, Z_g)^{-1} \kappa_g(Z_g, X_g). \]

Similarly, we can decompose

\[p(f, b_f) = p(b_f)p(f | b_f) \]

\[= \mathcal{N}(b_f | 0, \kappa_f(Z_f, Z_f)) \mathcal{N}(f | m_{fb}, \Sigma_{fb}) \]

where \(m_{fb} \) and \(\Sigma_{fb} \) are the conditional mean and covariance matrix given \(b_f \) respectively, similar to \(m_{gb} \) and \(\Sigma_{gb}).

The joint probability of the augmented model is then

\[p(S, g, b_g, f, b_f, U) = p(g | b_g)p(b_g)p(b_f)p(f | b_f)p(U, S | f, g) \]

\[= \mathcal{N}(b_g | \mu_g, S_g) \quad \text{and} \quad q(b_f) = \mathcal{N}(b_f | \mu_f, S_f). \]

We further parameterize \(S_g \) and \(S_f \) by their Cholesky decompositions, \(S_g = L_g L_g^\top \) and \(S_f = L_f L_f^\top \), to ensure their positive definiteness. We then
develop the stochastic mini-batch optimization algorithm that is efficient to both large \(M \) and \(N \). Our algorithm is presented as follows.

4.1. Fully Decomposed Model Evidence Lower Bound

4.1.1. Removing Huge Covariance Matrices

First, we use the variational sparse GP to dispense with huge covariance matrices. We introduce pseudo inputs

\[Z_g = [z^g_1, \ldots, z^g_{m_g}]^\top \]

\[Z_f = [z^f_1, \ldots, z^f_{m_f}]^\top \]

for the two latent functions \(g(\cdot) \) and \(f(\cdot) \), respectively, where

\[m_g \ll M^2 \quad \text{and} \quad m_f \ll M. \]

We denote the function values at these pseudo inputs by \(b_g = [g(z_1^g), \ldots, g(z_{m_g}^g)]^\top \)

and \(b_f = [f(z_1^f), \ldots, f(z_{m_f}^f)] \), which we refer to as the pseudo outputs. Then we can augment our model by jointly sampling \(\{f, b_f\} \) and \(\{g, b_g\} \). Due to the GP priors of \(g(\cdot) \) and \(f(\cdot) \), both \(\{g, b_g\} \) and \(\{f, b_f\} \) follow a multivariate Gaussian distribution, and the covariance (kernel) matrices are computed on \(\{X_f, Z_f\} \) and \(\{X_g, Z_g\} \), respectively. We can further decompose the joint prior by

\[p(g, b_g) = p(b_g)p(g | b_g) \]

where \(p(b_g) = \mathcal{N}(b_g | 0, \kappa_g(Z_g, Z_g)) \), \(p(g | b_g) = \mathcal{N}(g | m_{gb}, \Sigma_{gb}) \) is a conditional Gaussian distribution,

\[m_{gb} = \kappa_g(X_g, Z_g) \kappa_g(Z_g, Z_g)^{-1} b_g \quad \text{and} \quad \Sigma_{gb} = \kappa_g(X_g, X_g) - \kappa_g(X_g, Z_g) \kappa_g(Z_g, Z_g)^{-1} \kappa_g(Z_g, X_g). \]

Now we can see that the full conditional Gaussian distributions \(p(g | b_g) \) and \(p(f | b_f) \) are both cancelled. We only need to compute the covariance matrices for \(p(b_g) \) and \(p(b_f) \), which are \(m_{gb} \times m_g \) and \(m_f \times m_f \), respectively. Hence, the computational cost is greatly reduced. Rearranging the terms, we have

\[\mathcal{L} = \log(p(U)) - \text{KL}(q(b_g) \| p(b_g)) - \text{KL}(q(b_f) \| p(b_f)) \]

\[- \sum_i \mathbb{E}_q \left[\int_0^T \lambda_i(t) dt \right] + \sum_{n=1}^N \mathbb{E}_q \left[\log \left(\lambda_{ii}(s_n) \right) \right], \quad (11) \]

where \(p(U) = \prod_k \prod_{i_k} \mathcal{N}(u_{i_k}^k | 0, I) \) and \(\text{KL}(\cdot || \cdot) \) is the Kullback-Leibler divergence. To handle the intractable integral in (11), we rewrite it as an expectation, \(\int_0^T \lambda_i(t) dt = \mathbb{E}_{p(t)} (T \lambda_i(t)) \) where \(p(t) = \text{Uniform}(0, T) \). Then we can sample \(t \) to obtain an unbiased estimate of the integral.
and conduct stochastic optimization (which we will discuss later). The ELBO now is
\[
\mathcal{L} = \log(p(U)) - KL(q(b_j)\|p(b_j)) - KL(q(b_f)\|p(b_f)) - \sum_i \mathbb{E}_q[p(t_i)|T \lambda_i(t)] + \sum_n \mathbb{E}_q[\log(\lambda_{i_n}(s_n))].
\] (12)

4.1.2. Decomposing Long Summations

However, the computation of each rate \(\lambda_i(t)\) and log rate \(\log(\lambda_{i_n}(s_n))\) is still quite expensive. According to (3) and (4), they couple a summation of the temporal influences (excitation or inhibition) from all the previously happened events in the (scaled) softplus and log-softplus function, and the time complexity is (on average) \(O(N)\). Since we need to compute \(N\) log rates, the total complexity is \(O(N^2)\). Therefore, it will be very costly for large \(N\). To address this issue, we observe the following fact.

Lemma 4.1. The scaled soft-plus function \(\gamma_s(x) = s \log(1 + \exp(x/s))\) (\(s > 0\)) is convex and \(\log(\gamma_s(x))\) is concave.

The proof is given in the supplementary material. Based on this property, we can use Jensen’s inequality to further derive an ELBO that fully decomposes these expensive summations. Specifically, we first rewrite the raw rate function (3) as
\[
\tilde{\lambda}_i(t) = \lambda_i^n + \sum_{n=1}^{N} \delta(s_n < t) h_{i_n \rightarrow i}(x_{i_n}, x_i, t - s_n)
\]
where \(\delta(\cdot)\) is the indicator function and \(h_{i_n \rightarrow i}(x_{i_n}, x_i, t - s_n) = \tanh(g(x_{i_n}, x_i)k(x_{i_n}, x_i)h(t - s_n))\). We then partition the observed events into mini-batches of size \(Q\): \(\{B_1, \ldots, B_{N/Q}\}\), and rearrange the summation as \(\lambda_i(t) = \lambda_i^n + \frac{Q}{N} \sum_{n=1}^{N/Q} \sum_{n=1}^{N/Q} \delta(s_n < t) h_{i_n \rightarrow i}(x_{i_n}, x_i, t - s_n)\).

Thereby, we can view the raw rate as an expectation, \(\lambda_i(t) = \mathbb{E}_{p(k)}[X_i^k]\) where \(p(k) = Q/N, k \in \{1, \ldots, N/Q\}\), and
\[
X_i^k = \lambda_i^n + \frac{Q}{N} \sum_{n=1}^{N/Q} \delta(s_n < t) h_{i_n \rightarrow i}(x_{i_n}, x_i, t - s_n).
\]

Since the rate \(\lambda_i(t) = \gamma_s(\tilde{\lambda}_i(t))\) and \(\gamma_s(\cdot)\) is convex, we can apply Jensen’s inequality to obtain \(\lambda_i(t) = \gamma_s(\mathbb{E}_{p(k)}[X_i^k]) \leq \mathbb{E}_{p(k)}[\gamma_s(X_i^k)]\) and so
\[
-\mathbb{E}_q[p(t)|\lambda_i(t)] \geq -\mathbb{E}_q[p(t)|\gamma_s(X_i^k)]\] (13)

Similarly, the raw rate inside each log rate \(\lambda_{i_n}(s_n)\) can also be viewed as an expectation, \(\lambda_{i_n}(s_n) = \mathbb{E}_{p(k)}[Y^n_k]\), where
\[
Y^n_k = \lambda_{i_n}^n + \frac{N}{Q} \sum_{n=1}^{N} \delta(s_j < s_n) h_{j_n \rightarrow i_n}(x_{j_n}, x_{i_n}, s_n - s_j).
\]

Since \(\log(\gamma_s(\cdot))\) is concave, we can apply Jensen’s inequality to obtain
\[
\log(\lambda_{i_n}(s_n)) = \log(\gamma_s(\mathbb{E}_{p(k)}[Y^n_k])) \geq \mathbb{E}_{p(k)}[\log(\gamma_s(Y^n_k))].\] (14)

Finally, we substitute the lower bounds in (13) and (14) for each expected rate and log rate in (12), respectively. We then obtain a fully decomposed ELBO,
\[
\mathcal{L}^+ = \log(p(U)) - KL(q(b_j)\|p(b_j)) - KL(q(b_f)\|p(b_f)) - \sum_i \mathbb{E}_q[p(t_i)|T \gamma_s(X_i^k)] + \sum_n \mathbb{E}_q[p(k)|\log(\gamma_s(Y^n_k))].
\] (15)

In this way, we move out most of the summation in each softplus and log softplus function, leaving only a very light summation across the mini-batch, i.e., \(X_i^k\) and \(Y^n_k\). The ELBO is additive on the observed entries, events and mini-batch set (via \(p(k)\)). Thereby, we can develop a stochastic optimization algorithm for efficient model estimation.

4.2. Stochastic Optimization

We now maximize the ELBO \(\mathcal{L}^+\) in (15) to estimate the variational posterior \(q\), the latent factors \(U\) and the other parameters. This ELBO is not analytical because the expectation terms are for the softplus or log softplus functions and do not have closed forms. Hence, we resort to stochastic optimization. In order to develop an efficient algorithm, we further partition all the observed entries (i.e., distinct interactions) into mini-batches of size \(C\): \(\{C_1, \ldots, C_{M/C}\}\), and all the observed events into mini-batches of \(D\): \(\{D_1, \ldots, D_{N/D}\}\).

Note that we can also reuse the previous partition of the events, \(\{B_1, \ldots, B_{N/Q}\}\). Next, we rearrange
\[
\mathcal{L}^+ = \log(p(U)) - KL(q(b_j)\|p(b_j)) - KL(q(b_f)\|p(b_f)) - \sum_j \sum_{i \in C_j} \mathbb{E}_q[p(t_i)|T \gamma_s(X_i^k)] + \sum_{l} \sum_{n \in D_l} \mathbb{E}_q[p(k)|\log(\gamma_s(Y^n_k))].
\] (16)

Then we can view the ELBO as an expectation of a stochastic ELBO,
\[
\mathcal{L}^+ = \mathbb{E}_{p(k),p(j),p(l)}[\hat{\mathcal{L}}^+_{k,j,l}]
\] (17)
where \(p(k) = \frac{Q}{N}, k \in \{1, \ldots, \frac{N}{Q}\}, p(j) = \frac{C}{M}, j \in \{1, \ldots, \frac{C}{M}\}, p(l) = \frac{D}{L}, l \in \{1, \ldots, \frac{D}{L}\} \), and

\[
\hat{L}_{k,j,l} = \log(p(U)) - \text{KL}(q(b_g)\|p(b_g)) - \text{KL}(q(b_f)\|p(b_f))
\]

\[+
\sum_{i \in C} \frac{M}{C} \mathbb{E}_{\pi(i)}[T \gamma_s(X_1^k)] + \sum_{n \in D} \frac{N}{D} \mathbb{E}_q[\log(\gamma_s(Y_n^k))].
\]

Now with (17), we can develop an efficient stochastic optimization algorithm. Each time, we first draw a mini-batch \(B_k, C_j, D_l \) from \(p(k), p(j) \) and \(p(l) \) respectively, and then seek to compute \(\nabla \hat{L}_{k,j,l} \) as an unbiased estimate of \(\nabla L^+ \). However, the expectation term in \(\hat{L}_{k,j,l} \) is still intractable. To address this issue, we use the reparameterization trick (Kingma and Welling, 2013) to generate a parameterized sample for \(b_f \) and each background rate \(\lambda_0^k = f(x_i) \) in \(X_1^k \) and \(Y_1^k \). Since \(q(b_f) \) is Gaussian and \(p(f(x_i)|b_f) \) is conditional Gaussian, it is straightforward to obtain the sample \(b_f \). We then generate a parameterized sample for \(b_g \) and each \(g(x_i, x_i) \) in \(X_2^k \) and \(Y_2^k \). We then generate a sample for \(t \) from \(p(t) \). Now, we substitute all the parameterized samples for the corresponding random variables in \(X_1^k \) and \(Y_1^k \), and obtain an unbiased stochastic estimate of \(\hat{L}_{k,j,l} \). Then compute its gradient to obtain the unbiased estimate of \(\nabla \hat{L}_{k,j,l} \), which in turn is an unbiased estimate of \(\nabla L^+ \). We can now apply any stochastic optimization algorithm to maximize \(L^+ \) with the stochastic gradient. Note that the computation of the stochastic gradient is only inside the sampled mini-batches. Therefore, the cost is greatly reduced.

4.3. Algorithm Complexity

The time complexity of our inference is \(O(Q(C + D)m_g^3 + (C + D)m_f^3) \) where \(Q, C \) and \(D \) are the mini-batch sizes of the three partitions. Therefore, the computational cost is proportional to the mini-batch sizes, rather than determined by the total number of entries \(M \) and events \(N \). The space complexity is \(O(m_g^2 + m_f^2 + \sum_{k=1}^K d_k r_k) \), which is to store the prior and posterior matrices for the pseudo outputs \(b_g \) and \(b_f \) and the latent factors \(U \).

5. Related Work

Classical tensor factorization methods include CP (Harshman, 1970) and Tucker (Tucker, 1966) decompositions, which are multilinear. Many other approaches have been proposed based on them (Shashua and Hazan, 2005; Chu and Ghahramani, 2009; Sutskever et al., 2009; Acar et al., 2011; Hoff, 2011; Kang et al., 2012; Yang and Dunson, 2013; Rai et al., 2014; Choi and Vishwanathan, 2014; Hu et al., 2015a; Rai et al., 2015), to name a few. Recently, several Bayesian nonparametric factorization models (Xu et al., 2012; Zhe et al., 2015; 2016b,a) were proposed to estimate the nonlinear relationships in data. To handle temporal information, current methods either factorize the counts instead (Chi and Kolda, 2012; Hansen et al., 2015; Hu et al., 2015b), or discretize the time stamps into crude steps and then factorize the counts in each step (Xiong et al., 2010; Schein et al., 2015; 2016; 2019). Despite their success, these methods ignore the rich temporal dependencies between the interactions and may miss important temporal patterns. Recently, Zhe and Du (2018) used the Hawkes processes to capture fine-grained triggering effects among the interactions. The method outperforms the previous approaches in terms of prediction, and discovers interesting clusters with temporal meanings. However, this method ignores another important temporal effect, inhibition, hence can still fail to capture complex, mixed temporal dependency patterns. In addition, the method sets a local time window to enable efficient computation, but meanwhile misses the valuable, long-range influences of the events on each other. To overcome these problems, we use latent factors to construct more flexible random point processes to detect and disentangle a variety of mixed excitation and inhibition effects, encoding them into the latent factors. In addition, we develop an efficient inference algorithm that is able to capture all kinds of short-term and long-term dependencies.

Hawkes process (HP) is a popular class of random point processes to study mutual excitations within various events. Many models use HPs to discover temporal relationships, e.g., (Blundell et al., 2012; Tan et al., 2016; Linderman and Adams, 2014; Du et al., 2015; He et al., 2015; Wang et al., 2017). Several pieces of work were also proposed to improve the learning of HPs, such as nonparametric triggering kernel estimation (Zhou et al., 2013), Granger causality (Xu et al., 2016), short doubly-censored event sequences (Xu et al., 2017) and online estimation (Yang et al., 2017). Recently, Mei and Eisner (2017) proposed neural Hawkes processes, which uses a continuous LSTM to model complex temporal dependencies among the events (e.g., triggering, suppression and their nonlinear interactions). They also tested the usage of softplus function to integrate different temporal effects. Distinct from their work, our method (1) uses the latent factors (rather than free parameters) to construct the point process to encode the temporal effects into the factor representations, and (2) investigates the properties of the rate function to fulfill efficient inference, especially for large numbers of events and event types.

6. Experiment

6.1. Predictive Performance

Datasets. We first examined the predictive performance on the following three real-world datasets. (1) Taobao (https://tianchi.aliyun.com/dataset/dataDetail?dataId=53), the online shopping behaviours between 07/01/2015 and 11/30/2015 in the...
Self-Modulating Nonparametric Event-Tensor Factorization

Figure 1. Test log-likelihood (LL) on real-world datasets. HP-Local-{50, 100, 150} means running HP-Local with window size 50, 100 and 150. CPT-PTF-{5,10,20} are CPT-PTF with 5, 10 and 20 time steps.

Experimental settings. For all the competing methods that use GPs, we applied the same sparse GP framework as in our method for scalable inference: we set the number of pseudo inputs to 100 and used SE-ARD kernel for which we initialized all the parameters to 1. For a fair comparison, all the methods were initialized with the same set of factors independently sampled from Uniform(0, 1). We implemented our approach and HP-Local with PyTorch and used ADAM (Kingma and Ba, 2014) for stochastic optimization. For both methods, the mini-batch size was set to 100. The learning rate was chosen from \{5 \times 10^{-4}, 10^{-3}, 3 \times 10^{-3}, 5 \times 10^{-3}, 10^{-2}\}. We ran each method for 400 epochs, which are sufficient for convergence. All the other methods were implemented with MATLAB. For training, we used the first 40K, 40K, 20K events from Taobao, UFO and Crash, respectively. The remaining 29.8K, 30.4K, 12K events were used for test. For CPT-PTF, the number of time steps was varied from \{5, 10, 20\}. For HP-Local, we varied the window size from \{50, 100, 150\}. Note that the event sequences for test are very long, through which we can examine the performance of our method in capturing long-range temporal effects. We varied the number of the factors from \{2, 5, 8, 10\}. We calculated the test log-likelihood of each method and report the results in Figure 1.

Results. As shown in Fig. 1a-c, our method consistently outperforms all the competing approaches, often by a large margin. Hence, it demonstrates the advantage of our method in predictive performance. Note that the results of some methods are not shown because they are much worse than all the other methods. The full results are given in the supplementary material. In general, when we increased the window size, HP-Local obtained better or similar prediction accuracy (e.g., Fig. 1a), showing that estimating long-range temporal dependencies helps improve the prediction. In most cases, the other competing methods, e.g., CP/GP-PTF, CP/GP-NPTF, are far worse than our model and HP-Local. Since these methods are based on homogeneous or non-homogeneous Poisson processes and disregard the temporal dependencies among the interaction events (except that CPT-
Self-Modulating Nonparametric Event-Tensor Factorization

Figure 2. Structures of the learned latent factors on Taobao (a, b), Crash (c, d), UFO (e). Colors indicate the cluster memberships.

PTF learns dynamics between the time factors), their results confirm the benefit of our model in capturing a variety of complex temporal dependencies among the events. To examine the learning behaviour of our model, we reported the test log-likelihood after each epoch on Crash when the factor number was set to 8. As shown in Fig. 1d, our learning algorithm converges reasonably fast (around 100 epochs) and then remains quite stable after the convergence.

6.2. Structure Discovery

Next, we examined if our method can discover hidden structures in the data. To this end, we set the number of latent factors to 10 and ran our algorithm on Taobao, UFO and Crash. Then we applied kernel PCA (Schölkopf et al., 1998) (with RBF kernel) to project the latent factors onto the x-y plane. We then ran k-means to find the potential clusters in the (projected) factor representations of the entities (nodes). We used the elbow method (Ketchen and Shook, 1996) to select the number of clusters. As we can see from Fig. 2 a-e, these factors reflect clear grouping structures. Note that Taobao data were anonymized so we cannot investigate the meaning of those clusters. But they can be potentially useful for tasks like recommendation (Tran et al., 2018) and click-through-rate prediction (Pan et al., 2019). Then for Crash data, we show the actual geolocations of the clustered states in Figure 2c. We can see that states grouped together are often neighbouring each other. The clusters can be roughly seen as the middle (red), the south (blue) and the east/west coast (green). This is reasonable — the states close by may have similar patterns of the traffic crash events and their chain effects (inhibition/excitation) due to similar driving customs, roads layout and weather patterns.

We also looked into the triggering and inhibition effects among the interaction events. To this end, we represented each online shopping event on Taobao by concatenating the latent factors of the participants, i.e., user, seller, item, category and action. We then used kernel PCA to project the event representations onto the x-y plane, and ran k-means to obtain the clusters. We then randomly sampled pairs of events within and across the clusters, and show their triggering/inhibition relationships with red/black colors. As we can see from Fig. 3a and b, the factor representations of the events present a cluster structure. Interestingly, we can see the effects between the events within the same cluster are uniform, either excitation or inhibition (see Fig. 3a), and across different clusters are mixed (see Fig. 3b). This can be reasonable in that those event clusters actually reflect how one type of events influence on each other, which is uniform; but between different types (clusters) of events can be mixed effects. For example, buying an IPhone will inhibit one to buy another cellphone (identical event type), but may stimulate them to buy a case (another event type).

7. Conclusion

We have presented a self-modulating nonparametric event-tensor factorization model. Our model can capture various triggering and inhibition effects among the interaction...
Self-Modulating Nonparametric Event-Tensor Factorization

events, in both short and long ranges. Our inference is efficient for large numbers of observed entries and events.

Acknowledgement
This work was supported by the NSF IIS-1910983.

References

Pan, F., Li, S., Ao, X., Tang, P., and He, Q. (2019). Warm up cold-start advertisements: Improving ctr predictions via learning to learn id embeddings. In Proceedings of the
Self-Modulating Nonparametric Event-Tensor Factorization

