In this supplementary material, we prove the convergence in §1 and show the experimental setup in §2.

1. Convergence Analysis

1.1. Background

The continuous-time replica exchange Langevin diffusion (reLD) \(\{\beta_t\}_{t \geq 0} := \left\{ \begin{pmatrix} \beta^{(1)}_t \\ \beta^{(2)}_t \end{pmatrix} \right\}_{t \geq 0} \) is a Markov process compounded with a Poisson jump process. In particular, the Markov process follows the stochastic differential equations

\[
\begin{align*}
 d\beta^{(1)}_t &= -\nabla U(\beta^{(1)}_t)dt + \sqrt{2\tau_1}dW^{(1)}_t \\
 d\beta^{(2)}_t &= -\nabla U(\beta^{(2)}_t)dt + \sqrt{2\tau_2}dW^{(2)}_t,
\end{align*}
\]

(1)

where \(\beta^{(1)}_t, \beta^{(2)}_t \) are the particles (parameters) at time \(t \) in \(\mathbb{R}^d \), \(W^{(1)}, W^{(2)} \in \mathbb{R}^d \) are two independent Brownian motions, \(U : \mathbb{R}^d \to \mathbb{R} \) is the energy function, \(\tau_1 < \tau_2 \) are the temperatures. The jumps originate from the swaps of particles \(\beta^{(1)}_t \) and \(\beta^{(2)}_t \) and follow a Poisson process where the jump rate is specified as the Metropolis form \(S(\beta^{(1)}_t, \beta^{(2)}_t) \)

\[
S(\beta^{(1)}_t, \beta^{(2)}_t) = e^{\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)(U(\beta^{(1)}_t) - U(\beta^{(2)}_t))}.
\]

Under the swapping rate \(S(\beta^{(1)}_t, \beta^{(2)}_t) \), the probability \(\nu_t \) associated with reLD at time \(t \) is known to converge to the invariant measure (Gibbs distribution) with density

\[
\pi(\beta^{(1)}, \beta^{(2)}) \propto e^{-\frac{U(\beta^{(1)}_t)}{\tau_1} - \frac{U(\beta^{(2)}_t)}{\tau_2}}.
\]

In practice, obtaining the exact energy and gradient for reLD (1) in a large dataset is quite expensive. We consider the replica exchange stochastic gradient Langevin dynamics (reSGLD), which generates iterates \(\{\tilde{\beta}^{(1)}_k\} \) as follows

\[
\begin{align*}
 \tilde{\beta}^{(1)}_{k+1} &= \tilde{\beta}^{(1)}_k - \eta \nabla \tilde{U}(\tilde{\beta}^{(1)}_k) + \sqrt{2\eta\tau_1}\xi^{(1)}_k \\
 \tilde{\beta}^{(2)}_{k+1} &= \tilde{\beta}^{(2)}_k - \eta \nabla \tilde{U}(\tilde{\beta}^{(2)}_k) + \sqrt{2\eta\tau_2}\xi^{(2)}_k,
\end{align*}
\]

(2)

where \(\eta \) is considered to be a fixed learning rate for ease of analysis, and \(\xi^{(1)}_k \) and \(\xi^{(2)}_k \) are independent Gaussian random vectors in \(\mathbb{R}^d \). Moreover, the positions of the particles swap with the stochastic swapping rate \(\tilde{S}(\beta^{(1)}_k, \beta^{(2)}_k) := \)

\(S(\beta^{(1)}, \beta^{(2)}) + \psi \), and the stochastic gradient \(\nabla U(\cdot) \) can be written as \(\nabla U(\cdot) + \phi \), where \(\psi \in \mathbb{R}^1 \) and \(\phi \in \mathbb{R}^d \) are both random variables with mean not necessarily zero. We also denote \(\mu_k \) as the empirical measure associated with \(\{\bar{\beta}^\eta(k)\}_{k \geq 1} \) in reSGLD (2) at step \(k \), which is close to \(\nu_{k\eta} \) in a suitable sense.

1.2. Overview of the analysis

We aim to study the convergence analysis of the empirical measure \(\mu_k \) to the invariant measure \(\pi \) in terms of 2-Wasserstein distance,

\[
W_2(\mu, \nu) := \inf_{\Gamma \in \text{Couplings}(\mu, \nu)} \sqrt{\int \|\beta_{\mu} - \beta_{\nu}\|^2 d\Gamma(\beta_{\mu}, \beta_{\nu})},
\]

(3)

where \(\|\cdot\| \) is the Euclidean norm, and the infimum is taken over all joint distributions \(\Gamma(\beta_{\mu}, \beta_{\nu}) \) with \(\mu \) and \(\nu \) being the marginals distributions.

By the triangle inequality, we easily obtain that for any \(k \in \mathbb{N} \) and \(t = k\eta \), we have

\[
W_2(\mu_k, \pi) \leq W_2(\mu_k, \nu_t) + W_2(\nu_t, \pi) \tag{Discretization error} + \text{Exponential decay}
\]

We start with the discretization error first by analyzing how reSGLD (2) tracks the reLD (1) in 2-Wasserstein distance. The critical part is to study the discretization of the Poisson jump process in mini-batch settings. To handle this issue, we follow Dupuis et al. (2012) and view the swaps of positions as swaps of temperatures. Then we apply standard techniques in stochastic calculus (Chen et al., 2019; Yin and Zhu, 2010; Sato and Nakagawa, 2014; Raginsky et al., 2017) to discretize the Langevin diffusion and derive the corresponding discretization error.

Next, we quantify the evolution of the 2-Wasserstein distance between \(\nu_t \) and \(\pi \). The key tool is the exponential decay of entropy (Kullback-Leibler divergence) when \(\pi \) satisfies the log-Sobolev inequality (LSI) (Bakry et al., 2014). To justify LSI, we first verify LSI for reSGLD without swaps, which is a direct result given a proper Lyapunov function criterion (Cattiaux et al., 2010) and the Poincaré inequality (Chen et al., 2019). Then we follow Chen et al. (2019) and verify LSI for reLD with swaps by analyzing the Dirichlet form. Finally, the exponential decay of the 2-Wasserstein distance follows from the Otto-Villani theorem by connecting the 2-Wasserstein distance with the entropy (Bakry et al., 2014).

Before we move forward, we first lay out the following assumptions:

Assumption 1 (Smoothness). The energy function \(U(\cdot) \) is \(C \)-smoothness, which implies that there exists a Lipschitz constant \(C > 0 \), such that for every \(x, y \in \mathbb{R}^d \), we have \(\|\nabla U(x) - \nabla U(y)\| \leq C\|x - y\|. \)

Assumption 2 (Dissipativity). The energy function \(U(\cdot) \) is \((a,b)\)-dissipative, i.e. there exist constants \(a > 0 \) and \(b \geq 0 \) such that \(\forall x \in \mathbb{R}^d, \langle x, \nabla U(x) \rangle \geq a\|x\|^2 - b. \)

In particular, the convexity assumption is not required in our theory.

1.3. Analysis of discretization error

The key to deriving the discretization error is to view the swaps of positions as swaps of the temperatures, which has been proven equivalent in distribution (Dupuis et al., 2012). Therefore, we model reLD using the following SDE,

\[
d\beta_t = -\nabla G(\beta_t)dt + \Sigma_t dW_t, \tag{4}
\]

\footnote{\(\|\cdot\| \) denotes the Euclidean \(L_2 \) norm.}
where $G(\beta) = \begin{pmatrix} U(\beta^{(1)}) \\ U(\beta^{(2)}) \end{pmatrix}$, $W \in \mathbb{R}^{2d}$ is a Brownian motion, Σ_t is a random matrix in continuous-time that swaps between the diagonal matrices $\tilde{M}_1 = \begin{pmatrix} \sqrt{2\tau_1}I_d & 0 \\ 0 & \sqrt{2\tau_1}I_d \end{pmatrix}$ and $\tilde{M}_2 = \begin{pmatrix} \sqrt{2\tau_2}I_d & 0 \\ 0 & \sqrt{2\tau_2}I_d \end{pmatrix}$ with probability $S(\beta^{(1)}_t, \beta^{(2)}_t)$, and $I_d \in \mathbb{R}^{d \times d}$ is denoted as the identity matrix.

Moreover, the corresponding discretization of replica exchange SGLD (reSGLD) follows:

$$\tilde{\beta}^\eta(k + 1) = \tilde{\beta}^\eta(k) - \eta \nabla G(\tilde{\beta}^\eta(k)) + \sqrt{2\eta \Sigma^\eta(k)} \xi_k,$$

where ξ_k is a standard Gaussian distribution in \mathbb{R}^{2d}, and $\Sigma^\eta(k)$ is a random matrix in discrete-time that swaps between \tilde{M}_1 and \tilde{M}_2 with probability $S(\tilde{\beta}^{(1)}_t, \tilde{\beta}^{(2)}_t)$. We denote $\{\tilde{\beta}_t^\eta\}_{t \geq 0}$ as the continuous-time interpolation of $\{\tilde{\beta}^\eta(k)\}_{k \geq 1}$, which satisfies the following SDE,

$$\tilde{\beta}_t^\eta = \tilde{\beta}_0 - \int_0^t \nabla G(\tilde{\beta}^\eta_{\lfloor t/\eta \rfloor}) ds + \int_0^t \tilde{\Sigma}^\eta_{\lfloor s/\eta \rfloor} dW_s. \quad (6)$$

Here the random matrix $\tilde{\Sigma}^\eta_{s/\eta}$ follows the same trajectory as $\Sigma^\eta_{\lfloor s/\eta \rfloor}$ with the stochastic swapping probability $S(\tilde{\beta}^{(1)}_{s/\eta}, \tilde{\beta}^{(2)}_{s/\eta})$. For $k \in \mathbb{N}^+$ with $t = k\eta$, the relation $\tilde{\beta}^\eta_t = \tilde{\beta}^\eta_{k\eta} = \tilde{\beta}^\eta(k)$ follows.

Lemma 1 (Discretization error). Given the smoothness and dissipativity assumptions (1) and (2), and the learning rate η satisfying $0 < \eta < 1$ and a/C^2, there exists constants D_1, D_2 and D_3 such that

$$\mathbb{E}\left[\sup_{0 \leq t \leq T} \| \beta_t - \tilde{\beta}^\eta_t \|^2 \right] \leq D_1 \eta + D_2 \max_k \mathbb{E}[\|\phi_k\|^2] + D_3 \max_k \sqrt{\mathbb{E}[\|\psi_k\|^2]}, \quad (7)$$

where D_1 depends on $\tau_1, \tau_2, d, T, C, a, b$; D_2 depends on T and C; D_3 depends on d, T and C.

Proof. Based on the replica exchange Langevin diffusion $\{\beta_t\}_{t \geq 0}$ and the continuous-time interpolation of the stochastic gradient Langevin diffusion $\{\tilde{\beta}^\eta_t\}_{t \geq 0}$, we have the following SDE for the difference $\beta_t - \tilde{\beta}^\eta_t$. For any $t \in [0, T]$, we have

$$\beta_t - \tilde{\beta}^\eta_t = -\int_0^t (\nabla G(\beta_s) - \nabla \tilde{G}(\tilde{\beta}^\eta_{\lfloor s/\eta \rfloor})) ds + \int_0^t (\Sigma_s - \tilde{\Sigma}^\eta_{\lfloor s/\eta \rfloor}) dW_s.$$

Indeed, note that

$$\sup_{0 \leq t \leq T} \| \beta_t - \tilde{\beta}^\eta_t \| \leq \int_0^T \| \nabla G(\beta_s) - \nabla \tilde{G}(\tilde{\beta}^\eta_{\lfloor s/\eta \rfloor}) \| ds + \sup_{0 \leq t \leq T} \left\| \int_0^t (\Sigma_s - \tilde{\Sigma}^\eta_{\lfloor s/\eta \rfloor}) dW_s \right\|.$$

We first square both sides and take expectation, then apply the Burkholder-Davis-Gundy inequality and Cauchy-Schwarz inequality, we have

$$\mathbb{E}[\sup_{0 \leq t \leq T} \| \beta_t - \tilde{\beta}^\eta_t \|^2] \leq 2\mathbb{E}\left[\int_0^T \| \nabla G(\beta_s) - \nabla \tilde{G}(\tilde{\beta}^\eta_{\lfloor s/\eta \rfloor}) \| ds \right]^2 + \sup_{0 \leq t \leq T} \left\| \int_0^t (\Sigma_s - \tilde{\Sigma}^\eta_{\lfloor s/\eta \rfloor}) dW_s \right\|^2 \quad (8)$$

Estimate of stochastic gradient: For the first term \mathbb{E}, by using the inequality

$$\| a + b + c \|^2 \leq 3(\| a \|^2 + \| b \|^2 + \| c \|^2),$$

we can further estimate it.
By using the smoothness assumption 1, we first estimate

$$I_1 = 2TE \left[\int_0^T \left\| \left(\nabla G(\beta_s) - \nabla G(\beta^n_s) \right) + \left(\nabla G(\beta^n_s) - \nabla G(\beta^n_{[s/\eta]} \eta) \right) \right\|^2 ds \right]$$

$$\leq 6TE \left[\int_0^T \left\| \nabla G(\beta_s) - \nabla G(\beta^n_s) \right\|^2 ds \right] + 6TE \left[\int_0^T \left\| \nabla G(\beta^n_s) - \nabla G(\beta^n_{[s/\eta]} \eta) \right\|^2 ds \right]$$

$$+ 6TE \left[\int_0^T \left\| \nabla G(\beta^n_{[s/\eta]} \eta) - \nabla G(\beta^n_{[s/\eta]} \eta) \right\|^2 ds \right]$$

$$\leq I_1 + I_2 + I_3.$$ \(9\)

By using the smoothness assumption 1, we first estimate

$$I_1 \leq 6TC^2E \left[\int_0^T \left\| \beta_s - \beta^n_s \right\|^2 ds \right].$$

By applying the smoothness assumption 1 and discretization scheme, we can further estimate

$$I_2 \leq 6TC^2E \left[\int_0^T \left\| \beta^n_s - \beta^n_{[s/\eta]} \right\|^2 ds \right]$$

$$\leq 6TC^2 \sum_{k=0}^{[T/\eta]} E \left[\int_{k\eta}^{(k+1)\eta} \left\| \beta^n_s - \beta^n_{[s/\eta]} \right\|^2 ds \right]$$

$$\leq 6TC^2 \sum_{k=0}^{[T/\eta]} \int_{k\eta}^{(k+1)\eta} E \left[\sup_{k\eta \leq s < (k+1)\eta} \left\| \beta^n_s - \beta^n_{[s/\eta]} \right\| \right] ds$$ \(10\)

For \(\forall k \in \mathbb{N} \) and \(s \in [k\eta, (k+1)\eta) \), we have

$$\beta^n_s - \beta^n_{[s/\eta]} = \beta^n_s - \beta^n_{k\eta} = -\nabla \tilde{G}(\beta^n_{k\eta}) \cdot (s - k\eta) + \Sigma^n_{k\eta} \int_{k\eta}^s dW_r$$

which indeed implies

$$\sup_{k\eta \leq s < (k+1)\eta} \left\| \beta^n_s - \beta^n_{[s/\eta]} \right\| \leq \left\| \nabla \tilde{G}(\beta^n_{k\eta}) \right\|(s - k\eta) + \sup_{k\eta \leq s < (k+1)\eta} \left\| \Sigma^n_{k\eta} \right\| \int_{k\eta}^s dW_r$$

Similar to the estimate (8), square both sides and take expectation, then apply the Burkholder-Davis-Gundy inequality, we have

$$E \left[\sup_{k\eta \leq s < (k+1)\eta} \left\| \beta^n_s - \beta^n_{[s/\eta]} \right\|^2 \right] \leq 2E[\left\| \nabla \tilde{G}(\beta^n_{k\eta}) \right\|^2 (s - k\eta)^2] + 8 \sum_{j=1}^{2d} E \left[\left(\Sigma^n_{k\eta}(j) \int_{k\eta}^s dW_r \right)^{1/2} \right]^2$$

$$\leq 2(s - k\eta)^2E[\left\| \nabla \tilde{G}(\beta^n_{k\eta}) \right\|^2] + 32\sigma^2(s - k\eta),$$

where the last inequality follows from the fact that \(\Sigma^n_{k\eta} \) is a diagonal matrix with diagonal elements \(\sqrt{2\tau_1} \) or \(\sqrt{2\tau_2} \). For the first term in the above inequality, we further have

$$2(s - k\eta)^2E[\left\| \nabla \tilde{G}(\beta^n_{k\eta}) \right\|^2] = 2(s - k\eta)^2E[\left\| \nabla G(\beta^n_{k\eta}) + \phi_k \right\|^2]$$

$$\leq 4\eta^2E[\left\| \nabla G(\beta^n_{k\eta}) - \nabla G(\beta^*) \right\|^2 + \left\| \phi_k \right\|^2]$$

$$\leq 8C^2\eta^2E[\left\| \beta^n_{k\eta} \right\|^2 + \left\| \beta^* \right\|^2] + 4\eta^2E[\left\| \phi_k \right\|^2].$$
where the first inequality follows from the separation of the noise from the stochastic gradient and the choice of stationary point β^* of $G(\cdot)$ with $\nabla G(\beta^*) = 0$, and ϕ_k is the stochastic noise in the gradient at step k. Thus, combining the above two parts and integrate $\mathbb{E}\left[\sup_{k\eta \leq t < (k+1)\eta} \|\beta^*_s - \overline{\beta}^\eta_k\|_2^2\right]$ on the time interval $[k\eta, (k+1)\eta)$, we obtain the following bound

$$
\int_{k\eta}^{(k+1)\eta} \mathbb{E}\left[\sup_{k\eta \leq t < (k+1)\eta} \|\beta^*_s - \overline{\beta}^\eta_k\|_2^2\right] ds \leq 8C^2\eta^3 \left(\sup_{k \geq 0} \mathbb{E}[\|\beta^\eta_k\|_2^2 + \|\beta^*\|_2^2]\right) + 4\eta^3 \max_k \mathbb{E}[\|\phi_k\|_2^2] + 32dT_2\eta^2
$$

(11)

By plugging the estimate (11) into estimate (10), we obtain the following estimates when $\eta \leq 1$,

$$
\mathcal{I}_2 \leq 6TC^2(1 + T/\eta) \left[8C^2\eta^3 \left(\sup_{k \geq 0} \mathbb{E}[\|\beta^\eta_k\|_2^2 + \|\beta^*\|_2^2]\right) + 4\eta^3 \max_k \mathbb{E}[\|\phi_k\|_2^2] + 32dT_2\eta^2\right]
$$

$$
\leq \delta_1(d, \tau_2, T, C, a, b)\eta + 24TC^2(1 + T) \max_k \mathbb{E}[\|\phi_k\|_2^2],
$$

(12)

where $\delta_1(d, \tau_2, T, C, a, b)$ is a constant depending on d, τ_2, T, C, a and b. Note that the above inequality requires a result on the bounded second moment of $\sup_{k \geq 0} \mathbb{E}[\|\beta^\eta_k\|_2^2]$, and this is proved in Lemma C.2 in [Chen et al. (2019)] when we choose the stepsize $\eta \in (0, a/C^2)$. We are now left to estimate the term \mathcal{I}_3 and we have

$$
\mathcal{I}_3 \leq 6T \sum_{k=0}^{\lfloor T/\eta \rfloor} \mathbb{E}\left[\int_{k\eta}^{r(k+1)\eta} \|\nabla G(\beta^\eta_{k\eta}) - \nabla G(\beta^\eta_{k\eta})\|_2^2 ds\right]
$$

$$
\leq 6T(1 + T/\eta) \max_k \mathbb{E}[\|\phi_k\|_2^2] \eta
$$

$$
\leq 6T(1 + T) \max_k \mathbb{E}[\|\phi_k\|_2^2].
$$

(13)

Combining all the estimates of $\mathcal{I}_1, \mathcal{I}_2$ and \mathcal{I}_3, we obtain

$$
\mathcal{I} \leq 6TC^2 \int_0^T \mathbb{E}\left[\sup_{0 \leq t \leq T} \|\beta^*_s - \overline{\beta}^\eta_k\|_2^2\right] ds + \delta_1(d, \tau_2, T, C, a, b)\eta + 24TC^2(1 + T) \max_k \mathbb{E}[\|\phi_k\|_2^2]
$$

$$
+ 6T(1 + T) \max_k \mathbb{E}[\|\phi_k\|_2^2].
$$

(14)

Estimate of stochastic diffusion: For the second term \mathcal{J}, we have

$$
\mathcal{J} = 8\mathbb{E}\left[\int_0^T \left\|\Sigma_s(j) - \Sigma_s^{[s/\eta]}(j)\right\|^2 ds\right]
$$

$$
\leq 8 \sum_{j=1}^{2d} \sum_{k=0}^{\lfloor T/\eta \rfloor} \int_{k\eta}^{r(k+1)\eta} \mathbb{E}\left[\left\|\Sigma_s(j) - \overline{\Sigma}^\eta_{k\eta}(j)\right\|^2\right] ds
$$

$$
\leq 8 \sum_{j=1}^{2d} \sum_{k=0}^{\lfloor T/\eta \rfloor} \int_{k\eta}^{r(k+1)\eta} \mathbb{E}\left[\left\|\Sigma_s(j) - \Sigma^\eta_{k\eta}(j) + \Sigma^\eta_{k\eta}(j) - \overline{\Sigma}^\eta_{k\eta}(j)\right\|^2\right] ds
$$

$$
\leq 16 \sum_{j=1}^{2d} \sum_{k=0}^{\lfloor T/\eta \rfloor} \int_{k\eta}^{r(k+1)\eta} \mathbb{E}\left[\left\|\Sigma_s(j) - \Sigma^\eta_{k\eta}(j)\right\|^2\right] ds + \int_{k\eta}^{r(k+1)\eta} \mathbb{E}\left[\left\|\Sigma^\eta_{k\eta}(j) - \overline{\Sigma}^\eta_{k\eta}(j)\right\|^2\right] ds
$$

$$
\mathcal{J}_1 + \mathcal{J}_2.
$$

(15)

where $\Sigma^\eta_{k\eta}$ is the temperature matrix for the continuous-time interpolation of $\{\beta^\eta(k)\}_{k \geq 1}$, which is similar to (6) without noise defined as below

$$
\beta^\eta_k = \beta_0 - \int_0^t \nabla G(\beta^\eta_{k\eta}) ds + \int_0^t \Sigma^\eta_{k\eta} dW_s.
$$

(16)
We proceed to quantify the evolution of the 2-Wasserstein distance between ν_t and π. We first consider the ordinary Langevin diffusion without swaps and derive the log-Sobolev inequality (LSI). Then we extend LSI to reLD and obtain the exponential decay of the relative entropy. Finally, we derive the exponential decay of the 2-Wasserstein distance.

1.4. Exponential decay of Wasserstein distance in continuous-time

We proceed to quantify the evolution of the 2-Wasserstein distance between ν_t and π. We first consider the ordinary Langevin diffusion without swaps and derive the log-Sobolev inequality (LSI). Then we extend LSI to reLD and obtain the exponential decay of the relative entropy. Finally, we derive the exponential decay of the 2-Wasserstein distance.

Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
In order to distinguish from the replica exchange Langevin diffusion β_t defined in (4), we call it $\hat{\beta}_t$ which follows,

$$d\hat{\beta}_t = -\nabla G(\hat{\beta}_t)dt + \Sigma_t dW_t.$$ \hspace{1cm} (20)

where $\Sigma_t \in \mathbb{R}^{2d \times 2d}$ is a diagonal matrix with the form \begin{pmatrix} \sqrt{2\tau_1}I_d & 0 \\ 0 & \sqrt{2\tau_2}I_d \end{pmatrix}. The process $\hat{\beta}_t$ is a Markov diffusion process with infinitesimal generator \mathcal{L} in the following form, for $x_1 \in \mathbb{R}^d$ and $x_2 \in \mathbb{R}^d$,

$$\mathcal{L} = -\langle \nabla x_1 f(x_1, x_2), \nabla U(x_1) \rangle + \tau_1 \Delta x_1 f(x_1, x_2) - \langle \nabla x_2 f(x_1, x_2), \nabla U(x_2) \rangle + \tau_2 \Delta x_2 f(x_1, x_2)$$

Note that since matrix Σ_t is a non-degenerate diagonal matrix, operator \mathcal{L} is an elliptic diffusion operator. According to the smoothness assumption (1), we have that $\nabla^2 G \geq -C I_{2d}$, where $C > 0$, the unique invariant measure π associate with the underlying diffusion process satisfies the Poincare inequality and LSI with the Dirichlet form given as follows,

$$\mathcal{E}(f) = \int (\tau_1 \|\nabla x_1 f\|^2 + \tau_2 \|\nabla x_2 f\|^2) d\pi(x_1, x_2), \quad f \in C^0_0(\mathbb{R}^{2d}).$$ \hspace{1cm} (21)

In this elliptic case with G being convex, the proof for LSI follows from standard Bakry-Emery calculus (Bakry and Émery, 1985). Since, we are dealing with the non-convex function G, we are particularly interested in the case of $\nabla^2 G \geq -C I_{2d}$. To obtain a Poincaré inequality for invariant measure π, Chen et al. (2019) adapted an argument from Bakry et al. (2008) and Raginsky et al. (2017) by constructing an appropriate Lyapunov function for the replica exchange diffusion without swapping $\hat{\beta}_t$. Denote ν_t as the distribution associated with the diffusion process $\{\hat{\beta}_t\}_{t \geq 0}$, which is absolutely continuous with respect to π. It is a direct consequence of the aforementioned results that the following log-Sobolev inequality holds.

Lemma 2 (LSI for Langevin Diffusion). Under assumptions (1) and (2), we have the following log-Sobolev inequality for invariant measure π, for some constant $c_{LS} > 0$,

$$D(\nu_t || \pi) \leq 2c_{LS} \mathcal{E}(\sqrt{\frac{d\nu_t}{d\pi}}).$$

where $D(\nu_t || \pi) = \int d\nu_t \log \frac{d\nu_t}{d\pi}$ denotes the relative entropy and the Dirichlet form $\mathcal{E}(\cdot)$ is defined in (21).

Proof

According to Cattiaux et al. (2010), the sufficient conditions to establish LSI are:

1. There exists some constant $C \geq 0$, such that $\nabla^2 G \succ -C I_{2d}$.

2. π satisfies a Poincaré inequality with constant c_p, namely, for all probability measures $\nu \ll \pi$, $\chi^2(\nu || \pi) \leq c_p \mathcal{E}(\sqrt{\frac{d\nu}{d\pi}})$, where $\chi^2(\nu || \pi) := \| \frac{d\nu}{d\pi} - 1 \|^2$ is the χ^2 divergence between ν and π.

3. There exists a C^2 Lyapunov function $V : \mathbb{R}^{2d} \to [1, \infty)$ such that $\frac{\mathcal{L}V(x_1, x_2)}{V(x_1, x_2)} \leq \kappa - \gamma (\|x_1\|^2 + \|x_2\|^2)$ for all $(x_1, x_2) \in \mathbb{R}^{2d}$ and some $\kappa, \gamma > 0$.

Note that the first condition on the Hessian is obtained from the smoothness assumption (1). Moreover, the Poincaré inequality in the second condition is derived from Lemma C.1 in Chen et al. (2019) given assumptions (1) and (2). Finally, to verify the third condition, we follow Raginsky et al. (2017) and construct the Lyapunov function $V(x_1, x_2) :=$
We are now ready to prove the log-Sobolev inequality for invariant measure associated with the replica exchange Langevin diffusion (4). We use a similar idea from Chen et al. (2019) where they prove the Poincaré inequality for the invariant measure associated with the replica exchange Langevin diffusion (4) by analyzing the corresponding Dirichlet form. In particular, a larger Dirichlet form ensures a smaller log-Sobolev constant and hence results in a faster convergence in the relative entropy and Wasserstein distance.

Lemma 3 (Accelerated exponential decay of \(\mathcal{W}_2 \)). Under assumptions (1) and (2), we have that the replica exchange Langevin diffusion converges exponentially fast to the invariant distribution \(\pi \):

\[
\mathcal{W}_2(\nu_1, \pi) \leq D_0 e^{-k \left(1 + \delta_S \right) / c_{LS}},
\]

where \(D_0 = \sqrt{2c_{LS} D(\nu_0||\pi)} \), \(\delta_S := \inf_{t>0} \frac{\mathcal{E}_S(\sqrt{d\nu_t/d\pi})}{\mathcal{E}(\sqrt{d\nu_t/d\pi})} - 1 \) is a non-negative constant depending on the swapping rate \(S(\cdot, \cdot) \) and obtains 0 only if \(S(\cdot, \cdot) = 0 \).

Proof Consider the infinitesimal generator associated with the diffusion process (4), denoted as \(\mathcal{L}_S \), contains an extra term arising from the temperature swapping. The operator \(\mathcal{L}_S \) in this particular case, indeed, has the following form

\[
\mathcal{L}_S = \mathcal{L} + S(x_1, x_2) \cdot (f(x_2, x_1) - f(x_1, x_2)).
\]

According to Theorem 3.3 (Chen et al., 2019), the Dirichlet form associated with operator \(\mathcal{L}_S \) under the invariant measure \(\pi \) has the form

\[
\mathcal{E}_S(f) = \mathcal{E}(f) + \frac{1}{2} \int S(x_1, x_2) \cdot (f(x_2, x_1) - f(x_1, x_2))^2 d\pi(x_1, x_2), \quad f \in C_0^2(\mathbb{R}^{2d}),
\]

where \(f \) corresponds to \(d\nu_t/d\pi(x_1, x_2) \), and the asymmetry of \(\frac{d\nu_t}{d\pi(x_1, x_2)} \) is critical in the acceleration effect (Chen et al., 2019). Given two different temperatures \(\tau_1 \) and \(\tau_2 \), a non-trivial distribution \(\pi \) and function \(f \), the swapping rate \(S(x_1, x_2) \) is positive for almost any \(x_1, x_2 \in \mathbb{R}^d \). As a result, the Dirichlet form associated with \(\mathcal{L}_S \) is strictly larger than \(\mathcal{L} \). Therefore, there exists a constant \(\delta_S > 0 \) depending on \(S(x_1, x_2) \), such that \(\delta_S = \inf_{t>0} \frac{\mathcal{E}_S(\sqrt{d\nu_t/d\pi})}{\mathcal{E}(\sqrt{d\nu_t/d\pi})} - 1 \). From Lemma 2, we have

\[
D(\nu_t||\pi) \leq 2c_{LS} \mathcal{E}(\sqrt{d\nu_t/d\pi}) \leq 2c_{LS} \sup_t \frac{\mathcal{E}_S(\sqrt{d\nu_t/d\pi})}{\mathcal{E}(\sqrt{d\nu_t/d\pi})} \mathcal{E}_S(\sqrt{d\nu_t/d\pi}) = 2c_{LS} \mathcal{E}_S(\sqrt{d\nu_t/d\pi}).
\]

\(^2a \wedge b\) denotes \(\min\{a, b\} \).
Thus, we obtain the following log-Sobolev inequality for the unique invariant measure π associated with replica exchange Langevin diffusion $\{\beta_t\}_{t \geq 0}$ and its corresponding Dirichlet form $E_S(\cdot)$. In particular, the LSI constant $\frac{\epsilon^2}{2(1+\delta)}$ in replica exchange Langevin diffusion with swapping rate $S(\cdot, \cdot) > 0$ is strictly smaller than the LSI constant c_{LS} in the replica exchange Langevin diffusion with swapping rate $S(\cdot, \cdot) = 0$. By the exponential decay in entropy (Bakry et al., 2014)[Theorem 5.2.1] and the tight log-Sobolev inequality in Lemma 2, we get that, for any $t \in [k\eta, (k+1)\eta)$,

$$D(\nu_t||\pi) \leq D(\nu_0||\pi)e^{-2t(1+\delta)/c_{LS}} \leq D(\mu_0||\pi)e^{-2k\eta(1+\delta)/c_{LS}}. \quad (28)$$

Finally, we can estimate the term $W_2(\nu_t, \pi)$ by the Otto-Villani theorem (Bakry et al., 2014)[Theorem 9.6.1].

$$W_2(\nu_t, \pi) \leq \sqrt{2c_{LS}D(\nu_t||\pi)} \leq \sqrt{2c_{LS}D(\mu_0||\pi)}e^{-k\eta(1+\delta)/c_{LS}}. \quad (29)$$

1.5. Summary: Convergence of reSGLD

Now that we have all the necessary ingredients in place, we are ready to derive the convergence of the distribution μ_k to the invariant measure π in terms of 2-Wasserstein distance,

Theorem 1 (Convergence of reSGLD). Let the assumptions (1) and (2) hold. For the unique invariant measure π associated with the Markov diffusion process (4) and the distribution $\{\mu_k\}_{k \geq 0}$ associated with the discrete dynamics $\{B^\eta(k)\}_{k \geq 1}$, we have the following estimates, for $0 \leq k \in \mathbb{N}^+$ and the learning rate η satisfying $0 < \eta < 1$ and a/C^2,

$$W_2(\mu_k, \pi) \leq D_0 e^{-k\eta(1+\delta)/c_{LS}} + \sqrt{\delta_1 \eta + \delta_2 \max_k \mathbb{E}[\|\phi_k\|^2] + \delta_3 \max_k \sqrt{\mathbb{E}[\|\psi_k\|^2]}} \quad (30)$$

where $D_0 = \sqrt{2c_{LS}D(\mu_0||\pi)}$, $\delta := \frac{\mathbb{E}[\|\beta\|^2]}{\mathbb{E}[\|\mu\|^2]} - 1$ is a non-negative constant depending on the swapping rate $S(\cdot, \cdot)$ and obtains the minimum zero only if $S(\cdot, \cdot) = 0$.

Proof We reduce the estimates into the following two terms by using the triangle inequality,

$$W_2(\mu_k, \pi) \leq W_2(\mu_k, \nu_t) + W_2(\nu_t, \pi), \quad t \in [k\eta, (k+1)\eta). \quad (31)$$

The first term $W_2(\mu_k, \nu_t)$ follows from the analysis of discretization error in Lemma.1. Then the very definition of the $W_2(\cdot, \cdot)$ distance defined in (3). Thus, in order to control the distance $W_2(\mu_k, \nu_t)$, $t \in [k\eta, (k+1)\eta)$, we need to consider the diffusion process whose law give μ_k and ν_t, respectively. Indeed, it is obvious that $\nu_t = \mathcal{L}(\beta_t)$ for $t \in [k\eta, (k+1)\eta)$. For the other measure μ_k, it follows that $\mu_k = \tilde{\nu}_{k\eta}$ for $t = k\eta$, where $\tilde{\nu}_{k\eta} = \mathcal{L}(\beta^\eta_t)$ is the probability measure associated with the continuous interpolation of reSGLD (5). By Lemma.1, we have that for $k \in \mathbb{N} \in (k\eta, (k+1)\eta)$,

$$W_2(\mu_k, \nu_t) = W_2(\tilde{\nu}_{k\eta}, \nu_t) \leq \sqrt{\mathbb{E}[\sup_{0 \leq s \leq t} \|\beta_s - \beta^\eta_s\|^2]} \leq \sqrt{\delta_1 \eta + \delta_2 \max_k \mathbb{E}[\|\phi_k\|^2] + \delta_3 \max_k \sqrt{\mathbb{E}[\|\psi_k\|^2]}}, \quad (32)$$

Recall from the accelerated exponential decay of replica exchange Langevin diffusion in Lemma.3, we have

$$W_2(\nu_t, \pi) \leq \sqrt{2c_{LS}D(\nu_0||\pi)}e^{-k\eta(1+\delta)/c_{LS}} = \sqrt{2c_{LS}D(\mu_0||\pi)}e^{-k\eta(1+\delta)/c_{LS}}. \quad (33)$$

Combing the above two estimates completes the proof.

\blacksquare
2. Hyper-parameter Setting for Bayesian GANs

In the semi-supervised learning tasks, we fine-tune the hyper-parameters for Bayesian GANs and report them in Table 1. In particular, N_s is the number of labeled data; $\eta^{(1)}$ and $\eta^{(2)}$ are the learning rates for the low-temperature chain and high-temperature chain, respectively; $\tau^{(1)}$ and $\tau^{(2)}$ are the temperatures; \hat{F} is the correction factor, which often yields several swaps. In addition, the learning rates also follow a truncated exponential decay, for example, $\eta^{(1)}_k = \left(0.05 \wedge e^{-k/800}\right) \eta^{(1)}$ and $\eta^{(2)}_k = \left(0.05 \wedge e^{-k/800}\right) \eta^{(2)}$, where k is the number of iterations.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>N_s</th>
<th>$\eta^{(1)}$</th>
<th>$\eta^{(2)}$</th>
<th>$\tau^{(1)}$</th>
<th>$\tau^{(2)}$</th>
<th>\hat{F}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR10</td>
<td>2000 ~ 4500</td>
<td>4.5e-4</td>
<td>7.0e-4</td>
<td>0.01</td>
<td>1</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>4500 ~ 5000</td>
<td>6.5e-4</td>
<td>1.0e-3</td>
<td>0.01</td>
<td>1</td>
<td>5000</td>
</tr>
<tr>
<td>CIFAR100</td>
<td>2000 ~ 2500</td>
<td>5.0e-4</td>
<td>7.5e-4</td>
<td>0.04</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>3000 ~ 3500</td>
<td>5.0e-4</td>
<td>7.5e-4</td>
<td>0.02</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>4000 ~ 5000</td>
<td>5.0e-4</td>
<td>7.5e-4</td>
<td>0.01</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>SVHN</td>
<td>2000 ~ 4000</td>
<td>4.5e-3</td>
<td>5.0e-3</td>
<td>0.01</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>4500 ~ 5000</td>
<td>4.5e-3</td>
<td>7.0e-3</td>
<td>0.01</td>
<td>1</td>
<td>10000</td>
</tr>
</tbody>
</table>

Table 1. Hyper-parameter setting of Bayesian GANs for Semi-Supervised Learning experiments.

References

