Non-convex Learning via Replica Exchange Stochastic Gradient MCMC

Wei Deng¹ Qi Feng*² Liyao Gao*¹ Faming Liang¹ Guang Lin¹

Abstract
Replica exchange Monte Carlo (reMC), also known as parallel tempering, is an important technique for accelerating the convergence of the conventional Markov Chain Monte Carlo (MCMC) algorithms. However, such a method requires the evaluation of the energy function based on the full dataset and is not scalable to big data. The naïve implementation of reMC in mini-batch settings introduces large biases, which cannot be directly extended to the stochastic gradient MCMC (SGMCMC), the standard sampling method for simulating from deep neural networks (DNNs). In this paper, we propose an adaptive replica exchange SGMCMC (reSGMCMC) to automatically correct the bias and study the corresponding properties. The analysis implies an acceleration-accuracy trade-off in the numerical discretization of a Markov jump process in a stochastic environment. Empirically, we test the algorithm through extensive experiments on various setups and obtain the state-of-the-art results on CIFAR10, CIFAR100, and SVHN in both supervised learning and semi-supervised learning tasks.

1. Introduction
The increasing concern for AI safety problems draws our attention to MCMC, which is known for its asymptotic uncertainty quantification (Chen et al., 2015; Teh et al., 2016), and guarantees in non-convex optimizations (Zhang et al., 2017; Raginsky et al., 2017). Traditional MCMC methods have achieved tremendous success. However, the efficient sampling algorithm in DNNs was not well studied until the invention of stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011), which scales up the computation in DNNs by injecting noises to stochastic gradients. Since then, various high-order SGMCMC algorithms have been proposed, which incorporate strategies such as Hamiltonian dynamics (Chen et al., 2014; Ma et al., 2015; Ding et al., 2014), Hessian approximation (Li et al., 2016; Şimşekli et al., 2016), and high-order numerical schemes (Chen et al., 2015; Li et al., 2019) to improve the convergence.

In addition to the high-order algorithms, we can also follow traditional MCMC algorithms combined with simulated annealing (Kirkpatrick et al., 1983), simulated tempering (Marinari and Parisi, 1992), dynamical weighting (Wong and Liang, 1997) or replica exchange Monte Carlo (Swendsen and Wang, 1986; Earl and Deem, 2005). Among these advancements, simulated annealing SGMCMC (Mangoubi and Vishnoi, 2018) and simulated tempering SGMCMC (Lee et al., 2018) show how dynamical temperatures speed up the convergence. However, simulated annealing is very sensitive to the fast-decaying temperatures, and simulated tempering requires a lot on the approximation of the normalizing constant. For the latter, the replica exchange Monte Carlo is easier to analyze and implement and is suitable for parallelism. Specifically, the replica exchange Langevin diffusion utilizes multiple diffusion processes with different temperatures and proposes to swap the processes while training. Intuitively, the high-temperature process acts as a bridge to connect the various modes. As such, the acceleration effect can be theoretically quantified (Dupuis et al., 2012; Chen et al., 2019). However, despite these advantages, a proper replica exchange SGMCMC (reSGMCMC) has long been missing in the deep learning community.

A bottleneck that hinders the development of reSGMCMC is the naïve extension of the acceptance-rejection criterion that fails in mini-batch settings. Various attempts (Bardenet et al., 2017; Korattikara et al., 2014) were proposed to solve this issue. However, they introduce biases even with the ideal normality assumption on the noise. Some unbiased estimators (Bhanot and Kennedy, 1985; Beskos et al., 2006) have ever been presented, but the large variance leads to inefficient inference. To remove the bias while maintaining efficiency, Ceperley and Dewing (1999) proposed a corrected criterion under normality assumptions, and Seita et al. (2017); Quiroz et al. (2019) further analyzed the model errors with the asymptotic normality assumptions. However, the above algorithms fail when the required corrections are
time-varying and much larger than the energies as shown in Fig.3(a-b). Consequently, an effective algorithm with the potential to adaptively estimate the corrections and balance between acceleration and accuracy is in great demand.

In this paper, we propose an adaptive replica exchange SGMCMC algorithm via stochastic approximation (SA) (Robbins and Monro, 1951; Liang et al., 2007; Deng et al., 2019), a standard method in adaptive sampling to estimate the latent variable: the unknown correction. The adaptive algorithm not only shows the asymptotic convergence in standard scenarios but also gives a good estimate when the corrections are time-varying and excessively large. We theoretically analyze the discretization error for reSGMCMC in mini-batch settings and show the accelerated convergence in 2-Wasserstein distance. Such analysis sheds light on the use of biased estimates of unknown corrections to obtain a trade-off between acceleration and accuracy. In summary, this algorithm has three main contributions:

1. We propose a novel reSGMCMC to speed up the computations of SGMCMC in DNNs with theoretical guarantees. The theory shows the potential of using biased corrections and a large batch size to obtain better performance.

2. We identify the problem of time-varying corrections in DNNs and propose to adaptively estimate the time-varying corrections, with potential extension to a variety of time-series prediction techniques.

3. We test the algorithm through extensive experiments using various models. It achieves the state-of-the-art results in both supervised learning and semi-supervised learning tasks on CIFAR10, CIFAR100, and SVHN datasets.

2. Preliminaries

A standard sampling algorithm is the Langevin diffusion, which is a stochastic differential equation (SDE) as follows:

$$d\beta_t^{(1)} = -\nabla U(\beta_t^{(1)}) dt + \sqrt{2\tau_1} dW_t^{(1)}, \quad (1)$$

where $$\beta_t^{(1)} \in \mathbb{R}^d$$, $$U(\cdot)$$ is the energy function, $$W_t^{(1)} \in \mathbb{R}^d$$ is the Brownian motion, and $$\tau_1 > 0$$ is the temperature.

Under mild growth conditions on $$U$$, the Langevin diffusion $$\{\beta_t^{(1)}\}_{t \geq 0}$$ converges to the unique invariant Gibbs distribution $$\pi_{\tau_1}(\beta^{(1)}) \propto e^{-\frac{U(\beta^{(1)})}{\tau_1}}$$, where $$\tau_1$$ is crucial for both optimization and sampling of the non-convex energy function $$U$$. On the one hand, a high-temperature $$\tau_1$$ achieves the exploration effect: the convergence to the flattened Gibbs distribution of the whole domain is greatly facilitated. However, the high-temperature increases the gap between $$\mathbb{E}_{\tau_1} [U(\beta)]$$ and $$\min U(\beta)$$ (Raginsky et al., 2017), and affects the connectivity of the geometric properties to the global minimum (Zhang et al., 2017). On the other hand, a low-temperature $$\tau_1$$ leads to the exploitation effect: the solutions explore the local geometry rapidly, but they are more likely to get trapped in local optima, leading to a slow convergence in both optimization and sampling. Therefore, the potential of using a fixed temperature is quite limited.

A powerful algorithm called replica exchange Langevin diffusion (reLD), also known as parallel tempering Langevin diffusion, has been proposed to accelerate the convergence of SDE as defined in Eq.(1). reLD proposes to simulate a high-temperature particle for exploration and a low-temperature particle for exploitation and allows them to swap simultaneously. Now consider the following coupled processes with a higher temperature $$\tau_2 > \tau_1$$ and $$W^{(2)}$$ independent of $$W^{(1)}$$:

$$
\begin{align*}
 d\beta_t^{(1)} &= -\nabla U(\beta_t^{(1)}) dt + \sqrt{2\tau_1} dW_t^{(1)} \\
 d\beta_t^{(2)} &= -\nabla U(\beta_t^{(2)}) dt + \sqrt{2\tau_2} dW_t^{(2)}. \quad (2)
\end{align*}
$$

Eq.(2) converges to the invariant distribution with density

$$
 \pi(\beta^{(1)}, \beta^{(2)}) \propto e^{-\frac{U(\beta^{(1)})}{\tau_1} - \frac{U(\beta^{(2)})}{\tau_2}}. \quad (3)
$$

By allowing the two particles to swap, the positions are likely to change from $$(\beta_t^{(1)}, \beta_t^{(2)})$$ to $$(\beta_{t+dt}^{(2)}, \beta_{t+dt}^{(1)})$$ with a swapping rate $$S(\beta_t^{(1)}, \beta_t^{(2)}) dt$$, where $$S(\cdot, \cdot)$$ satisfies

$$
 S(\beta_t^{(1)}, \beta_t^{(2)}) := e^{\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)(U(\beta^{(1)}) - U(\beta^{(2)}))}, \quad (4)
$$

In such a case, reLD follows a Markov process compounded with a Poisson jump process as shown in Fig.1 and the invariant distribution remains the same as (3).

3. Replica Exchange Stochastic Gradient Langevin Dynamics

The wide adoption of the replica exchange Monte Carlo in traditional MCMC algorithms motivates us to design replica exchange stochastic gradient Langevin dynamics for DNNs, but the straightforward extension of reLD to replica exchange stochastic gradient Langevin dynamics is highly non-trivial (Chen et al., 2014; Ma et al., 2015; Şımşekli et al., 2016). In this section, we will first show that naïve extensions of replica exchange Monte Carlo to SGLD (naïve reSGLD) lead to large biases. Afterward, we will present an adaptive replica exchange stochastic gradient Langevin dynamics (reSGLD) that will automatically adjust the bias and yield a good approximation to the correct distribution.
We denote the entire data by $D = \{d_i\}_{i=1}^N$, where d_i is a data point. Given the model parameter β, we consider the following energy function (negative log-posterior)

$$L(\tilde{\beta}) = -\log p(\tilde{\beta}) - \sum_{i=1}^N \log P(d_i|\tilde{\beta}).$$

(5)

where $p(\tilde{\beta})$ is a proper prior and $\sum_{i=1}^N \log P(d_i|\tilde{\beta})$ is the complete data log-likelihood. When the number of data points N is large, it is expensive to evaluate $L(\tilde{\beta})$ directly. Instead, we propose to approximate the energy function with a mini-batch of data $B = \{d_{s_i}\}_{i=1}^n$, where $s_i \in \{1, 2, ..., N\}$. We can easily check that if B is sampled randomly with or without replacement, we obtain the following unbiased estimator of the energy function

$$\tilde{L}(\tilde{\beta}) = -\log p(\tilde{\beta}) - \frac{N}{n} \sum_{i=1}^n \log P(d_{s_i}|\tilde{\beta}).$$

(6)

Let $\tilde{\beta}_k$ denote the estimate of $\tilde{\beta}$ at the k-th iteration. Next, SGLD proposes the following iterations:

$$\tilde{\beta}_{k+1} = \tilde{\beta}_k - \eta_k \nabla \tilde{L}(\tilde{\beta}_k) + \sqrt{2\eta_k \tau_k} \xi_k,$$

(7)

where η_k is the learning rate, the stochastic gradient $\nabla \tilde{L}(\tilde{\beta}_k)$ is the unbiased estimator of the exact gradient $\nabla L(\tilde{\beta}_k)$, ξ_k is a standard d-dimensional Gaussian vector with mean 0 and identity covariance matrix. It is known that SGLD asymptotically converges to a unique invariant distribution $\pi(\tilde{\beta}) \propto \exp \left(-L(\tilde{\beta})/\tau_1\right)$ (Teh et al., 2016) as $\eta \to 0$. If we simply replace gradients with stochastic gradients in the replica exchange gradient Langevin dynamics, we have

$$\tilde{\beta}_{k+1}^{(1)} = \tilde{\beta}_k^{(1)} - \eta_k^{(1)} \nabla \tilde{L}(\tilde{\beta}_k^{(1)}) + \sqrt{2\eta_k^{(1)} \tau_k}^{(1)} \xi_k^{(1)},$$

$$\tilde{\beta}_{k+1}^{(2)} = \tilde{\beta}_k^{(2)} - \eta_k^{(2)} \nabla \tilde{L}(\tilde{\beta}_k^{(2)}) + \sqrt{2\eta_k^{(2)} \tau_k}^{(2)} \xi_k^{(2)}.$$

(8)

Furthermore, we swap the Markov chains in (8) with the na{"i}ve stochastic swapping rate $S(\tilde{\beta}_{k+1}^{(1)}, \tilde{\beta}_{k+1}^{(2)})$:

$$S(\tilde{\beta}_{k+1}^{(1)}, \tilde{\beta}_{k+1}^{(2)}) = e\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)\left(L(\tilde{\beta}_{k+1}^{(1)}) - L(\tilde{\beta}_{k+1}^{(2)})\right).$$

(9)

Apparently, the unbiased estimators $\tilde{L}(\tilde{\beta}_{k+1}^{(1)})$ and $\tilde{L}(\tilde{\beta}_{k+1}^{(2)})$ at the k+1-th iteration do not provide an unbiased estimator of the swapping rate $S(\tilde{\beta}_{k+1}^{(1)}, \tilde{\beta}_{k+1}^{(2)})$ after a non-linear transformation as shown in (9), which leads to a large bias.

3.2. Replica Exchange Stochastic Gradient Langevin Dynamics with Correction

A viable MCMC algorithm requires the approximately unbiased estimators of the swapping rates to “satisfy” the detailed balance property (Ceperley and Dewing, 1999; Nicholls et al., 2012) and the weak convergence of a Markov jump process with unbiased stochastic gradients and stochastic jump rates has also been studied in Gyöngy (1986); Ben-tata and Cont (2012). When we make normality assumption on the stochastic energy $\tilde{L}(\tilde{\beta}) \sim N(L(\tilde{\beta}), \sigma^2)$, it follows

$$\tilde{L}(\tilde{\beta}^{(1)}(t)) - \tilde{L}(\tilde{\beta}^{(2)}(t)) = L(\tilde{\beta}^{(1)}(t)) - L(\tilde{\beta}^{(2)}(t)) + \sqrt{2}\sigma W_t,$$

(10)

where W_t follows the standard normal distribution and can be viewed as a Brownian motion at $t = 1$. Consider the evolution of the stochastic swapping rate $\{\tilde{S}_t\}_{t \in [0, 1]}$ in each swap as a geometric Brownian motion:

$$\tilde{S}_t = e\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)\left(L(\tilde{\beta}^{(1)}(t)) - L(\tilde{\beta}^{(2)}(t))\right) = e\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)\left(L(\tilde{\beta}^{(1)}) - L(\tilde{\beta}^{(2)}(t)) - \frac{1}{\tau_1} + \frac{1}{\tau_2}\right)^2t + \sqrt{2}\sigma W_t.$$

(11)

Set $\tau_3 = \frac{1}{\tau_1} - \frac{1}{\tau_2}$ and take the partial derivatives of \tilde{S}_t

$$\frac{d\tilde{S}_t}{dt} = -\tau_3^2\sigma^2\tilde{S}_t, \quad \frac{d^2\tilde{S}_t}{dW_t^2} = \sqrt{2}\tau_3\sigma\tilde{S}_t, \quad \frac{d^2\tilde{S}_t}{dW_t^2} = 2\tau_3^2\sigma^2\tilde{S}_t.$$

It\’s lemma shows that

$$d\tilde{S}_t = \left(\frac{d\tilde{S}_t}{dt} + \frac{1}{2} d^2\tilde{S}_t/dW_t^2\right) dt + \frac{d\tilde{S}_t}{dW_t} dW_t = \sqrt{2}\tau_3\sigma\tilde{S}_t dW_t.$$

Notice that $\{\tilde{S}_t\}_{t \in [0, 1]}$ is a Martingale and yields the same expectation for $\forall t \in [0, 1]$. By fixing $t = 1$ in (11), we have

$$\tilde{S}_1 = e\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)\left(L(\tilde{\beta}^{(1)}) - L(\tilde{\beta}^{(2)})\right) - \frac{1}{\tau_1} + \frac{1}{\tau_2}\sigma^2,$$

(12)

where the stochastic swapping rate \tilde{S}_1 is an unbiased estimator of $\tilde{S}_0 = e\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)\left(L(\tilde{\beta}^{(1)}) - L(\tilde{\beta}^{(2)})\right)$, and the correction term $\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)\sigma^2$ aims to remove the bias from the swaps.

An advantage of interpreting the correction term from the perspective of geometric Brownian motion is that we can naturally extend it to geometric Lévy process (Applebaum, 2004), which is more suitable for the heavy-tailed energy noise (Šimšekli et al., 2019). Admittedly, the estimation of the tail-index of extreme-value distributions and the correction under Lévy process go beyond the scope of this paper, so we leave it for future works.

3.3. Adaptive Replica Exchange Stochastic Gradient Langevin Dynamics

In reality, the exact variance σ^2 is hardly known and subject to estimation. The normality assumption may be violated and even no longer time-independent.
3.3.1. Fixed Variance σ^2

We use stochastic approximation (SA) to adaptively estimate the unknown variance while sampling from the posterior. In each SA step, we obtain an unbiased sample variance $\hat{\sigma}^2$ for the true σ^2 and update the adaptive estimate $\hat{\sigma}^2_{m+1}$ through

$$\hat{\sigma}^2_{m+1} = (1 - \gamma_m)\hat{\sigma}^2_m + \gamma_m\hat{\sigma}^2_{m+1},$$

where γ_m is the smoothing factor at the m-th SA step. The SA step is updated less frequently than the standard sampling to reduce the computational cost. When the normality assumption holds, we notice that $\hat{\sigma}^2_m = \sum_{i=1}^{m} \hat{\sigma}_i^2/m$ when $\gamma_m = \frac{1}{m}$. Following central limit theorem (CLT), we have that $\hat{\sigma}^2_m - \sigma^2 = O(\frac{1}{\sqrt{m}})$. Inspired by theorem 2 from Chen et al. (2015), we expect that the weak convergence of the adaptive sampling algorithm holds since the bias decreases sufficiently fast ($\frac{1}{m} \sum_{i=1}^{m} O(\frac{1}{\sqrt{m}}) \rightarrow 0$ as $m \rightarrow \infty$).

In practice, the normality assumption is likely to be violated when we use a small batch size n, but the unknown distribution asymptotically approximates the normal distribution as $n \rightarrow \infty$ and yield a bias $O(\frac{1}{n})$ in each SA step. Besides, the mini-batch setting usually introduces a very large noise on the estimator of the energy function, which requires a large correction term and leads to almost-zero swapping rates.

To handle this issue, we introduce a correction factor F to reduce the correction term from $\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)\hat{\sigma}^2$ to $\left(\frac{1}{F} - \frac{1}{\tau_1}\right)\hat{\sigma}^2$. We note that a large $F > 1$ introduces some bias, but may significantly increase the acceleration effect, giving rise to an acceleration-accuracy trade-off in finite time. Now, we show the resulting algorithm in Alg. 1. In addition to simulations of multi-modal distributions, our algorithm can be also combined with simulated annealing (Li et al., 2009; Martino et al., 2016) to accelerate the non-convex optimization and increase the hitting probability to the global optima (Mangoubi and Vishnoi, 2018).

3.3.2. Time-varying Variance σ^2

In practice, the variance σ^2 usually varies with time, resulting in time-varying corrections. For example, in the optimization of residual networks on CIFAR10 and CIFAR100 datasets, we notice from Fig.3(a-b) that the corrections are time-varying. As such, we cannot use a fixed correction anymore to deal with the bias. The treatment for the time-varying corrections includes standard methods for time-series data, and a complete recipe for modeling the data goes beyond our scope. We still adopt the method of stochastic approximation and choose a fixed smoothing factor γ so that

$$\hat{\sigma}^2_{m+1} = (1 - \gamma)\hat{\sigma}^2_m + \gamma\hat{\sigma}^2_{m+1}.$$

Such a method resembles the simple exponential smoothing and acts as robust filters to remove high-frequency noise.

Algorithm 1 Adaptive Replica Exchange Stochastic Gradient Langevin Dynamics Algorithm. For sampling purposes, we fix the temperatures τ_1 and τ_2; for optimization purposes, we keep annealing τ_1 and τ_2 during each epoch. In DNN models, a larger smoothing factor γ_m tracks the dynamics of time-varying corrections better but is less robust.

```
repeat
    Sampling Step
    $\tilde{\beta}^{(1)}_{k+1} = \tilde{\beta}^{(1)}_k - \eta_k^{(1)}\nabla L(\tilde{\beta}^{(1)}_k) + \sqrt{2\eta_k^{(1)}\tau_1}\xi^{(1)}_k$
    $\tilde{\beta}^{(2)}_{k+1} = \tilde{\beta}^{(2)}_k - \eta_k^{(2)}\nabla L(\tilde{\beta}^{(2)}_k) + \sqrt{2\eta_k^{(2)}\tau_2}\xi^{(2)}_k$
    SA Step
    Obtain an unbiased estimate $\hat{\sigma}^2_{m+1}$ for $\sigma^2$.
    $\hat{\sigma}^2_{m+1} = (1 - \gamma_m)\hat{\sigma}^2_m + \gamma_m\hat{\sigma}^2_{m+1}$.
    Swapping Step
    Generate a uniform random number $u \in [0, 1]$.
    $\hat{S}_1 = e^{(\frac{1}{\tau_1} - \frac{1}{\tau_2})\left(\int L(\beta^{(1)}_{k+1}) - \int L(\beta^{(2)}_{k+1}) - \frac{1}{\tau_1} - \frac{1}{\tau_2}\right)\eta_k^{(1)}\xi^{(1)}_k}$
    if $u < \hat{S}_1$ then
        Swap $\tilde{\beta}^{(1)}_{k+1}$ and $\tilde{\beta}^{(2)}_k$.
    end if
until $k = k_{\text{max}}$
```

It can be viewed as a special case of autoregressive integrated moving average (ARIMA) (0,1,1) model but often outperforms the ARIMA equivalents because it is less sensitive to the model selection error (Bossons, 1966). From the regression perspective, this method can be viewed as a zero-degree local polynomial kernel model (Gijbels et al., 1999), which is robust to distributional assumptions.

4. Convergence Analysis

We theoretically analyze the acceleration effect and the accuracy of reSGLD in terms of 2-Wasserstein distance between the Borel probability measures μ and ν on \mathbb{R}^d

$$W_2(\mu, \nu) := \inf_{\Gamma \in \text{Couplings}(\mu, \nu)} \int \|\beta_\mu - \beta_\nu\|^2 d\Gamma(\beta_\mu, \beta_\nu),$$

where $\| \cdot \|$ is the Euclidean norm, and the infimum is taken over all joint distributions $\Gamma(\beta_\mu, \beta_\nu)$ with μ and ν being their marginal distributions.

Our analysis begins with the fact that reSGLD in Algorithm 1 tracks the replica exchange Langevin diffusion (2). For ease of analysis, we consider a fixed learning rate η for both chains. reSGLD can be viewed as a special discretization of the continuous-time Markov jump process. In
particular, it differs from the standard discretization of the continuous-time Langevin algorithms (Chen et al., 2019; Yin and Zhu, 2010; Raginsky et al., 2017; Sato and Naka- gawa, 2014) in that we need to consider the discretization of the Markov jump process in a stochastic environment. To handle this issue, we follow Dupuis et al. (2012) and view the swaps of positions as swaps of the temperatures, which have been proven equivalent in distribution.

Lemma 1 (Discretization Error). Given the smoothness and dissipativity assumptions in the appendix, and a small learning rate η, we have that

$$E[\sup_{t \leq T} \| \hat{\beta}_t - \hat{\beta}_t^n \|^2] \leq O(\eta + \max_i E[\| \phi_i \|^2] + \max_i \sqrt{E[\| \psi_i \|^2]}),$$

where $\hat{\beta}_t^n$ is the continuous-time interpolation for reSGLD. $\phi := \nabla L - U$ is the noise in the stochastic gradient, and $\psi := S - S$ is the noise in the stochastic swapping rate.

Then we quantify the evolution of the 2-Wasserstein distance between ν_t and the invariant distribution π, where ν_t is the probability measure associated with reLD at time t. The key tool is the exponential decay of entropy when π satisfies the log-Sobolev inequality (LSI) (Bakry et al., 2014). To justify LSI, we first verify LSI for reLD without swaps, which is a direct result (Cattiaux et al., 2010) given the Lyapunov function criterion and the Poincaré inequality (Chen et al., 2019). Then we verify LSI for reLD with swaps by analyzing the Dirichlet form. Finally, the exponential decay of the 2-Wasserstein distance follows from the Otto-Villani theorem (Bakry et al., 2014) by connecting 2-Wasserstein distance with the relative entropy.

Lemma 2 (Accelerated exponential decay of W_2). Under the smoothness and dissipativity assumptions, we have that the replica exchange Langevin diffusion converges exponentially fast to the invariant distribution π: \[W_2(\mu, \pi) \leq D_0 e^{-\kappa t/(1 + \delta_S)/c_{LS}}, \] \[\text{where } \delta_S := \inf_{t > 0} \frac{E[\sqrt{d\mu t}]}{E[\sqrt{d\pi t}]} - 1 \text{ is the very acceleration effect depending on the swapping rate } S, \] E and E_S are the Dirichlet forms defined in the appendix, c_{LS} is the constant in the log-Sobolev inequality, $D_0 = \sqrt{2c_{LS}D(\nu||\pi)}$.

Finally, combining the definition of Wasserstein distance and the triangle inequality, we have that

Theorem 1 (Convergence of reSGLD). Let the smoothness and dissipativity assumptions hold. For the distribution $\{\mu_k\}_{k \geq 0}$ associated with the discrete dynamics $\{\hat{\beta}_k\}_{k \geq 1}$, we have the following estimates for $k \in \mathbb{N}^+$:

$$W_2(\mu_k, \pi) \leq D_0 e^{-\kappa t/(1 + \delta_S)/c_{LS}}$$

$$+ \tilde{O}(e^{\frac{t}{2}} + \max_i (E[\| \phi_i \|] + \sqrt{E[\| \psi_i \|^2]})), \] where $D_0 = \sqrt{2c_{LS}D(\mu_0||\pi)}$, $\delta_S := \min_{\nu \in \mathcal{P}} \frac{E[\sqrt{d\mu t}]}{E[\sqrt{d\pi t}]} - 1$.

Ideally, we want to boost the acceleration effect δ_S by using a larger swapping rate S and increase the accuracy by reducing the mean squared errors $E[\| \phi_i \|^2]$ and $E[\| \psi_i \|^2]$. One possible way is to apply a large enough batch size, which may be yet inefficient given a large dataset. Another way is to balance between acceleration and accuracy by tuning the correction factor F. In practice, a larger F leads to a larger acceleration effect and also injects more biases.

5. Experiments

5.1. Simulations of Gaussian Mixture Distributions

In this group of experiments, we evaluate the acceleration effects and the biases for reSGLD on multi-modal distributions based on different assumptions on the estimators for the energy function. As a comparison, we choose SGLD and the na"ive reSGLD without corrections as baselines. The learning rates $\eta^{(1)}$ and $\eta^{(2)}$ are both set to 0.03, and the temperatures τ_2 and τ_2 are set to 1 and 10, respectively. In particular, SGLD uses the learning rate $\eta^{(1)}$ and the temperature τ_1. We simulate 100,000 samples from each distribution and propose to estimate the correction every 100 iterations. The correction estimator is calculated based on the variance of 10 samples of $U_1(x)$. The initial correction is set to 100 and the step size γ_m for stochastic approximation is chosen as $\frac{1}{m}$. The correction factor F is 1 in the first two examples.

We first demonstrate reSGLD on a simple Gaussian mixture distribution \[e^{-U_1(x)} \sim 0.4N(-3,0.7^2) + 0.6N(2,0.5^2), \] where $U_1(x)$ is the energy function. We assume we can only obtain the unbiased energy estimator $U_1(x) \sim N(U_1(x),2^2)$ and the corresponding stochastic gradient at each iteration. From Fig.2(a,b), we see that SGLD suffers from the local trap problem and takes a long time to converge. The na"ive reSGLD algorithm alleviated the local trap problem, but is still far away from the ground truth distribution without a proper correction. The na"ive reSGLD converges faster than reSGLD in the early phase due to a higher swapping rate, but ends up with a large bias when the training continues. By contrast, reSGLD successfully identifies the right correction through adaptive estimates and yields a close approximation to the ground truth distribution. The high-temperature chain serves as a bridge to facilitate the movement, and the local trap problem is greatly reduced.

In the second example, we relax the normality assumption to a heavy-tail distribution. Given a Gaussian mixture distribution \[e^{-U_2(x)} \sim 0.4N(-4,0.7^2) + 0.6N(3,0.5^2), \] we assume that we can obtain the stochastic energy estimator $U_2(x) \sim U_2(x) + t(\nu = 5)$, where $t(\nu = 5)$ denotes the Student’s t-distribution with degree of freedom 5. We see
We use the 20, 32, 56-layer ResNet (denoted as ResNet-20, ResNet-32, and ResNet-56, respectively. We adopt the well-known residual networks (ResNet, He et al.), WRN-16-8 and WRN-28-10, where, for example, WRN-16-8 denotes a ResNet that has 16 layers and is 8

We evaluate the adaptive replica exchange Monte Carlo on the unbiased algorithm behaves like the ordinary SGLD as in Fig.2(c) and still suffers from the local trap problems. To achieve larger acceleration effects to avoid local traps and maintain accuracy, we try \(F = 2 \), \(4 \) and \(\infty \) (Inf), where the latter is equivalent to the naïve reSGLD. We see from Fig.2(d) that \(F = 2 \) shows the best approximations, despite that the swapping rate \(S \) is only 0.4\%. Further increases on the acceleration effect via larger correction factors \(F \) give larger swapping rates (7.1\% and 46\%) and potentially accelerate the convergence in the beginning. However, the biases become more significant as we increase \(F \) and lead to larger errors in the end.

5.2. Optimization of Supervised Learning

We evaluate the adaptive replica exchange Monte Carlo on CIFAR10 and CIFAR100, which consist of 50,000 \(32 \times 32 \) RGB images for training and 10,000 images for testing. CIFAR10 and CIFAR100 have 10 classes and 100 classes, respectively. We adopt the well-known residual networks (ResNet) and wide ResNet (WRN) as model architectures. We use the 20, 32, 56-layer ResNet (denoted as ResNet-20, et al.), WRN-16-8 and WRN-28-10, where, for example, WRN-16-8 denotes a ResNet that has 16 layers and is 8 times wider than the original. Inspired by the popular momentum stochastic gradient descent, we use stochastic gradient Hamiltonian Monte Carlo (SGHMC) as the baseline sampling algorithm and use the numerical method proposed by Saatci and Wilson (2017) to reduce the tuning cost. We refer to the momentum stochastic gradient descent algorithm as M-SGD and the adaptive replica exchange SGHMC algorithm as reSGHMC.

We first run several experiments to study the ideal corrections for the optimization of deep neural networks based on the fixed temperatures \(\tau_1 = 0.01 \) and \(\tau_2 = 0.05 \). We observe from Fig.3(a, b) that the corrections are thousands of times larger than the energy losses, which implies that an exact correction leads to no swaps in practice and no acceleration can be achieved. The desire to obtain more acceleration effects drives us to manually shrink the corrections by increasing \(F \) to increase the swapping rates, although we have to suffer from some model bias.

We study the model performance by applying different correction factors \(F \). We choose batch-size 256 and run the experiments within 500 epochs. We first tune the optimal hyperparameters for M-SGD, SGHMC and the low-temperature chain of reSGHMC: we set the learning rate \(\eta_1^{(2)} \) to 2e-6 in the first 200 epochs and decay it afterward by a factor of 0.984 every epoch; the low temperature follows an annealing schedule \(\tau_k^{(1)} = \frac{0.01}{1.02^k} \) to accelerate the optimization; the weight decay is set to 25. Then, as to the high-temperature chain of reSGHMC, we use a larger learning rate \(\eta_k^{(1)} = 1.5\eta_k \) and a higher temperature \(\tau_k^{(2)} = 5\tau_k^{(1)} \). Following the dynamic temperatures, we fix \(F_k = \frac{E_{\text{swaps}}}{N_k} \frac{1}{1.02^k} \), where \(N_k \) denotes the number of swaps in the first \(k \) epochs and \(\alpha = 0.8 \). The variance estimator is updated each epoch based on the variance of 10 samples of the stochastic energies and the smoothing factor is set to \(\gamma = 0.3 \) in (14). Consequently, the evaluation of the corrections only increases the computational cost by less than 5\%. In addition, we use a thinning factor 200 and report all the results based on Bayesian model averaging. We repeat every experiment five times to obtain the mean and 2 standard deviations.

We see from Fig.3(c, d) that both datasets rely on a very large initial correction factor \(F_0 \) to yield good performance. The optimal initial \(F_0 \) is achieved at 3e5. In fact, such correction factors correspond to five to ten swaps in practice, which provide the largest marginal improvement for accelerations.
A larger F_0 than \hat{F}_0 leads to a larger swapping rate with more swaps and thus a larger acceleration effect, however, the performance still decreases as we increase \hat{F}_0, implying that the biases start to dominate the error and the diminishing marginal improvement on the acceleration effect is no longer significant. We note that there is only one extra hyper-parameter, namely, the correction factor \hat{F}_0, required to tune, and it is independent of the standard SGHMC. This shows that the tuning cost is acceptable.

<table>
<thead>
<tr>
<th>Model</th>
<th>M-SGD</th>
<th>SGHMC</th>
<th>reSGHMC</th>
<th>M-SGD</th>
<th>SGHMC</th>
<th>reSGHMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR10</td>
<td>94.21±0.16</td>
<td>94.22±0.12</td>
<td>94.62±0.18</td>
<td>72.45±0.20</td>
<td>72.49±0.18</td>
<td>74.14±0.22</td>
</tr>
<tr>
<td>RESNET-20</td>
<td>95.15±0.08</td>
<td>95.18±0.06</td>
<td>95.35±0.08</td>
<td>75.01±0.22</td>
<td>75.14±0.28</td>
<td>76.55±0.30</td>
</tr>
<tr>
<td>RESNET-32</td>
<td>96.01±0.08</td>
<td>95.95±0.10</td>
<td>96.12±0.06</td>
<td>78.96±0.32</td>
<td>79.04±0.30</td>
<td>80.14±0.34</td>
</tr>
<tr>
<td>WRN-16-8</td>
<td>96.71±0.06</td>
<td>96.73±0.08</td>
<td>96.87±0.06</td>
<td>81.70±0.26</td>
<td>82.17±0.22</td>
<td>82.95±0.30</td>
</tr>
<tr>
<td>WRN-28-10</td>
<td>97.33±0.08</td>
<td>97.32±0.06</td>
<td>97.42±0.06</td>
<td>83.79±0.18</td>
<td>83.76±0.14</td>
<td>84.38±0.18</td>
</tr>
</tbody>
</table>

To obtain a comprehensive evaluation of reSGHMC, we use the optimal correction factor for reSGHMC and test it on ResNet20, 32, 56, WRN-16-8 and WRN-28-10. From Table 1, we see that reSGHMC consistently outperforms SGHMC and M-SGD on both datasets, showing the robustness of reSGHMC to various model architectures. For CIFAR10, our method works better with ResNet-20 and ResNet-32 and improves the prediction accuracy by 0.4% and 0.2%, respectively. Regarding the other model architectures, it still slightly outperforms the baselines by roughly 0.1%-0.2%, although this dataset is highly optimized. Specifically, reSGHMC achieves the state-of-the-art 97.42% accuracy with WRN-28-10 model. For CIFAR10, reSGHMC works particularly well based on various model architectures. It outperforms the baseline by as high as 1.5% using ResNet-20 and ResNet-32, and nearly 1.1% based on the other architectures. It also achieves the state-of-the-art 84.38% based on WRN-28-10 on CIFAR10.

5.3. Bayesian GANs for Semi-supervised Learning

Semi-supervised learning (SSL) is an economic machine learning task because it doesn’t require all the data to have pricey labels and still shows promising results. However, the multi-modal problem is more severe in the training of SSLs, such as Bayesian GANs (Saatci and Wilson, 2017), which motivates us to utilize a more powerful algorithm for multi-modal sampling. Therefore, we further evaluate reSGHMC in SSL on CIFAR10, CIFAR100 and the StreetView House Numbers dataset (SVHN) using Bayesian GANs and study how swaps boost the performance.

Regarding the Bayesian GANs used for SSLs, we transform the ordinary discriminator into a K-1-class classifier, where K is the number of classes in each dataset, and $K = 10$ for CIFAR10 and SVHN and $K = 100$ for CIFAR100. During training, a five-layer Bayesian deconvolutional GAN is used as the generator to increase the performance of the

1SVHN consists of 73,257 10-class images for training and 26,032 images for testing.
We study the model performance based on different number of labeled images. As shown in Fig.4 and Table.3, we observe that a larger number of labeled images leads to better performance for all the three datasets. In particular, the 3000 additional labeled images boost the prediction accuracies on CIFAR10, CIFAR100, and SVHN by 7%, 9%, and 3%, respectively. CIFAR10 and CIFAR100 are more sensitive to the labeled images and show larger marginal improvements given a smaller number of labeled images.

Compared to SGHMC, reSGHMC shows a significantly pronounced difference in performance. The consistent improvement is as much as 5% for CIFAR10 and CIFAR100 and nearly 2% for SVHN. From Table.1 and Table.3, the large improvement in SSL indicates that the multi-modal problem is more severe in Bayesian GANs and the high-temperature chain facilitates the low-temperature chain to jump over distinct modes for the exploration of rich multi-modal distributions. In the end, the low-temperature chain obtains both the exploration ability to traverse the whole domain and the exploitation ability to explore the local geometry, which greatly avoids the mode collapse problems and enables the state-of-the-art performance in SSL.

6. Conclusion and Future Work

We propose the adaptive replica exchange SGMC algorithm and prove the accelerated convergence in terms of 2-Wasserstein distance. The theory implies an accuracy-acceleration trade-off and guides us to tune the correction factor \(F \) to obtain the optimal performance. We support our theory with extensive experiments in both supervised and semi-supervised learning tasks. Consequently, we obtained significant improvements over the vanilla SGMC algorithms on CIFAR10, CIFAR100, and SVHN.

For future works, it is promising to relax the asymptotic normality assumption to the heavy-tailed generalization of Lévy-stable distribution (Şimsêkli et al., 2019) and apply Itô’s lemma to geometric Lévy process to reduce and analyze the bias from fat-tailed noises with small batch sizes. Besides, variance reduction (Xu et al., 2018) of the stochastic noise to obtain a larger acceleration effect is also appealing in both theory and practice. From the computational

Table 3. Semi-supervised learning on CIFAR10, CIFAR100 and SVHN based on different number of labels.

<table>
<thead>
<tr>
<th>(N_s)</th>
<th>CIFAR10</th>
<th>CIFAR100</th>
<th>SVHN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SGHMC</td>
<td>reSGHMC</td>
<td>SGHMC</td>
</tr>
<tr>
<td>2000</td>
<td>74.72±0.39</td>
<td>77.73±0.31</td>
<td>50.76±0.71</td>
</tr>
<tr>
<td>3000</td>
<td>77.96±0.32</td>
<td>80.85±0.23</td>
<td>53.07±0.71</td>
</tr>
<tr>
<td>4000</td>
<td>79.06±0.29</td>
<td>81.61±0.23</td>
<td>57.05±0.59</td>
</tr>
<tr>
<td>5000</td>
<td>81.74±0.36</td>
<td>84.67±0.28</td>
<td>59.34±0.64</td>
</tr>
</tbody>
</table>

Figure 4. reSGHMC versus SGHMC on benchmark datasets in semi-supervised learning.
perspective, it is also interesting to study parallel multi-chain reSGMCMC in larger machine learning tasks.

Acknowledgements

We thank the reviewers for their suggestions. We acknowledge the support from the Bilsland Dissertation Fellowship (Deng), the National Science Foundation DMS-1555072, DMS-1736364, DMS-1821233 (Lin) and DMS-1818674 (Liang) and the GPU grant program from NVIDIA.

References

Holden Lee, Andrej Risteski, and Rong Ge. Beyond Log-concavity: Provable Guarantees for Sampling

