Abstract
This paper introduces the deep coordination graph (DCG) for collaborative multi-agent reinforcement learning. DCG strikes a flexible trade-off between representational capacity and generalization by factoring the joint value function of all agents according to a coordination graph into payoffs between pairs of agents. The value can be maximized by local message passing along the graph, which allows training of the value function end-to-end with Q-learning. Payoff functions are approximated with deep neural networks that employ parameter sharing and low-rank approximations to significantly improve sample efficiency. We show that DCG can solve predator-prey tasks that highlight the relative overgeneralization pathology, as well as challenging StarCraft II micromanagement tasks.

1. Introduction
One of the central challenges in cooperative multi-agent reinforcement learning (MARL, Oroojlooyjadid & Hajinezhad, 2019) is coping with the size of the joint action space, which grows exponentially in the number of agents. For example, just eight agents, each with six actions, yield a joint action space with more than a million actions. Efficient MARL methods must thus generalize over large joint action spaces, in the same way that convolutional neural networks allow deep RL to generalize over large visual state spaces.

MARL often addresses the issue of large joint observation and action spaces by assuming that the learned control policy is fully decentralized, that is, each agent acts independently based on its own observations only. For example, Figure 1a shows how the joint value function can be factored into utility functions that each depend only on the actions of one agent (Sunehag et al., 2018; Rashid et al., 2018). Consequently, the joint value function can be efficiently maximized if each agent simply selects the action that maximizes its corresponding utility function. This factorization can represent any deterministic (and thus at least one optimal) joint policy. However, that policy may not be learnable due to a game-theoretic pathology called relative overgeneralization (Panait et al., 2006): during exploration other agents act randomly and punishment caused by uncooperative agents may outweigh rewards that would be achievable with coordinated actions. If the employed value function does not have the representational capacity to distinguish the values of coordinated and uncoordinated actions, an optimal policy cannot be learned.

A higher-order value factorization can be expressed as an undirected coordination graph (CG, Guestrin et al., 2002a), where each vertex represents one agent and each (hyper-) edge one payoff function over the joint action space of the connected agents. Figure 1b shows a CG with pairwise edges and the corresponding value factorization. Here the value depends non-trivially on the actions of all agents, yielding a richer representation. Although the value can no longer be maximized by each agent individually, the greedy action can be found using message passing along the edges (also known as belief propagation, Pearl, 1988). Sparse cooperative Q-learning (Kok & Vlassis, 2006) applies CGs to MARL, but does not scale to real-world tasks, as each payoff function (f^{12} and f^{23} in Figure 1b) is represented as a table over the state and joint action space of the connected agents. Castellini et al. (2019) use neural networks to approximate payoff functions in the simplified case of non-sequential one-shot games. Moreover, neither approach shares parameters between the approximated payoff functions, so agents in each factor, represented by an edge, must experience all corresponding action combinations. This can require visiting a large subset of the joint action space.

While decentralization can be a requirement of the task at hand, for example when communication between agents is impossible, many important applications that allow for centralized or distributed controllers face the same issues. Examples are power, water or heat grids (Correa-Posada & Sánchez-Martin, 2015), electronic trading (Bacoyannis

1 Department of Computer Science, Oxford University, United Kingdom. Correspondence to: Wendelin Böhmer <wendelinboehmer@gmail.com>.

1 Not to be confused with the general term generalization in the context of function approximation mentioned earlier.
Deep Coordination Graphs

![Diagram](image1)

Figure 1. Examples of value factorization for 3 agents: (a) sum of independent utilities (as in VDN, Sunehag et al., 2018) corresponds to an unconnected CG. QMIX uses a monotonic mixture of utilities instead of a sum (Rashid et al., 2018); (b) sum of pairwise payoffs (Castellini et al., 2019), which correspond to pairwise edges; (c) no factorization (as in QTRAN, Son et al., 2019) corresponds to one hyper-edge connecting all agents. Factorization allows parameter sharing between factors, shown next to the CG, which can dramatically improve the algorithm’s sample complexity.

eq \begin{align*}
q(a_1^3, a_2^3, a_3^3|s) &= f_{12}^3(a_1^3, a_2^3|s) + f_{23}^3(a_2^3, a_3^3|s) \\
q(a_1^2, a_2^2, a_3^2|s) &= f_1^2(a_1^2|s) + f_2^2(a_2^2|s) + f_3^2(a_3^2|s) \\
q(a_1^1, a_2^1, a_3^1|s) &= f_1^3(a_1^1|s) + f_2^3(a_2^1|s) + f_3^3(a_3^1|s)
\end{align*}

d DCQ is trained end-to-end with deep Q-learning (DQN, Mnih et al., 2015), but uses message passing to coordinate greedy action selection between all agents in the graph. For \(k \) message passes over \(n \) agents with \(m \) actions each, the time complexity of maximization is only \(O(km(n + m)|E|) \), where \(|E| \leq n^2 - n\) is the number of (pairwise)

d DQN without factorization.

We compare DCQ’s performance with that of other MARL Q-learning algorithms in a challenging family of predator-prey tasks that require coordinated actions and hard StarCraft II micromanagement tasks. In the former, DCQ is the only algorithm that solves the harder tasks and in the latter DCQ outperforms state-of-the-art QMIX in some levels. An open-source implementation of DCQ and all discussed algorithms and tasks is available for full reproducibility\(^3\).

2. Background

In this paper we assume a Dec-POMDP for \(n \) agents \(\langle S, \{A^i\}_{i=1}^n, P, r, \{O^i\}_{i=1}^n, \{\sigma^i\}_{i=1}^n, n, \gamma \rangle \) (Oliehoek & Amato, 2016). \(S \) denotes a discrete or continuous set of environmental states and \(A^i \) the discrete set of actions available to agent \(i \). At discrete time \(t \), the next state \(s_{t+1} \in S \) is drawn from transition kernel \(s_{t+1} \sim P(\cdot | s_t, a_t) \), conditioned on the current state \(s_t \in S \) and joint action \(a_t \in A := A_1 \times \ldots \times A_n \) of all agents. A transition yields collaborative reward \(r_t := r(s_t, a_t) \), and \(\gamma \in [0, 1) \) denotes the discount factor. Each agent \(i \) observes the state only partially by drawing observations \(o_{t+1}^i \in O^i \) from its observation kernel \(o_{t+1}^i \sim \sigma^i(\cdot | s_t) \). The history of agent \(i \)’s observations \(o_t^i \in O^i \) and actions \(a_t^i \in A^i \) is in the following denoted as \(\tau_t^i := (o_0^i, a_0^i, o_1^i, \ldots, o_{t-1}^i, a_{t-1}^i, o_t^i) \in (O^i \times A^i)^{t} \times O^i \). Without loss of generality, this paper considers episodic tasks, which yield episodes \((s_0, \{o_0^i\}_{i=1}^n, a_0, r_0, \ldots, s_T, \{o_T^i\}_{i=1}^n) \) of varying (but finite) length \(T \).

2.1. Deep Q-learning

The goal of collaborative multi-agent reinforcement learning (MARL) is to find an optimal policy \(\pi^*: S \times A \rightarrow [0, 1] \), that chooses joint actions \(a_t \in A \) such that the expected discounted sum of future rewards is maximized. This can be achieved by estimating the optimal Q-value function:

\(^3\) https://github.com/wendelinboeherm/dcg

\(^4\) We overload the notation \(f(y|x) \) to also indicate the inputs \(x \) and multivariate outputs \(y \) of multivariate functions \(f \).
Deep Coordination Graphs

2.2. Coordination graphs

An undirected coordination graph (CG, Guestrin et al., 2002a) $G = (\mathcal{V}, \mathcal{E})$ contains a vertex $v_i \in \mathcal{V}$ for each agent $1 \leq i \leq n$ and a set of undirected edges $\{i, j\} \in \mathcal{E}$ between vertices v_i and v_j. The graph is usually specified before training, but Guestrin et al. (2002b) suggest that the graph could also depend on the state, that is, each state can have its own unique CG. A CG induces a factorization5 of the Q-function into utility functions f^i and payoff functions f^{ij} (Fig. 1a and 1b):

$$q^G(s_t, a) := \frac{1}{|\mathcal{V}|} \sum_{v_i \in \mathcal{V}} f^i(a^i | s_t) + \frac{1}{|\mathcal{E}|} \sum_{\{i,j\} \in \mathcal{E}} f^{ij}(a^i, a^j | s_t).$$

The special case $\mathcal{E} = \emptyset$ yields VDN, but each additional edge enables the value representation of the joint actions of a pair of agents and can thus help to avoid relative overgeneralization. Prior work also considers higher order coordination where the payoff functions depend on the actions of larger sets of agents (Guestrin et al., 2002a; Kok & Vlassis, 2006; Castellini et al., 2019), corresponding to graphs with hyper-edges (Figure 1c). For the sake of simplicity we restrict ourselves here to pairwise edges, which yield at most $|\mathcal{E}| \leq \frac{1}{2}(n^2 - n)$ edges, in comparison to up to $\frac{n^2}{2}$ hyper-edges of degree d. The induced Q-function q^G can be maximized locally using max-plus, also known as belief propagation (Pearl, 1988). At time t each node i sends messages $\mu_t^{ij}(a^j) \in \mathbb{R}$ over all adjacent edges $\{i, j\} \in \mathcal{E}$. In a tree topology, this message contains the maximized contributions of the sender’s sub-tree given that the receiver chooses $a^j \in \mathcal{A}^j$. Messages can be computed locally as:

$$\mu_t^{ij}(a^j) \leftarrow \max_{a^i} \left\{ \frac{1}{|\mathcal{V}|} f^i(a^i | s_t) + \frac{1}{|\mathcal{E}|} f^{ij}(a^i, a^j | s_t) + \sum_{\{k,i\} \in \mathcal{E}} \mu_t^{ki}(a^i) - \mu_t^{ji}(a^j) \right\}. \quad (3)$$

This process repeats for a number of iterations, after which each agent i can locally find the action a^i_* that maximizes the estimated joint Q-value $q^G(s_t, a_*)$:

$$a^i_* := \arg \max_{a^i} \left\{ \frac{1}{|\mathcal{V}|} f^i(a^i | s_t) + \sum_{\{k,i\} \in \mathcal{E}} \mu_t^{ki}(a^i) \right\}. \quad (4)$$

Convergence of messages is only guaranteed for acyclic CGs (Pearl, 1988; Wainwright et al., 2004). However, subtracting a normalization constant $c_{ij} := \sum_a \mu_t^{ij}(a) / |\mathcal{A}^i|$ from each message μ_t^{ij} before it is sent often leads to convergence in cyclic graphs as well (Murphy et al., 1999; Crick & Pfeffer, 2002; Yedidia et al., 2003). See Algorithm 3 in the appendix.

5 The normalizations $\frac{1}{|\mathcal{V}|}$ and $\frac{1}{|\mathcal{E}|}$ are not strictly necessary but allow the potential transfer of learned DCG to other topologies.

$$q^*(a | s) := \mathbb{E}_{\pi^*} \left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, a_0 = a \right] \quad (1)$$

The optimal policy $\pi^* (\cdot | s_t)$ chooses greedily the action $a \in \mathcal{A}$ that maximizes the corresponding optimal Q-value $q^*(a | s_t)$. In fully observable discrete state and action spaces, q^* can be learned in the limit from interactions with the environment (Watkins & Dayan, 1992). For large or continuous state spaces, q^* can only be approximated, e.g., with a deep neural network q_θ (DQN, Mnih et al., 2015), parameterized by θ, by minimizing the mean-squared Bellman error with gradient descent:

$$L_{\text{DQN}} := \mathbb{E} \left[\gamma^{T-1} \sum_{t=0}^{T-1} \left(r_t + \gamma \max_{a} q_\theta(s_{t+1}) - q_\theta(a_t | s_t) \right)^2 \right].$$

The expectation is estimated with episodes from an experience replay buffer holding previously observed episodes (Lin, 1992), and θ denotes the parameter of a separate target network, which is periodically replaced with a copy of θ to improve stability. Double Q-learning further stabilizes training by choosing the next action greedily w.r.t. the current network q_θ, i.e., $q_\theta(\arg \max_a q_\theta(s_{t+1}) | s_{t+1})$ instead of the target network $q_\bar{\theta}(s_{t+1})$ (van Hasselt et al., 2016).

In partially observable environments, the learned policy cannot condition on the state s_t. Instead, Hausknecht & Stone (2015) approximate a Q-function that conditions on the agent’s history $\tau_i := \{\tau_i^t\}_{t=1}^n$, i.e., $q_\theta(a | \tau_i)$, by conditioning on a recurrent neural network (e.g., a GRU, Chung et al., 2014) on the agents’ observations $o_i := \{o_i^1, \ldots, o_i^n\}$ and last actions a_{t-1}, that is, $q_\theta(a | h_t)$ on the recurrent network’s hidden state $h_t, h_{t-1}, o_t, a_{t-1}, h_0 = 0$.

Applying DQN to multi-agent tasks quickly becomes infeasible, due to the combinatorial growth of state and action spaces. Moreover, QNN values cannot be maximized without evaluating all actions. To allow efficient maximization for MARL Q-learning, various algorithms based on value factorization have been developed. We derive IQL (Tan, 1993), VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018) and QTRAN (Son et al., 2019) in Appendix A.1.

Sunehag et al. (2018) define the VDN value function $q^V \mathcal{D}(s_t, a) := \sum_{i=1}^n f^i(a^i | s_t)$ and introduce parameter sharing between the agents’ utility functions $f^i(a^i | s_t) \approx f^i_T(a^i | \tau_i^t)$ to dramatically improve the sample efficiency of VDN. The utility function f^i_T has a fixed number of outputs $\mathcal{A}^i := \cup_{t=1}^n \mathcal{A}^i|$, but agent i can restrict maximization to \mathcal{A}^i by setting the utilities of unavailable actions to $-\infty$. Specialized behavior between agents can be represented by conditioning f^i_T on the agent’s role, or more generally on the agent’s ID (Foerster et al., 2018; Rashid et al., 2018).
3. Method

We now introduce the deep coordination graph (DCG), which learns the utility and payoff functions of a coordination graph \(\langle V, E \rangle \) with deep neural networks. In their state-free implementation, Castellini et al. (2019) learn a separate network for each function \(f^i \) and \(f^{ij} \). However, properly approximating these \(Q \)-values requires observing the joint actions of each agent pair in the edge set \(E \), which can be a significant subset of the joint action space of all agents \(A \). We address this issue by focusing on an architecture that shares parameters across functions and restricts them to locally available information, i.e., to the histories of the participating agents. DCG takes inspiration from highly scalable methods (Yang et al., 2018; Chen et al., 2018) and improves upon Kok & Vlassis (2006) and Castellini et al. (2019) by incorporating the following design principles:

i. Restricting the payoffs \(f^i(a^i, a_j^j | \tau_i^i, \tau_j^j) \) to local information of agents \(i \) and \(j \) only;

ii. Sharing parameters between all payoff and utility functions through a common recurrent neural network;

iii. Low-rank approximation of joint-action payoff matrices \(f^{ij}(-, | \tau_i^i, \tau_j^j) \) in large action spaces;

iv. Allowing transfer/generalization to different CGs (as suggested in Guestrin et al., 2002b); and

v. Allowing the use of privileged information like the global state during training.

Restricting the payoff’s input (i) and sharing parameters (ii), i.e., \(f^i_0(u^i | \tau_i^i) \approx f^i_0(u^i|h_i^i) \) and \(f^{ij}(a^i, a_j^j | \tau_i^i, \tau_j^j) \approx f^{ij}_0(a^i, a_j^j | h_i^i, h_j^j) \), improves sample efficiency significantly. Both utilities and payoffs share further parameters through a common RNN \(h_i := h_\psi(\cdot|h_{i-1}^i, o_i^i, a_i^i_{t-1}) \), initialized with \(h_i^0 := h_\psi(\cdot|0, o_i^0, 0) \). Note the difference to Castellini et al. (2019), which do not condition on the state or the agents’ histories, and learn independent functions for each payoff.

The payoff function \(f^i_0 \) has \(A^2 \) outputs, \(A := |\cup_{i=1}^n A^i| \), one for each possible joint action of the agent pair. For example, each agent in a StarCraft II map with 8 enemies has 13 actions (SMAC, Samvelyan et al., 2019), which yields 169 outputs of \(f^i_0 \). As only executed action-pairs are updated during Q-learning, the parameters of many outputs remain unchanged for long stretches of time, while the underlying RNN \(h_\psi \) keeps evolving. This can slow down training and affect message passing. To reduce the number of parameters and improve the frequency in which they are updated, we propose a low-rank approximation\(^6\) of the payoff (iii) with rank \(K \), similar to Chen et al. (2018):

\[
f^{ij}_0(a^i, a_j^j | h_i^i, h_j^j) := \sum_{k=1}^K f^{ij}_k(a^i|h_i^i, h_j^j) f^{ij}_k(a_j^j|h_i^i, h_j^j). \tag{5}\]

The approximation can be computed in one forward pass with \(2KA \) outputs and parameters \(\phi := \{\phi, \phi^\top\} \). Note that a rank \(K = \min\{|A^i|, |A^j|\} \) approximation does not restrict the output’s expressiveness, while lower ranks share parameters and updates to speed up learning.

To support further research in transfer between tasks (iv), the represented value function must generalize to new topologies (i.e., zero-shot transfer). This requires DCG to be invariant to reshuffling of agent indices. We solve this by averaging payoffs computed from both agents’ perspectives.\(^7\) However, this paper does not evaluate (iv) and we leave the transfer of a learned DCG onto different graphs/topologies to future work. The DCG \(Q \)-value function is:

\[
q^{DCG}_{\theta, \phi, \psi}(s, a) := \frac{1}{|V|} \sum_{i=1}^n f^V_{\theta}(a^i | h_i^i) + \frac{1}{|E|} \sum_{\{i,j\} \in E} \left(f^{ij}_0(a^i, a_j^j | h_i^i, h_j^j) + f^{ij}_0(a^i, a_j^j | h_i^i, h_j^j) \right).
\]

However, some tasks allow access to privileged information like the global state \(s_t \in S \) during training (but not execution). We therefore propose in (v) to use this information in a privileged bias function \(v_\phi : S \rightarrow \mathbb{R} \) with parameters \(\phi \):

\[
q^{DCG-S}_{\theta, \phi, \psi}(s_t, a_t) := q^{DCG}_{\theta, \phi, \psi}(s_t, a_t) + v_\phi(s_t). \tag{7}
\]

We call this approach DCG-S (similar to VDN-S from Rashid et al., 2018) and train both variants end-to-end with the DQN loss in Section 2.1 and Double Q-learning (van Hasselt et al., 2016). Given the tensors (multi-dimensional arrays) \(f^V \in \mathbb{R}^{|V| \times A} \) and \(f^E \in \mathbb{R}^{|E| \times A \times A} \), where all unavailable actions are set to \(-\infty\), the \(Q \)-value can be maximized by message passing as defined in (3) and (4). The detailed procedures of computing the tensors (Algorithm 1), the \(Q \)-value (Algorithm 2) and greedy action selection (Algorithm 3) are given in the appendix. Note that we do not propagate gradients through the message passing loop, as DQN maximizes the value computed by the target network.

The key benefit of DCG lies in its ability to prevent relative overgeneralization during the exploration of agents: take the example of two hunters who have cornered their prey. The prey is dangerous and attempting to catch it alone can lead to serious injuries. From the perspective of each hunter, the expected reward for an attack depends on the actions of the other agent, who initially behaves randomly. If the punishment for attacking alone outweighs the reward for catching the prey, agents that cannot represent the value for joint actions (QMIX, VDN, IQL) cannot learn the optimal policy. However, estimating a value function over the joint action space (as in QTRAN) can be equally prohibitive.

\(^6 \) Similar to how singular values and vectors represent matrices.

\(^7 \) Permutation invariance requires the payoff matrix \(f^{ij} \), of dimensionality \(|A^i| \times |A^j| \), to be the same as \(f^{ji} \) with swapped inputs. We enforce this by taking the average of both. This retains the ability to learn asymmetric payoff matrices \(f^{ij} \neq f^{ji} \).
as it requires many more samples for the same prediction quality. DCG provides a flexible function class between these extremes that can be tailored to the task at hand.

4. Related Work

Oroojlooy jaeid & Hajinezhad (2019) provide a general overview of cooperative deep MARL. Independent Q-learning (IQL, Tan, 1993) decentralizes the agents’ policy by modeling each agent as an independent Q-learner. However, the task from the perspective of a single agent becomes nonstationary as other agents change their policies. Foerster et al. (2017) show how to stabilize IQL when using experience replay buffers. Another approach to decentralized agents is centralized training and decentralized execution (Kraemer & Banerjee, 2016) with a factored value function (Koller & Parr, 1999). Value decomposition networks (VDN, Sunehag et al., 2018) perform central Q-learning with a value function that is the sum of independent utility functions. However, they represent the joint decision problem in a centralized critic but uses a greedy actor w.r.t. a VDN policy. The corresponding utility functions are distilled from the critic under constraints that ensure proper decentralization. Böhmer et al. (2019) present another approach to decentralized training IQL agents from the same replay buffer.

Centralized joint Q-value functions do not allow parameter sharing to the same extent as value factorization, and we compare DCG to QTRAN to demonstrate the advantage in sample efficiency. Nonetheless, DCG value factorization can in principle be applied to any of the above centralized critics to equally improve sample efficiency at the same cost of representational capacity.

Other work deals with huge numbers of agents, which requires additional assumptions to reduce the sample complexity. For example, Yang et al. (2018) introduce mean-field multi-agent learning (MF-MARL), which factors a tabular value function for hundreds of agents into pairwise payoff functions between neighbors in a uniform grid of agents. These payoffs share parameters similar to DCG. Chen et al. (2018) introduce a value factorization (FQL) for a similar setup based on a low-rank approximation of the joint value. This approach is restricted by uniformity assumptions between agents, but otherwise uses parameter sharing similar to DCG. The value function cannot be maximized globally and must be locally maximized with coordinate ascent. These techniques are designed for much larger sets of agents and the specific assumptions and design choices are not well suited to the tasks considered in this paper. To demonstrate this, we compare against a low-rank joint value decomposition (called LRQ), similar to Chen et al. (2018).

Coordination graphs (CG) have been extensively studied in multi-agent robotics with given payoffs (e.g. Rogers et al., 2011; Yedidsion et al., 2018). Van der Pol & Oliehoek (2016) learn a pairwise payoff function for traffic light control of connected intersections with DQN, which is used for all edges in a CG of intersections. Sparse cooperative Q-learning (SCQL, Kok & Vlassis, 2006) uses CG in discrete state and action spaces by representing all utility and payoff functions as tables. However, the tabular approach restricts practical application of SCQL to tasks with few agents and small state and action spaces. Castellini et al. (2019) use neural networks to approximate payoff functions, but only in non-sequential games, and require a unique function for each edge in the CG. DCG addresses for the first time the question how CG can efficiently solve tasks with large state and action spaces, by introducing parameter sharing between all payoffs (as in VDN/QMIX), conditioning on local information (as in MF-MARL) and using low-rank approximation of the payoffs’ outputs (as in FQL).

Graph Neural Networks (GNN, Battaglia et al., 2018) are architectures to approximate functions on annotated graphs by learning some message passing over the graph’s edges. GNN can thus be used to estimate a joint Q-value in MARL, which conditions on graphs annotated with the observations of all agents. In contrast to the fixed message passing of CG, however, GNN would have to learn the joint maximization required for Q-learning, which would require additional

Deep Coordination Graphs

4. Related Work

Oroojlooy jaeid & Hajinezhad (2019) provide a general overview of cooperative deep MARL. Independent Q-learning (IQL, Tan, 1993) decentralizes the agents’ policy by modeling each agent as an independent Q-learner. However, the task from the perspective of a single agent becomes nonstationary as other agents change their policies. Foerster et al. (2017) show how to stabilize IQL when using experience replay buffers. Another approach to decentralized agents is centralized training and decentralized execution (Kraemer & Banerjee, 2016) with a factored value function (Koller & Parr, 1999). Value decomposition networks (VDN, Sunehag et al., 2018) perform central Q-learning with a value function that is the sum of independent utility functions. However, they represent the joint decision problem in a centralized critic but uses a greedy actor w.r.t. a VDN policy. The corresponding utility functions are distilled from the critic under constraints that ensure proper decentralization. Böhmer et al. (2019) present another approach to decentralized training IQL agents from the same replay buffer.

Centralized joint Q-value functions do not allow parameter sharing to the same extent as value factorization, and we compare DCG to QTRAN to demonstrate the advantage in sample efficiency. Nonetheless, DCG value factorization can in principle be applied to any of the above centralized critics to equally improve sample efficiency at the same cost of representational capacity.

Other work deals with huge numbers of agents, which requires additional assumptions to reduce the sample complexity. For example, Yang et al. (2018) introduce mean-field multi-agent learning (MF-MARL), which factors a tabular value function for hundreds of agents into pairwise payoff functions between neighbors in a uniform grid of agents. These payoffs share parameters similar to DCG. Chen et al. (2018) introduce a value factorization (FQL) for a similar setup based on a low-rank approximation of the joint value. This approach is restricted by uniformity assumptions between agents, but otherwise uses parameter sharing similar to DCG. The value function cannot be maximized globally and must be locally maximized with coordinate ascent. These techniques are designed for much larger sets of agents and the specific assumptions and design choices are not well suited to the tasks considered in this paper. To demonstrate this, we compare against a low-rank joint value decomposition (called LRQ), similar to Chen et al. (2018).

Coordination graphs (CG) have been extensively studied in multi-agent robotics with given payoffs (e.g. Rogers et al., 2011; Yedidsion et al., 2018). Van der Pol & Oliehoek (2016) learn a pairwise payoff function for traffic light control of connected intersections with DQN, which is used for all edges in a CG of intersections. Sparse cooperative Q-learning (SCQL, Kok & Vlassis, 2006) uses CG in discrete state and action spaces by representing all utility and payoff functions as tables. However, the tabular approach restricts practical application of SCQL to tasks with few agents and small state and action spaces. Castellini et al. (2019) use neural networks to approximate payoff functions, but only in non-sequential games, and require a unique function for each edge in the CG. DCG addresses for the first time the question how CG can efficiently solve tasks with large state and action spaces, by introducing parameter sharing between all payoffs (as in VDN/QMIX), conditioning on local information (as in MF-MARL) and using low-rank approximation of the payoffs’ outputs (as in FQL).

Graph Neural Networks (GNN, Battaglia et al., 2018) are architectures to approximate functions on annotated graphs by learning some message passing over the graph’s edges. GNN can thus be used to estimate a joint Q-value in MARL, which conditions on graphs annotated with the observations of all agents. In contrast to the fixed message passing of CG, however, GNN would have to learn the joint maximization required for Q-learning, which would require additional
Deep Coordination Graphs

Figure 2. Influence of punishment p for attempts to catch prey alone on greedy test episode return (mean and shaded standard error, [number of seeds]) in the relative overgeneralization task where 8 agents hunt 8 prey (dotted line denotes best possible return). Fully connected DCG (DCG) are able to represent the value of joint actions, which leads to a better performance for larger p, where DCG without edges (VDN) has to fail eventually ($p < -1$). CG without parameter sharing (CG), learn very slowly due to sample inefficiency.

losses and might not be feasible in practice. Current MARL literature uses GNN therefore either as independent (IQL) value functions (Jiang et al., 2020; Luo et al., 2019) or as a joint critic in actor-critic frameworks (Tacchetti et al., 2019; Liu et al., 2019; Malysheva et al., 2019).

5. Empirical Results

In this section we compare the performance of DCG with various topologies (see Table 1) to the state-of-the-art algorithms QTRAN (Son et al., 2019), QMIX (Rashid et al., 2018), VDN (Sunehag et al., 2018) and IQL (Tan, 1993). We also compare a CG baseline without parameter sharing between payoffs and utilities (CG, an extension of Castellini et al., 2019), and a low-rank approximation of the joint value of all agents (LRQ, similar to Chen et al., 2018) that is maximized by coordinate ascent. Both baselines condition on a shared RNN that summarizes all agents’ histories. Lastly, we investigate how well the DCG algorithm performs without any parameter sharing (DCG (nps)). All algorithms are implemented in the PYMARL framework (Samvelyan et al., 2019); a detailed description can be found in the appendix.

We evaluate these methods in two complex grid-world tasks and challenging Starcraft II micromanagement tasks from the Starcraft Multi-Agent Challenge (SMAC, Samvelyan et al., 2019). The first grid-world task formulates relative overgeneralization as a family of predator-prey tasks and the second investigates how artificial decentralization can hurt tasks that demand non-local coordination between agents. In the latter case, decentralized value functions (QMIX, VDN, IQL) cannot learn coordinated action selection between agents that cannot see each other directly and thus converge to a suboptimal policy. StarCraft II presents a challenging real-world problem with privileged information during training, and we compare DCG and DCG-S on 6 levels with varying complexity.

5.1. Relative Overgeneralization

To model relative overgeneralization, we consider a partially observable grid-world predator-prey task: 8 agents have to hunt 8 prey in a 10×10 grid. Each agent can either move in one of the 4 compass directions, remain still, or try to catch any adjacent prey. Impossible actions, i.e., moves into an occupied target position or catching when there is no adjacent prey, are treated as unavailable. The prey moves by randomly selecting one available movement or remains motionless if all surrounding positions are occupied. If two adjacent agents execute the catch action, a prey is caught and both the prey and the catching agents are removed from the grid. An agent’s observation is a 5×5 sub-grid centered around it, with one channel showing agents and another indicating prey. Removed agents and prey are no longer visible and removed agents receive a special observation of all zeros. An episode ends if all agents have been removed or after 200 time steps. Capturing a prey is rewarded with $r = 10$, but unsuccessful attempts by single agents are punished by a negative reward p. The task is similar to one proposed by Son et al. (2019), but significantly more complex, both in terms of the optimal policy and in the number of agents.

To demonstrate the effect of relative overgeneralization, Figure 2 shows the average return of greedy test episodes for varying punishment p as mean and standard error over 8 independent runs. In tasks without punishment ($p = 0$ in Figure 2a), fully connected DCG (DCG, solid) performs as well as DCG without edges (VDN, dashed). However, for stronger punishment VDN becomes more and more unreliable, which is visible in the large standard errors in Figures 2b and 2c, until it fails completely for $p \leq -1.5$.
Greedy test episode return for the coordination task of Figure 2 with punishment \(p = -2 \). Comparison (a) to baseline algorithms; (b) between DCG topologies; (c) of different low-rank payoff approximations. Note that QMIX, IQL and VDN (dashed) do not solve the task (return 0) due to relative overgeneralization. CG, QTRAN and LQR \((K = 64)\) could represent the joint value, but are sample inefficient due to the large joint action spaces. Note that without parameter sharing, DCG \((\text{nps})\) suffers the same fate. The reliability of DCG depends on the CG-topology: all seeds with fully connected DCG solved the task, but the high standard error for CYCLE, LINE and STAR topologies is caused by some seeds succeeding while others fail completely. Low-rank approximation \((\text{DCG} \text{ (rank } K))\) dramatically improves sample efficiency without any significant impact on performance.

in Figure 2d. This is due to relative overgeneralization, as VDN cannot represent the values of joint actions during exploration. Note that a coordination graph \((\text{CG})\), where utilities and payoffs condition on all agents’ observations, can represent the value but struggles to learn the task without parameter sharing. DCG, on the other hand, converges reliably to the optimal solution (dotted line).

Figure 3a shows how well DCG performs in comparison to the baseline algorithms in Appendix A.1 for a strong punishment of \(p = -2 \). Note that QMIX, IQL and VDN completely fail to learn the task (return 0) due to their restrictive value factorization. While CG could in principle learn the same policy as DCG, the lack of parameter sharing hurts performance as in Figure 2. QTRAN estimates the values with a centralized function, which conditions on all agents’ actions, and can therefore learn the task. However, QTRAN requires more samples before a useful policy can be learned than DCG, due to the size of the joint action space. This is in line with the findings of Son et al. (2019), which required significantly more samples to learn a task with four agents than with two and also show the characteristic dip in performance with more agents. LRQ can also represent the joint value but learns extremely slow and with large deviations due to imperfect maximization by coordinate ascent. In comparison with QTRAN, CG and LRQ, fully connected DCG \((\text{DCG})\) learns near-optimal policies quickly and reliably.

We also investigate the performance of various DCG topologies defined in Table 1. Figure 3b shows that in particular the reliability of the achieved test episode return depends strongly on the graph topology. While all seeds of fully connected DCG succeed \((\text{DCG})\), DCG with CYCLE, LINE and STAR topologies have varying means with large standard errors. The high deviations are caused by some runs finding near-optimal policies, while others fail completely (return 0). One possible explanation is that for the failed seeds the rewarded experiences, observed in the initial exploration, are only amongst agents that do not share a payoff function. Due to relative overgeneralization, the learned greedy policy no longer explores catch actions and existing payoff functions cannot experience the reward for coordinated actions anymore. It is therefore not surprising that fully connected graphs perform best, as they represent the largest function class and require the fewest assumptions. The topology also has little influence on the runtime of DCG, due to efficient batching on the GPU.

The tested fully connected DCG only considers pairwise edges. Hyper-edges between more than two agents (Figure 1c) would yield even richer value representations, but would also require more samples to sufficiently approximate the payoff functions. This effect can be seen in the slower learning QTRAN and LRQ results in Figure 3a.

5.2. Artificial Decentralization

The choice of decentralized value functions is in some cases purely artificial: it is motivated by the huge joint action spaces and not because the task actually requires decentralized execution. While this often works surprisingly well, we want to investigate how existing algorithms deal with tasks that cannot be fully decentralized. One obvious case in which decentralization must fail is when the optimal policy cannot be represented by utility functions alone. For example, decentralized policies behave sub-optimally in tasks where the optimal policy would condition on multiple agents’ observations in order to achieve the best return. Payoff functions in DCG, on the other hand, condition on pairs of agents and can thus represent a richer class of policies.
Figure 4. Greedy test episode return (mean and shaded standard error, [number of seeds]) in a non-decentralizable task where 8 agents hunt 8 prey: (a) comparison to baseline algorithms; (b) comparison between DCG topologies; (c) comparison of low-rank payoff approximations. The prey turns randomly into punishing ghosts, which are indistinguishable from normal prey. The prey status is only visible at an indicator that is placed randomly at each episode in one of the grid’s corners. QTRAN, QMIX, IQL and VDN learn decentralized policies, which are at best suboptimal in this task (around lower dotted line). Fully connected DCG and CG can learn a near-optimal policy (upper dotted line denotes best possible return), but without parameter sharing DCG (nps) and CG yield sub-optimal performance in comparison to DCG. In this task low-rank approximations only marginally increase sample efficiency.

Note that dependencies on more agents can be modeled as hyper-edges in the DCG (Figure 1c), but this hurts the sample efficiency as discussed above.

We evaluate the advantage of a richer policy class with a variation of the above predator-prey task. To disentangle the effects of relative overgeneralization, in this task prey can be caught by only one agent (without punishment). Unbeknownst to the agent, however, a fair coin toss decides at each time step whether catching the prey is rewarding ($r = 1$) or punishing ($r = -1$). The current coin flip can be observe through an additional feature, which is placed in a random corner at the beginning of each episode. Due to the short visibility range of the agents, the feature is only visible in one of the 9 positions closest to its corner.

Figure 4a shows the performance of QTRAN, QMIX, IQL and VDN, all of which have decentralized policies, in comparison to fully connected DCG and CG. The baseline algorithms have to learn a policy that first identifies the location of the indicating feature and then herds prey into that corner, where the agent is finally able to catch it without risk. By contrast, DCG and CG can learn a policy where one agent finds the indicator, allowing all agents that share an edge to condition their payoffs on that agent’s current observation. As a result, this policy can catch prey much more reliably, as seen in the high performance of DCG compared to all baseline algorithms. Interestingly, as CG conditions on all agents’ histories simultaneously, the baseline shows an advantage in the beginning but then learns more slowly and reaches a significantly lower performance. The joint value of QTRAN conditions on all observations, but the algorithm’s constraints enforce the greedy policy to be consistent with a VDN factorized value function, which appears to prevent a good performance. LRQ’s factorization architecture appears too unstable to learn anything here. We also investigate the influence of the DCG topologies in Table 1, shown in Figure 4b. While other topologies do not reach the same performance as fully connected DCG, they still learn a policy that significantly outperforms all baseline algorithms, around the same performance as fully connected CG.

5.3. Low-Rank Approximation

While the above experiments already show a significant advantage of DCG with independent payoff outputs for each action pair, we observe performance issues on StarCraft II maps with this architecture. The most likely cause is the difference in the number of actions per agent: predator-prey agents choose between $|A| = 6$ actions, whereas SMAC agents on comparable maps with 8 enemies have $|A| = 13$ actions. While payoff matrices with 36 outputs in predator-prey appear reasonable to learn, 169 outputs in StarCraft II would require significantly more samples to estimate the payoff of each joint-action properly.

Figures 3c and 4c show the influence of low-rank payoff approximation (Equation 5, $K \in \{1, \ldots, 4\}$) on the predator-prey tasks from previous subsections. Figure 3c shows that any low-rank approximation (DCG (rank K)) significantly improves the sample efficiency over the default architecture with independent payoffs for each action pair (DCG (full)). The improvement in Figure 4c is less impressive, but shows even rank $K = 1$ approximations (DCG (rank 1)) perform slightly better than DCG (full).

5.4. Scaling Up to StarCraft II

The default architecture of DCG with independent payoffs for each action pair performs poorly in StarCraft II. We
We conclude from the results presented in the appendix that, whereas centralized critics are much less sample efficient (Rashid et al., 2018) in from SMAC, Samvelyan et al., 2019). We report all learning curves in Figure 8 of the appendix and show as an example the super hard map MMM2 in Figure 5.

DCG is expected to yield an advantage on maps that struggle with relative overgeneralization, which should prevent VDN from learning. We observe on almost all maps that DCG and VDN perform similar. Also, adding privileged information improves performance for DCG-S and the corresponding VDN-S (Rashid et al., 2018) in many cases.

We conclude from the results presented in the appendix that, in all likelihood, the SMAC benchmark does not suffer from relative overgeneralization. However, the fact that DCG-S matches QMIX, the state-of-the-art on SMAC, demonstrates that the algorithm scales to complex domains like StarCraft II. Furthermore, DCG and DCG-S perform comparable to their VDN counterparts. This demonstrates that the added payoffs and message passing, which allowed to overcome relative overgeneralization in Section 5.1, do not affect the algorithm’s sample efficiency. This is a clear advantage over prior CG methods (CG in Figure 2, Castellini et al., 2019).

6. Conclusions & Future Work

This paper introduces the deep coordination graph (DCG), an architecture for value factorization that is specified by a coordination graph (CG) and can be maximized by message passing. We evaluate deep Q-learning with DCG and show that the architecture enables learning of tasks where relative overgeneralization causes all decentralized baselines to fail, whereas centralized critics are much less sample efficient than DCG. We also demonstrate that artificial decentralization can lead to suboptimal behavior in all compared methods except DCG. Our method significantly improves over existing CG methods and allows for the first time to use CG in tasks with large state and action spaces. Fully connected DCG performed best in all experiments and should be preferred in the absence of prior knowledge about the task. The computational complexity of this topology scales quadratically, which is a vast improvement over the exponential scaling of joint value estimates. Additionally, we introduce a low-rank payoff approximation for large action spaces and a privileged bias function (DCG-S). Evaluated on StarCraft II micromanagement tasks, DCG-S performs competitive with the state-of-the-art QMIX. DCG can also be defined with hyper-edges that connect more than two agents. Similar to our LRQ baseline, low-rank approximation can be used to approximate the payoff of high-order hyper-edges, and coordinate ascend can maximize them locally. Furthermore, due to its permutation invariance, DCG has the potential to transfer/generalize to different graphs/topologies. This would in principle allow the training of DCG on dynamically generated graphs (e.g. using an attention mechanism, Liu et al., 2019). By including hyper-edges with varying degrees, one could allow the agents to flexibly decide in each state with whom they want to coordinate. We plan to investigate this in future work.

ACKNOWLEDGMENTS

The authors would like to thank Tabish Rashid for his QTRAN implementation. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement number 637713), the National Institutes of Health (grant agreement number R01GM114311), EPSRC/MURI grant EP/N019474/1, the JP Morgan Chase Faculty Research Award and a generous equipment grant from NVIDIA. Vitaly Kurin has also been supported by the Samsung R&D Institute UK studentship.

References

Deep Coordination Graphs

Lowe, R., WU, Y., Tamar, A., Harb, J., Pieter Abbeel, O., and Mordatch, I. Multi-agent actor-critic for

Deep Coordination Graphs

