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Abstract

While policy-based reinforcement learning (RL)
achieves tremendous successes in practice, it is
significantly less understood in theory, especially
compared with value-based RL. In particular, it
remains elusive how to design a provably efficient
policy optimization algorithm that incorporates
exploration. To bridge such a gap, this paper
proposes an Optimistic variant of the Proximal
Policy Optimization algorithm (OPPO), which
follows an “optimistic version” of the policy gra-
dient direction. This paper proves that, in the prob-
lem of episodic Markov decision process with
unknown transition and full-information feed-
back of adversarial reward, OPPO achieves an
eO(
p

|S|2|A|H3T ) regret. Here |S| is the size of
the state space, |A| is the size of the action space,
H is the episode horizon, and T is the total num-
ber of steps. To the best of our knowledge, OPPO
is the first provably efficient policy optimization
algorithm that explores.

1. Introduction

Coupled with powerful function approximators such as neu-
ral networks, policy optimization plays a key role in the
tremendous empirical successes of deep reinforcement learn-
ing (Silver et al., 2016; 2017; Duan et al., 2016; OpenAI,
2019; Wang et al., 2018). In sharp contrast, the theoretical
understandings of policy optimization remain rather lim-
ited from both computational and statistical perspectives.
More specifically, from the computational perspective, it
remains unclear until recently whether policy optimization
converges to the globally optimal policy in a finite number

1Department of Industrial Engineering and Management
Sciences, Northwestern University 2Department of Operations
Research and Financial Engineering, Princeton University
3Department of Electrical Engineering, Princeton University. Cor-
respondence to: Qi Cai <qicai2022@u.northwestern.edu>, Zhuo-
ran Yang <zy6@princeton.edu>, Chi Jin <chij@princeton.edu>,
Zhaoran Wang <zhaoranwang@gmail.com>.

Proceedings of the 37 th
International Conference on Machine

Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

of iterations, even given infinite data. Meanwhile, from
the statistical perspective, it remains unclear how to attain
the globally optimal policy with a finite regret or sample
complexity.

A line of recent work (Fazel et al., 2018; Yang et al., 2019a;
Abbasi-Yadkori et al., 2019a;b; Bhandari & Russo, 2019;
Liu et al., 2019; Agarwal et al., 2019; Wang et al., 2019)
answers the computational question affirmatively by prov-
ing that a wide variety of policy optimization algorithms,
such as policy gradient (PG) (Williams, 1992; Baxter &
Bartlett, 2000; Sutton et al., 2000), natural policy gradi-
ent (NPG) (Kakade, 2002), trust-region policy optimization
(TRPO) (Schulman et al., 2015), proximal policy optimiza-
tion (PPO) (Schulman et al., 2017), and actor-critic (AC)
(Konda & Tsitsiklis, 2000), converge to the globally optimal
policy at sublinear rates of convergence, even when they are
coupled with neural networks (Liu et al., 2019; Wang et al.,
2019). However, such computational efficiency guarantees
rely on the regularity condition that the state space is already
well explored. Such a condition is often implied by assum-
ing either the access to a “simulator” (also known as the
generative model) (Koenig & Simmons, 1993; Azar et al.,
2011; 2012a;b; Sidford et al., 2018a;b; Wainwright, 2019)
or finite concentratability coefficients (Munos & Szepesvári,
2008; Antos et al., 2008; Farahmand et al., 2010; Tosatto
et al., 2017; Yang et al., 2019b; Chen & Jiang, 2019), both
of which are often unavailable in practice.

In a more practical setting, the agent sequentially explores
the state space, and meanwhile, exploits the information
at hand by taking the actions that lead to higher expected
total reward. Such an exploration-exploitation tradeoff is
better captured by the aforementioned statistical question
regarding the regret or sample complexity, which remains
even more challenging to answer than the computational
question. As a result, such a lack of statistical understand-
ing hinders the development of more sample-efficient policy
optimization algorithms beyond heuristics. In fact, empiri-
cally, vanilla policy gradient is known to exhibit a possibly
worse sample complexity than random search (Mania et al.,
2018), even in basic settings such as linear-quadratic reg-
ulators. Meanwhile, theoretically, vanilla policy gradient
can be shown to suffer from exponentially large variance in
the well-known “combination lock” setting (Kakade, 2003;
Leffler et al., 2007; Azar et al., 2012a), which only has a
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finite state space.

In this paper, we aim to answer the following fundamental
question:

Can we design a policy optimization algorithm that

incorporates exploration and is provably sample-efficient?

To answer this question, we propose the first policy opti-
mization algorithm that incorporates exploration in a prin-
cipled manner. In detail, we develop an Optimistic variant
of the PPO algorithm, dubbed as OPPO. Our algorithm is
also closely related to NPG and TRPO. At each update,
OPPO solves a Kullback-Leibler (KL)-regularized policy
optimization subproblem, where the linear component of
the objective function is defined by the action-value func-
tion. As is shown subsequently, solving such a subproblem
corresponds to one iteration of mirror descent (Nemirovsky
& Yudin, 1983) or dual averaging (Xiao, 2010), where the
action-value function plays the role of the gradient. To
encourage exploration, we explicitly incorporate a bonus
function into the action-value function, which quantifies the
uncertainty that arises from only observing finite histori-
cal data. Through uncertainty quantification, such a bonus
function ensures the (conservative) optimism of the updated
policy. Based on NPG, TRPO, and PPO, OPPO only aug-
ments the action-value function with the bonus function in
an additive manner, which makes it easily implementable in
practice.

Theoretically, we establish the sample efficiency of OPPO
in an episodic setting of Markov decision processes (MDPs)
with full-information feedback. In particular, we allow the
transition dynamics to be nonstationary within each episode.
In detail, we prove that OPPO attains a

p
|S|2|A|H3T -

regret up to logarithmic factors, where |S| is the size of
the state space, |A| is the size of the action space, H is the
episode horizon, and T is the total number of steps taken by
the agent. Note that the transition dynamics of an episodic
MDP have |S|2|A|H entries in total. Hence, such a regret
scales sublinearly in both the size of the transition dynamics
and the total number of steps T , while scaling polynomially
in the episode horizon H . In particular, OPPO attains such a
regret without knowing the transition dynamics or accessing
a “simulator”. Moreover, we prove that, even when the re-
ward functions are adversarially chosen across the episodes,
OPPO attains the same regret in terms of competing with the
globally optimal policy in hindsight (Cesa-Bianchi & Lu-
gosi, 2006; Bubeck & Cesa-Bianchi, 2012). In comparison,
existing algorithms based on value iteration, e.g., optimistic
least-squares value iteration (LSVI) (Azar et al., 2017; Jin
et al., 2019), do not allow adversarially chosen reward func-
tions. Such a notion of robustness partially justifies the
empirical advantages of KL-regularized policy optimiza-
tion (Neu et al., 2017; Geist et al., 2019). To the best of
our knowledge, OPPO is the first provably sample-efficient

policy optimization algorithm that incorporates exploration.

1.1. Related Work

Our work is based on the aforementioned line of recent work
(Fazel et al., 2018; Yang et al., 2019a; Abbasi-Yadkori et al.,
2019a;b; Bhandari & Russo, 2019; Liu et al., 2019; Agar-
wal et al., 2019; Wang et al., 2019) on the computational
efficiency of policy optimization, which covers PG, NPG,
TRPO, PPO, and AC. In particular, OPPO is based on PPO
(and similarly, NPG and TRPO), which has been shown to
converge to the globally optimal policy at sublinear rates in
tabular and linear settings, as well as nonlinear settings in-
volving neural networks (Liu et al., 2019; Wang et al., 2019).
However, without assuming the access to a “simulator” or fi-
nite concentratability coefficients, both of which imply that
the state space is already well explored, it remains unclear
whether any of such algorithms is sample-efficient, that is,
attains a finite regret or sample complexity. In comparison,
by incorporating uncertainty quantification into the action-
value function at each update, which explicitly encourages
exploration, OPPO not only attains the same computational
efficiency as NPG, TRPO, and PPO, but is also shown to
be sample-efficient with a

p
|S|2|A|H3T -regret up to loga-

rithmic factors.

Our work is closely related to another line of work (Even-
Dar et al., 2009; Yu et al., 2009; Neu et al., 2010a;b; Zimin
& Neu, 2013; Neu et al., 2012; Rosenberg & Mansour,
2019b;a) on online MDPs with adversarially chosen reward
functions, which mostly focuses on the tabular setting.

• Assuming the transition dynamics are known and the
full information of the reward functions is available,
the work of (Even-Dar et al., 2009) establishes ap
⌧2T · log |A|-regret, where A is the action space,

|A| is its cardinality, and ⌧ upper bounds the mixing
time of the MDP. See also the work of (Yu et al., 2009),
which establishes a T 2/3-regret in a similar setting.

• Assuming the transition dynamics are known but only
the bandit feedback of the received rewards is available,
the work of (Neu et al., 2010a;b; Zimin & Neu, 2013)
establishes an H2

p
|A|T/�-regret (Neu et al., 2010b),

a T 2/3-regret (Neu et al., 2010a), and a
p
H|S||A|T -

regret (Zimin & Neu, 2013), respectively, all up to
logarithmic factors. Here S is the state space and |S|
is its cardinality. In particular, it is assumed by (Neu
et al., 2010b) that, with probability at least �, any state
is reachable under any policy.

• Assuming the full information of the reward functions
is available but the transition dynamics are unknown,
the work of (Neu et al., 2012; Rosenberg & Mansour,
2019b) establishes an H|S||A|

p
T -regret (Neu et al.,
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2012) and an H|S|
p
|A|T -regret (Rosenberg & Man-

sour, 2019b), respectively, both up to logarithmic fac-
tors.

• Assuming the transition dynamics are unknown and
only the bandit feedback of the received rewards is
available, the recent work of (Rosenberg & Mansour,
2019a) establishes an H|S|

p
|A|T/�-regret up to log-

arithmic factors. In particular, it is assumed by (Rosen-
berg & Mansour, 2019a) that, with probability at least
�, any state is reachable under any policy. Without
such an assumption, an H3/2|S||A|1/4T 3/4-regret is
established.

In the latter two settings with unknown transition dynamics,
all the existing algorithms (Neu et al., 2012; Rosenberg &
Mansour, 2019b;a) follow the gradient direction with respect
to the visitation measure, and thus, differ from most practi-
cal policy optimization algorithms. In comparison, although
our regret analysis only considers the tabular setting, our
algorithmic framework for incorporating exploration readily
extends to more general settings involving function approxi-
mators. In particular, OPPO follows the gradient direction
with respect to the policy. Meanwhile, OPPO is simply an
optimistic variant of NPG, TRPO, and PPO, which makes it
also a practical policy optimization algorithm.

Broadly speaking, our work is related to a vast body of work
on value-based reinforcement learning in tabular (Jaksch
et al., 2010; Osband et al., 2014; Osband & Van Roy, 2016;
Azar et al., 2017; Dann et al., 2017; Strehl et al., 2006; Jin
et al., 2018) and linear settings (Yang & Wang, 2019a;b; Jin
et al., 2019), as well as nonlinear settings involving general
function approximators (Wen & Van Roy, 2017; Jiang et al.,
2017; Du et al., 2019; Dong et al., 2019). In particular,
our setting is a special case of the linear setting studied
by (Jin et al., 2019), which generalizes the one proposed
by (Yang & Wang, 2019a;b). In comparison, we focus on
policy-based reinforcement learning, which is significantly
less studied in theory. In particular, compared with opti-
mistic LSVI (Azar et al., 2017; Jin et al., 2019) (specialized
to the tabular setting), OPPO attains the same

p
T -regret

even in the presence of adversarially chosen reward func-
tions. Compared with optimism-led iterative value-function
elimination (OLIVE) (Jiang et al., 2017; Dong et al., 2019),
which handles the more general low-Bellman-rank setting
but is only sample-efficient, OPPO focuses on the tabular
setting and simultaneously attains computational efficiency
and sample efficiency. Despite the differences between
policy-based and value-based reinforcement learning, our
work shows that the general principle of “optimism in the
face of uncertainty” (Auer et al., 2002; Auer, 2002; Bubeck
& Cesa-Bianchi, 2012) can be carried over from existing
algorithms based on value iteration, e.g., optimistic LSVI,
into policy optimization algorithms, e.g., NPG, TRPO, and

PPO, to make them sample-efficient, which further leads to
a new general principle of “conservative optimism in the
face of uncertainty and adversary” that additionally allows
adversarially chosen reward functions.

1.2. Notation

We denote by k · k2 the `2-norm of a vector or the spectral
norm of a matrix and denote by k · kF the Frobenius norm
of a matrix. We denote by �(A) the set of probability
distributions on a set A and correspondingly define

�(A |S, H) =
�
{⇡h(· | ·)}Hh=1 : ⇡h(· |x) 2 �(A)

for any x 2 S and h 2 [H]
 

for any sets S, A, and integer H 2 Z+. For any p1, p2 2
�(A), we denote by DKL(p1 k p2) the KL-divergence,

DKL(p1 k p2) =
X

a2A
p1(a) log

p1(a)

p2(a)
.

Throughout this paper, we denote by C,C 0, C 00, . . . absolute
constants whose values can vary from line by line.

2. Preliminaries

In this paper, we consider an episodic MDP (S,A, H,P, r),
where S and A are the state and action spaces, respec-
tively, which are finite, H is the length of each episode,
Ph(· | ·, ·) is the transition kernel from a state-action pair
to the next state at the h-th step of each episode, and
rk
h

: S ⇥ A ! [0, 1] is the reward function at the h-th
step of the k-th episode. We assume that the reward func-
tion is deterministic, which is without loss of generality,
as our subsequent regret analysis readily generalizes to the
setting where the reward function is stochastic.

At the beginning of the k-th episode, the agent determines
a policy ⇡k = {⇡k

h
}H
h=1 2 �(A |S, H). Without loss

of generality, we assume that the initial state xk

1 is fixed
to x1 2 S across all the episodes. Then the agent itera-
tively interacts with the environment as follows. At the
h-th step, the agent receives a state xk

h
and takes an ac-

tion following ak
h
⇠ ⇡k

h
(· |xk

h
). Subsequently, the agent

receives a reward rk
h
(xk

h
, ak

h
) and the next state following

xk

h+1 ⇠ Ph(· |xk

h
, ak

h
). The k-th episode ends after the

agent receives the last reward rk
H
(xk

H
, ak

H
).

We allow the reward function rk = {rk
h
}H
h=1 to be adver-

sarially chosen by the environment at the beginning of the
k-th episode, which can depend on the (k � 1) historical
trajectories. The reward function rk

h
is revealed to the agent

after it takes the action ak
h

at the state xk

h
, which together

determine the received reward rk
h
(xk

h
, ak

h
). We define the

regret in terms of competing with the globally optimal pol-
icy in hindsight (Cesa-Bianchi & Lugosi, 2006; Bubeck &
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Cesa-Bianchi, 2012) by

Regret(T ) = max
⇡2�(A |S,H)

KX

k=1

�
V ⇡,k

1 (xk

1)� V ⇡
k
,k

1 (xk

1)
�
,

(2.1)

where T = HK is the total number of steps taken by the
agent in all the K episodes. For any policy ⇡ = {⇡h}Hh=1 2
�(A |S, H), the value function V ⇡,k

h
: S ! R associated

with the reward function rk = {rk
h
}H
h=1 is defined by

V ⇡,k

h
(x) = E⇡

h HX

i=h

rk
i
(xi, ai)

���xh = x
i
. (2.2)

Here we denote by E⇡[·] the expectation with respect to
the randomness of the state-action sequence {(xh, ah)}Hh=1,
where the action ah follows the policy ⇡h(· |xh) at the state
xh and the next state xh+1 follows the transition dynamics
Ph(· |xh, ah). Correspondingly, we define the action-value
function (also known as the Q-function) Q⇡,k

h
: S⇥A! R

by

Q⇡,k

h
(x, a) = E⇡

h HX

i=h

rk
i
(xi, ai)

���xh = x, ah = a
i
.

(2.3)

By the definitions in (2.2) and (2.3), we have the following
Bellman equation,

V ⇡,k

h
= hQ⇡,k

h
,⇡hiA, Q⇡,k

h
= rk

h
+ PhV

⇡,k

h+1. (2.4)

Here h·, ·iA denotes the inner product over A, where the
subscript is omitted subsequently if it is clear from the
context. Also, Ph is the operator form of the transition
kernel Ph(· | ·, ·), which is defined by

(Phf)(x, a) = E[f(x0) |x0 ⇠ Ph(· |x, a)] (2.5)

for any function f : S ! R. By allowing the reward
function to be adversarially chosen in each episode, our
setting generalizes the stationary setting commonly adopted
by the existing work on value-based reinforcement learning
(Jaksch et al., 2010; Osband et al., 2014; Osband & Van Roy,
2016; Azar et al., 2017; Dann et al., 2017; Strehl et al., 2006;
Jin et al., 2018; 2019; Yang & Wang, 2019a;b), where the
reward function is fixed across all the episodes.

For notational simplicity, we denote by � : S ⇥ A ! Rd

with d = |S||A| the vector-valued indicator function for the
elements of S ⇥A. In other words, for any (x, a) 2 S ⇥A,
we have �(x, a) 2 Rd with [�(x, a)]x0,a0 = 1 if (x, a) =
(x0, a0) and [�(x, a)]x0,a0 = 0 otherwise. For any h 2 [H],
we define the vector-valued function µh : S ! Rd such that
[µh(x0)]x,a = Ph(x0 |x, a) for any (x, a, x0) 2 S ⇥A⇥ S .

Hence, we have

Ph(x
0 |x, a) =

X

(x̄,ā)2S⇥A

[�(x, a)]x̄,ā · [µh(x
0)]x̄,ā

= �(x, a)>µh(x
0),

that is, the transition kernel can be represented as a linear
function of the feature map �. Meanwhile, the Q-function
and reward function can be represented as the linear func-
tions of �. We use such a notation of � throughout this
paper.

3. Algorithm and Theory

3.1. Optimistic PPO (OPPO)

We present Optimistic PPO (OPPO) in Algorithm 1, which
involves a policy improvement step and a policy evaluation
step.

Policy Improvement Step. In the k-th episode, OPPO up-
dates ⇡k based on ⇡k�1 (Lines 4-9 of Algorithm 1). In
detail, we define the following linear function of the policy
⇡ 2 �(A |S, H),

Lk�1(⇡) = V ⇡
k�1

,k�1
1 (xk

1) (3.1)

+ E⇡k�1

h HX

h=1

hQ⇡
k�1

,k�1
h

(xh, ·),⇡h(· |xh)i
���x1 = xk

1

i

� E⇡k�1

h HX

h=1

hQ⇡
k�1

,k�1
h

(xh, ·),⇡k�1
h

(· |xh)i
���x1 = xk

1

i
,

which is a local linear approximation of V ⇡,k�1
1 (xk

1) at
⇡ = ⇡k�1 (Schulman et al., 2015; 2017). In particular,
it holds that Lk�1(⇡k�1) = V ⇡

k�1
,k�1

1 (xk

1). With Lk�1

defined above, the policy improvement step is defined by

⇡k  argmax
⇡2�(A |S,H)

Lk�1(⇡) (3.2)

� ↵�1 · E⇡k�1

h
eDKL(⇡k⇡k�1)

���x1 = xk

1

i
,

where

eDKL(⇡k⇡k�1) =
HX

h=1

DKL

�
⇡h(· |xh)

��⇡k�1
h

(· |xh)
�
.

Here the KL-divergence regularizes ⇡ to be close to ⇡k�1 so
that Lk�1(⇡) well approximates V ⇡,k�1

1 (xk

1), which further
ensures that the updated policy ⇡k improves the expected
total reward (associated with the reward function rk�1) upon
⇡k�1. Also, ↵ > 0 is the stepsize, which is specified in
Theorem 3.1. By executing the updated policy ⇡k, the
agent receives the state-action sequence {(xk

h
, ak

h
)}H

h=1 and
observes the reward function rk, which together determine
the received rewards {rk

h
(xk

h
, ak

h
)}H

h=1.



Provably Efficient Exploration in Policy Optimization

The policy improvement step defined in (3.2) corresponds
to one iteration of NPG (Kakade, 2002), TRPO (Schul-
man et al., 2015), and PPO (Schulman et al., 2017). In
particular, PPO solves the same KL-regularized policy op-
timization subproblem as in (3.2) at each iteration, while
TRPO solves an equivalent KL-constrained subproblem. As
the Q-function Q⇡

k�1
,k�1

h
is linear in the feature map �,

the updated policy ⇡k can be equivalently obtained by one
iteration of NPG when the policy is parameterized by an
energy-based distribution, where the energy function is also
linear in the feature map � (Agarwal et al., 2019; Wang et al.,
2019). Such a policy improvement step can also be cast as
one iteration of mirror descent (Nemirovsky & Yudin, 1983)
or dual averaging (Xiao, 2010), where the Q-function plays
the role of the gradient (Liu et al., 2019; Wang et al., 2019).

Algorithm 1 Optimistic PPO (OPPO)
1: Initialize {Q0

h
}H
h=1 as zero functions and {⇡0

h
}H
h=1 as

uniform distributions on A.
2: For episode k = 1, 2, . . . ,K do

3: Receive the initial state xk

1 .
4: For step h = 1, 2, . . . , H do

5: Update the policy by
6: ⇡k

h
(· | ·) / ⇡k�1

h
(· | ·) · exp{↵ ·Qk�1

h
(·, ·)}.

7: Take the action following ak
h
⇠ ⇡k

h
(· |xk

h
).

8: Receive the next state xk

h+1.
9: Observe the reward function rk

h
(·, ·).

10: Initialize V k

H+1 as a zero function.
11: For step h = H,H � 1, . . . , 1 do

12: ⇤k

h
 

P
k�1
⌧=1 �(x

⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)> + � · I .

13: wk

h
 (⇤k

h
)�1

P
k�1
⌧=1 �(x

⌧

h
, a⌧

h
) ·V k

h+1(x
⌧

h+1).
14: Qk

h
(·, ·) rk

h
(·, ·) + min{�(·, ·)>wk

h

15: +� · [�(·, ·)>(⇤k

h
)�1�(·, ·)]1/2, H � h}+.

16: V k

h
(·) hQk

h
(·, ·),⇡k

h
(· | ·)iA.

The updated policy ⇡k obtained in (3.2) takes the following
closed form,

⇡k

h
(· |x) / ⇡k�1

h
(· |x) · exp

�
↵ ·Q⇡

k�1
,k�1

h
(x, ·)

�
(3.3)

for any h 2 [H] and x 2 S. However, the Q-function
Q⇡

k�1
,k�1

h
remains to be estimated through the subsequent

policy evaluation step. We denote by Qk�1
h

the estimated Q-
function, which replaces the Q-function Q⇡

k�1
,k�1

h
in (3.1)-

(3.3) and is correspondingly used in Line 6 of Algorithm 1.

Policy Evaluation Step. At the end of the k-th episode,
OPPO evaluates the policy ⇡k based on the (k�1) historical
trajectories (Lines 11-16 of Algorithm 1). In detail, for any
h 2 [H], we define the empirical mean-squared Bellman

error (MSBE) (Sutton & Barto, 2018) by

Mk

h
(w) =

k�1X

⌧=1

�
V k

h+1(x
⌧

h+1)� �(x⌧

h
, a⌧

h
)>w

�2
, (3.4)

where V k

h+1 =

(
hQk

h+1,⇡
k

h+1iA, h 2 [H � 1],

0, h = H.

Here 0 is the zero function on S . The policy evaluation step
is defined by iteratively updating the estimated Q-function
Qk = {Qk

h
}H
h=1 associated with the reward function rk =

{rk
h
}H
h=1 by

wk

h
 argmin

w2Rd

Mk

h
(w) + � · kwk22, (3.5)

Qk

h
 rk

h
+min{�>wk

h
+ �k

h
, H � h}+ (3.6)

in the order of h = H,H � 1, . . . , 1. Here � > 0 is the
regularization parameter, which is specified in Theorem 3.1.
Also, �k

h
: S ⇥A! R+ is a bonus function, which quan-

tifies the uncertainty in estimating the Q-function Q⇡
k
,k

h

based on only finite historical data. In particular, the weight
vector wk

h
obtained in (3.5) and the bonus function �k

h
take

the following closed forms,

wk

h
= (⇤k

h
)�1

⇣k�1X

⌧=1

�(x⌧

h
, a⌧

h
) · V k

h+1(x
⌧

h+1)
⌘
,

�k

h
= � ·

�
�>(⇤k

h
)�1�

�1/2
, (3.7)

where ⇤k

h
=

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)> + � · I.

Here � > 0 scales with d, H , and K, which is specified in
Theorem 3.1.

The policy evaluation step defined in (3.5) corresponds to
one iteration of least-squares temporal difference (LSTD)
(Bradtke & Barto, 1996; Boyan, 2002). In particular, as we
have

E[V k

h+1(x
0) |x0 ⇠ Ph(· |x, a)] = (PhV

k

h+1)(x, a)

for any (x, a) 2 S ⇥ A in the empirical MSBE defined
in (3.4), �>wk

h
in (3.5) is an estimator of PhV k

h+1 in the

Bellman equation defined in (2.4) (with V ⇡
k
,k

h+1 replaced
by V k

h+1). Meanwhile, we construct the bonus function �k

h

according to (3.7) so that �>wk

h
+�k

h
is an upper confidence

bound (UCB), that is, it holds that

�>wk

h
+ �k

h
� PhV

k

h+1

with high probability, which is subsequently characterized
in Lemma 4.3. Here the inequality holds uniformly for any
(x, a) 2 S ⇥A. As the fact that rk

h
2 [0, 1] for any h 2 [H]

implies that PhV
⇡
k
,k

h+1 2 [0, H�h], we truncate �>wk

h
+�k

h

to the range [0, H � h] in (3.5), which is correspondingly
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used in Line 15 of Algorithm 1.

Moreover, recall that the feature map � is the vector-valued
indicator function. We can rewrite the updates in (3.7) ex-
plicitly as follows. For any (x, a, x0) 2 S ⇥ A ⇥ S and
(h, k) 2 [H]⇥ [K], we define nk

h
(x, a, x0) and nk

h
(x, a) by

nk

h
(x, a, x0) =

k�1X

⌧=1

1{(x⌧

h
, a⌧

h
, x⌧

h
) = (x, a, x0)},

nk

h
(x, a) =

k�1X

⌧=1

1{(x⌧

h
, a⌧

h
) = (x, a)}.

In other words, nk

h
(x, a) counts the number of times we

observe the state-action pair (x, a) at the h-th step before the
k-th episode, while nk

h
(x, a, x0) counts the number of times

we observe the state transition (x, a, x0) at the h-th step
before the k-th episode. Hence, ⇤k

h
2 Rd⇥d is a diagonal

matrix, where the (x, a)-th diagonal entry is nk

h
(x, a) + �.

Also, the (x, a)-th entry of wk

h
2 Rd takes the following

equivalent form,

[wk

h
]x,a = �(x, a)>wk

h
=

X

x02S

nk

h
(x, a, x0)

nk

h
(x, a) + �

· V k

h+1(x
0).

Finally, for any (x, a) 2 S ⇥A, the bonus function �k

h
in

(3.7) takes the following equivalent form,

�k

h
(x, a) = � ·

�
nk

h
(x, a) + �

��1/2
,

which is the count-based bonus commonly used in the liter-
ature (Azar et al., 2017; Jin et al., 2018).

We write the policy evaluation step of OPPO using the fea-
ture map � for generality, although it admits a simpler form
in the tabular setting. In fact, the policy evaluation step de-
fined in (3.5)–(3.7) can be readily used in the linear setting,
where we approximate the Q-function by the linear function
of a given feature map �. In such a linear setting, the bonus
function �k

h
in (3.7) is the UCB commonly used in the lit-

erature on linear bandits (Dani et al., 2008; Auer, 2002;
Abbasi-Yadkori et al., 2011; Yang & Wang, 2019b; Jin et al.,
2019). Furthermore, even though OPPO is built on the lin-
ear least-squares estimation problem in (3.5), it is possible
to extend OPPO to the nonlinear setting involving general
function approximators, e.g., generalized linear functions
and neural networks. In such a nonlinear setting, we replace
(3.5) by the corresponding nonlinear least-squares estima-
tion problem and define Qk

h
in the same way as in (3.6), as

long as we can construct the desired bonus function �k

h
that

quantifies the uncertainty of the corresponding nonlinear
least-squares estimator.

Although we focus on the setting with full-information feed-
back where the reward function is adversarially chosen in
each episode, OPPO can be straightforwardly adapted to the
setting with bandit feedback where the reward function is

stationary. In such a setting, the reward function is fixed to
{rh}h2[H] across all the episodes and we only observe the
received rewards {rh(xk

h
, ak

h
)}H

h=1 in the k-th episode. To
this end, we redefine the MSBE Mk

h
in (3.4) by

Mk

h
(w) =

k�1X

⌧=1

�
rh(x

⌧

h
, a⌧

h
) + V k

h+1(x
⌧

h+1)� �(x⌧

h
, a⌧

h
)>w

�2
.

Then we redefine Qk

h
in (3.6) by

Qk

h
 min{�>wk

h
+ �k

h
, H � h}+,

where wk

h
and �k

h
are defined in (3.5) and (3.7), respectively.

Furthermore, our regret analysis can be straightforwardly
adapted to such a setting and yield the same

p
|S|2|A|H3T -

regret up to logarithmic factors.

3.2. Regret Analysis

We establish an upper bound of the regret of OPPO (Algo-
rithm 1) in the following theorem. Recall that the regret is
defined in (2.1) and T = HK is the total number of steps
taken by the agent, where H is the length of each episode
and K is the total number of episodes. Also, |A| is the
cardinality of A and d is the dimension of the feature map
�.

Theorem 3.1 (Total Regret). Let ↵ =
p

2 log |A|/(H2K)
in (3.2) and Line 6 of Algorithm 1, � = 1 in (3.5) and Line
12 of Algorithm 1, and

� = C
p

|S|H2 · log(|S||A|K/⇣) (3.8)

in (3.7) and Line 15 of Algorithm 1, where C > 0 is
an absolute constant and ⇣ 2 (0, 1]. The regret of OPPO
satisfies

Regret(T )  C 0
p

|S|2|A|H3T · log(|S||A|K/⇣)

with probability at least 1� ⇣ , where C 0 > 0 is an absolute
constant.

Proof. See Section 4 for a proof sketch and Appendix C for
a detailed proof.

Theorem 3.1 proves that OPPO attains a
p
|S|2|A|H3T -

regret up to logarithmic factors, where the dependency on
the total number of steps T is optimal. Meanwhile, follow-
ing the same argument of (Jin et al., 2018) (Section 3.1),
such a

p
|S|2|A|H3T -regret translates to a |S|4|A|2H4/"2-

sample complexity (up to logarithmic factors). Here " > 0
measures the suboptimality of the obtained policy ⇡k in the
following sense,

max
⇡2�(A |S,H)

V ⇡

1 (x1)� V ⇡
k

1 (x1)  ",

where k is sampled from [K] uniformly at random. Here
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we denote the value function by V ⇡

1 = V ⇡,k

1 and the initial
state by x1 = xk

1 for any k 2 [K], as the reward function
and initial state are fixed across all the episodes. More-
over, compared with optimistic LSVI, OPPO additionally
allows adversarially chosen reward functions without exac-
erbating the regret, which leads to a notion of robustness.
Our subsequent discussion intuitively explains how OPPO
achieves such a notion of robustness while attaining thep

|S|2|A|H3T -regret (up to logarithmic factors).

Discussion of Mechanisms. In the sequel, we consider
the ideal setting where the transition dynamics are known,
which, by the Bellman equation defined in (2.4), allows us
to access the Q-function Q⇡,k

h
for any policy ⇡ and (h, k) 2

[H]⇥ [K] once given the reward function rk. The following
lemma connects the difference between two policies to the
difference between their expected total rewards through the
Q-function.

Lemma 3.2 (Performance Difference). For any policies
⇡,⇡0 2 �(A |S, H) and k 2 [K], it holds that

V ⇡
0
,k

1 (xk

1)� V ⇡,k

1 (xk

1) (3.9)

= E⇡0

h HX

h=1

hQ⇡,k

h
(xh, ·),⇡0

h
(· |xh)� ⇡h(· |xh)i

���x1 = xk

1

i
.

Proof. See Appendix A.1 for a detailed proof.

The following lemma characterizes the policy improvement
step defined in (3.2), where the updated policy ⇡k takes the
closed form in (3.3).

Lemma 3.3 (One-Step Descent). For any distributions
p⇤, p 2 �(A), state x 2 S, and function Q : S ⇥ A !
[0, H], it holds for p0 2 �(A) with p0(·) / p(·) · exp{↵ ·
Q(x, ·)} that

hQ(x, ·), p⇤(·)� p(·)i  ↵H2/2

+ ↵�1 ·
⇣
DKL

�
p⇤(·)

�� p(·)
�
�DKL

�
p⇤(·)

�� p0(·)
�⌘

.

Proof. See Appendix A.2 for a detailed proof.

Corresponding to the definition of the regret in (2.1), we de-
fine the globally optimal policy in hindsight (Cesa-Bianchi
& Lugosi, 2006; Bubeck & Cesa-Bianchi, 2012) as

⇡⇤ = argmax
⇡2�(A |S,H)

KX

k=1

V ⇡,k

1 (xk

1), (3.10)

which attains a zero-regret. In the ideal setting where the
Q-function Q⇡

k
,k

h
associated with the reward function rk is

known and the updated policy ⇡k+1
h

takes the closed form

in (3.3), Lemma 3.3 implies

hQ⇡
k
,k

h
(x, ·),⇡⇤

h
(· |x)� ⇡k

h
(· |x)i (3.11)

 ↵H2/2 + ↵�1 ·
⇣
DKL

�
⇡⇤
h
(· |x)

��⇡k

h
(· |x)

�

�DKL

�
⇡⇤
h
(· |x)

��⇡k+1
h

(· |x)
�⌘

for any (h, k) 2 [H] ⇥ [K] and x 2 S. Combining (3.11)
with Lemma 3.2, we obtain

Regret(T ) =
KX

k=1

�
V ⇡

⇤
,k

1 (xk

1)� V ⇡
k
,k

1 (xk

1)
�

= E⇡⇤

h KX

k=1

HX

h=1

hQ⇡
k
,k

h
(xh, ·),⇡⇤

h
(· |xh)� ⇡k

h
(· |xh)i

i

 ↵H3K/2

+ ↵�1 ·
HX

h=1

E⇡⇤
⇥
DKL

�
⇡⇤
h
(· |xh)

��⇡1
h
(· |xh)

�⇤

 ↵H3K/2 + ↵�1H · log |A|. (3.12)

Here the first inequality follows from telescoping the
right-hand side of (3.11) across all the episodes and the
fact that the KL-divergence is nonnegative. Also, the
second inequality follows from the initialization of the
policy and Q-function in Line 1 of Algorithm 1. Set-
ting ↵ =

p
2 log |A|/(H2K) in (3.12), we establish ap

H3T · log |A|-regret in the ideal setting.

Such an ideal setting demonstrates the key role of the KL-
divergence in the policy improvement step defined in (3.2),
where ↵ > 0 is the stepsize. Intuitively, without the KL-
divergence, that is, setting ↵ ! 1, the upper bound of
the regret on the right-hand side of (3.12) tends to infin-
ity. In fact, for any ↵ <1, the updated policy ⇡k

h
in (3.3)

is “conservatively” greedy with respect to the Q-function
Q⇡

k�1
,k�1

h
associated with the reward function rk�1. In

particular, the regularization effect of both ⇡k�1
h

and ↵ in
(3.3) ensures that ⇡k

h
is not “fully” committed to perform

well only with respect to rk�1, just in case the subsequent
adversarially chosen reward function rk significantly differs
from rk�1. In comparison, the “fully” greedy policy im-
provement step, which is commonly adopted by the existing
work on value-based reinforcement learning (Jaksch et al.,
2010; Osband et al., 2014; Osband & Van Roy, 2016; Azar
et al., 2017; Dann et al., 2017; Strehl et al., 2006; Jin et al.,
2018; 2019; Yang & Wang, 2019a;b), lacks such a notion
of robustness. On the other hand, an intriguing question
is whether being “conservatively” greedy is less sample-
efficient than being “fully” greedy in the stationary setting,
where the reward function is fixed across all the episodes.
In fact, in the ideal setting where the Q-function Q⇡

k�1
,k�1

h

associated with the reward function rk�1 in (3.3) is known,
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the “fully” greedy policy improvement step with ↵ ! 1
corresponds to one step of policy iteration (Sutton & Barto,
2018), which converges to the globally optimal policy ⇡⇤

within K = H episodes and hence equivalently induces an
H2-regret. However, in the realistic setting, the Q-function
Q⇡

k�1
,k�1

h
in (3.1)-(3.3) is replaced by the estimated Q-

function Qk�1
h

in Line 6 of Algorithm 1, which is obtained
by the policy evaluation step defined in (3.5). As a result of
the estimation uncertainty that arises from only observing
finite historical data, it is indeed impossible to do better
than a

p
|S||A|H2T -regret in the tabular setting (Jin et al.,

2018), which is shown to be an information-theoretic lower
bound. The regret of OPPO is only worse than such a lower
bound by a factor of

p
|S|H . We conjecture the additionalp

|S|-factor may be necessary due to adversarially chosen
reward functions, as such an additional

p
|S|-factor also

appears in the work of (Rosenberg & Mansour, 2019b). In
summary, we show that being “conservatively” greedy suf-
fices to achieve sample-efficiency, which complements its
advantages in terms of robustness in the more challenging
setting with adversarially chosen reward functions.

4. Proof Sketch

4.1. Regret Decomposition

For the simplicity of discussion, we define the model pre-
diction error as

◆k
h
= rk

h
+ PhV

k

h+1 �Qk

h
, (4.1)

which arises from estimating PhV k

h+1 in the Bellman equa-

tion defined in (2.4) (with V ⇡
k
,k

h+1 replaced by V k

h+1) based
on only finite historical data. Also, we define the following
filtration generated by the state-action sequence and reward
functions.

Definition 4.1 (Filtration). For any (k, h) 2 [K]⇥ [H], we
define Fk,h,1 as the �-algebra generated by the following
state-action sequence and reward functions,

{(x⌧

i
, a⌧

i
)}(⌧,i)2[k�1]⇥[H] [ {r⌧}⌧2[k] [ {(xk

i
, ak

i
)}i2[h],

and Fk,h,2 as the �-algebra generated by

{(x⌧

i
, a⌧

i
)}(⌧,i)2[k�1]⇥[H] [ {r⌧}⌧2[k]

[ {(xk

i
, ak

i
)}i2[h] [ {xk

h+1},

where, for the simplicity of discussion, we define xk

H+1
as a null state for any k 2 [K]. The �-algebra sequence
{Fk,h,m}(k,h,m)2[K]⇥[H]⇥[2] is a filtration with respect to
the timestep index

t(k, h,m) = (k � 1) · 2H + (h� 1) · 2 +m. (4.2)

In other words, for any t(k, h,m)  t(k0, h0,m0), it holds
that Fk,h,m ✓ Fk0,h0,m0 .

By the definition of the �-algebra Fk,h,m, for any (k, h) 2
[K]⇥ [H], the estimated value function V k

h
and Q-function

Qk

h
are measurable to Fk,1,1, as they are obtained based on

the (k� 1) historical trajectories and the reward function rk

adversarially chosen by the environment at the beginning of
the k-th episode, both of which are measurable to Fk,1,1.

In the following lemma, we decompose the regret defined
in (2.1) into three terms. Recall that the globally optimal
policy in hindsight ⇡⇤ is defined in (3.10) and the model
prediction error ◆k

h
is defined in (4.1).

Lemma 4.2 (Regret Decomposition). It holds that

Regret(T ) (4.3)

=
KX

k=1

�
V ⇡

⇤
,k

1 (xk

1)� V ⇡
k
,k

1 (xk

1)
�

=
KX

k=1

HX

h=1

E⇡⇤
⇥
hQk

h
(xh, ·),⇡⇤

h
(· |xh)� ⇡k

h
(· |xh)i

⇤

| {z }
(i)

+MK,H,2| {z }
(ii)

+
KX

k=1

HX

h=1

�
E⇡⇤ [◆k

h
(xh, ah)]� ◆k

h
(xk

h
, ak

h
)
�

| {z }
(iii)

,

which is independent of the tabular setting or the assumption
that the state and action spaces are finite. Here the sequence
{Mk,h,m}(k,h,m)2[K]⇥[H]⇥[2] is a martingale adapted to
the filtration {Fk,h,m}(k,h,m)2[K]⇥[H]⇥[2], both with re-
spect to the timestep index t(k, h,m) defined in (4.2) of
Definition 4.1.

Proof. See Appendix B.1 for a detailed proof.

Lemma 4.2 allows us to characterize the regret by upper
bounding terms (i), (ii), and (iii) in (4.3) respectively. In
detail, term (i) corresponds to the right-hand side of (3.2)
in Lemma 3.2 with the Q-function Q⇡

k
,k

h
replaced by the

estimated Q-function Qk

h
, which is obtained by the policy

evaluation step defined in (3.5). In particular, as the updated
policy ⇡k+1

h
is obtained by the policy improvement step

in Line 6 of Algorithm 1 using ⇡k

h
and Qk

h
, term (i) can be

upper bounded following a similar analysis to the discussion
in Section 3.2, which is based on Lemmas 3.2 and 3.3 as
well as (3.12). Also, by the Azuma-Hoeffding inequality,
term (ii) is a martingale that scales as O(BM

p
TM) with

high probability, where TM is the total number of timesteps
and BM is an upper bound of the martingale differences.
More specifically, we prove that TM = 2HK = 2T and
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BM = 2H in Appendix C, which implies that term (ii)
is O(

p
H2T ) with high probability. Meanwhile, term (iii)

corresponds to the model prediction error, which is char-
acterized subsequently in Section 4.2. Note that the regret
decomposition in (4.3) of Lemma 4.2 holds for any MDP,
and therefore, is immediately applicable to any forms of
estimated Q-functions Qk

h
in more general settings. In par-

ticular, as long as we can upper bound term (iii) in (4.3), our
regret analysis can be carried over even beyond the tabular
setting.

4.2. Model Prediction Error

To upper bound term (iii) in (4.3) of Lemma 4.2, we char-
acterize the model prediction error ◆k

h
defined in (4.1) in

the following lemma. Recall that the bonus function �k

h
is

defined in (3.7).

Lemma 4.3 (Upper Confidence Bound). Let � = 1 in (3.5)
and Line 12 of Algorithm 1, and

� = C
p
|S|H2 · log(|S||A|K/⇣)

in (3.7) and Line 15 of Algorithm 1, where C > 0 is an
absolute constant and ⇣ 2 (0, 1]. It holds that

�2�k

h
(x, a)  ◆k

h
(x, a)  0

with probability at least 1� ⇣/2 for any (k, h) 2 [K]⇥ [H]
and (x, a) 2 S ⇥A.

Proof. See Appendix B.2 for a detailed proof.

Lemma 4.3 demonstrates the key role of uncertainty quan-
tification in achieving sample-efficiency. More specifically,
due to the uncertainty that arises from only observing finite
historical data, the model prediction error ◆k

h
(x, a) can be

possibly large for the state-action pairs (x, a) that are less
visited or even unseen. However, as is shown in Lemma 4.3,
explicitly incorporating the bonus function �k

h
into the esti-

mated Q-function Qk

h
ensures that ◆k

h
(x, a)  0 with high

probability for any (k, h) 2 [K]⇥ [H] and (x, a) 2 S ⇥A.
In other words, the estimated Q-function Qk

h
is “optimistic

in the face of uncertainty”, as ◆k
h
(x, a)  0 or equivalently

Qk

h
(x, a) � rk

h
(x, a) + (PhV

k

h+1)(x, a) (4.4)

implies that E⇡⇤ [◆k
h
(xh, ah) |x1 = xk

1 ] in term (iii) of (4.3)
is upper bounded by zero. Also, Lemma 4.3 implies that
�◆k

h
(xk

h
, ak

h
)  2�k

h
(xk

h
, ak

h
) with high probability for any

(k, h) 2 [K] ⇥ [H]. As a result, it only remains to upper
bound the cumulative sum

KX

k=1

HX

h=1

2�k

h
(xk

h
, ak

h
)

corresponding to term (iii) in (4.3), which is characterized
by the elliptical potential lemma (Dani et al., 2008; Rus-

mevichientong & Tsitsiklis, 2010; Chu et al., 2011; Abbasi-
Yadkori et al., 2011; Jin et al., 2019). See Appendix C for a
detailed proof.

To illustrate the intuition behind the model prediction er-
ror ◆k

h
defined in (4.1), we write the estimated transition

dynamics as

bPk,h(x
0 |x, a) = nk

h
(x, a, x0)

nk

h
(x, a) + �

.

Correspondingly, the policy evaluation step defined in (3.5)
takes the following equivalent form,

Qk

h
 rk

h
+ bPk,hV

k

h+1 + �k

h
. (4.5)

Here bPk,h is the operator form of the estimated transition
kernel bPk,h(· | ·, ·) coupled with the subsequent truncation
to the range [0, H � h], which is defined by

(bPk,hf)(x, a)

= min{E[f(x0) |x0 ⇠ bPk,h(· |x, a)], H � h}+

for any function f : S ! R. Correspondingly, by (4.1) and
(4.5) we have

◆k
h
= rk

h
+ PhV

k

h+1 �Qk

h

= (Ph � bPk,h)V
k

h+1 � �k

h
, (4.6)

where Ph � bPk,h is the error that arises from estimating
the transition dynamics based on only finite historical data.
Such a model estimation error enters the regret in (4.3) of
Lemma 4.2 only through the model prediction error (Ph �
bPk,h)V k

h+1, which allows us to employ the estimated Q-
function Qk

h
obtained by the policy evaluation step defined

in (4.5). As is shown in Appendix B.2, the bonus function
�k

h
upper bounds (Ph�bPk,h)V k

h+1 in (4.6) uniformly for any
(k, h) 2 [K]⇥[H] and (x, a) 2 S⇥A with high probability,
which then ensures the optimism of the estimated Q-function
Qk

h
in the sense of (4.4).

5. Conclusion

We study the sample efficiency of policy-based reinforce-
ment learning in the episodic setting of Markov decision
processes (MDPs) with full-information feedback. We pro-
posed an optimistic variant of the proximal policy optimiza-
tion algorithm, dubbed as OPPO, which incorporates the
principle of “optimism in the face of uncertainty” into pol-
icy optimization. When applied to the episodic MDP with
unknown transition and adversarial reward, OPPO provably
achieves a near-optimal eO(

p
|S|2|A|H3T ) regret. To the

best our knowledge, OPPO is the first provably efficient pol-
icy optimization algorithm that explicitly incorporates ex-
ploration.
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entropy-regularized Markov decision processes. arXiv

preprint arXiv:1705.07798, 2017.

OpenAI. OpenAI Five. https://openai.com/
five/, 2019.

Osband, I. and Van Roy, B. On lower bounds for regret in
reinforcement learning. arXiv preprint arXiv:1608.02732,
2016.

Osband, I., Van Roy, B., and Wen, Z. Generalization and ex-
ploration via randomized value functions. arXiv preprint

arXiv:1402.0635, 2014.

Rosenberg, A. and Mansour, Y. Online stochastic short-
est path with bandit feedback and unknown transition
function. In Advances in Neural Information Processing

Systems, pp. 2209–2218, 2019a.

Rosenberg, A. and Mansour, Y. Online convex optimization
in adversarial Markov decision processes. arXiv preprint

arXiv:1905.07773, 2019b.

Rusmevichientong, P. and Tsitsiklis, J. N. Linearly parame-
terized bandits. Mathematics of Operations Research, 35
(2):395–411, 2010.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International

Conference on Machine Learning, pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-
optimal time and sample complexities for solving Markov
decision processes with a generative model. In Advances

in Neural Information Processing Systems, pp. 5186–
5196, 2018a.

Sidford, A., Wang, M., Wu, X., and Ye, Y. Variance reduced
value iteration and faster algorithms for solving Markov
decision processes. In Symposium on Discrete Algorithms,
pp. 770–787, 2018b.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the



Provably Efficient Exploration in Policy Optimization

game of Go with deep neural networks and tree search.
Nature, 529(7587):484, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of Go without
human knowledge. Nature, 550(7676):354, 2017.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman,
M. L. PAC model-free reinforcement learning. In Inter-

national Conference on Machine Learning, pp. 881–888,
2006.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An

Introduction. MIT, 2018.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural

Information Processing Systems, 2000.

Tosatto, S., Pirotta, M., D’Eramo, C., and Restelli, M.
Boosted fitted Q-iteration. In International Conference

on Machine Learning, pp. 3434–3443, 2017.

Wainwright, M. J. Variance-reduced Q-learning is minimax
optimal. arXiv preprint arXiv:1906.04697, 2019.

Wang, L., Cai, Q., Yang, Z., and Wang, Z. Neural policy
gradient methods: Global optimality and rates of conver-
gence. arXiv preprint arXiv:1909.01150, 2019.

Wang, W. Y., Li, J., and He, X. Deep reinforcement learning
for NLP. In Association for Computational Linguistics,
pp. 19–21, 2018.

Wen, Z. and Van Roy, B. Efficient reinforcement learn-
ing in deterministic systems with value function gener-
alization. Mathematics of Operations Research, 42(3):
762–782, 2017.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine

Learning, 8(3-4):229–256, 1992.

Xiao, L. Dual averaging methods for regularized stochastic
learning and online optimization. Journal of Machine

Learning Research, 11(Oct):2543–2596, 2010.

Yang, L. and Wang, M. Sample-optimal parametric Q-
learning using linearly additive features. In International

Conference on Machine Learning, pp. 6995–7004, 2019a.

Yang, L. F. and Wang, M. Reinforcement leaning in feature
space: Matrix bandit, kernels, and regret bound. arXiv

preprint arXiv:1905.10389, 2019b.

Yang, Z., Chen, Y., Hong, M., and Wang, Z. On the
global convergence of actor-critic: A case for linear
quadratic regulator with ergodic cost. arXiv preprint

arXiv:1907.06246, 2019a.

Yang, Z., Xie, Y., and Wang, Z. A theoretical analysis
of deep Q-learning. arXiv preprint arXiv:1901.00137,
2019b.

Yu, J. Y., Mannor, S., and Shimkin, N. Markov decision
processes with arbitrary reward processes. Mathematics

of Operations Research, 34(3):737–757, 2009.

Zimin, A. and Neu, G. Online learning in episodic Marko-
vian decision processes by relative entropy policy search.
In Advances in Neural Information Processing Systems,
pp. 1583–1591, 2013.


