
Mapping Natural-language Problems to Formal-language Solutions Using
Structured Neural Representations

Kezhen Chen 1 2 Qiuyuan Huang 1 Hamid Palangi 1 Paul Smolensky 1 3 Kenneth D. Forbus 2 Jianfeng Gao 1

Abstract

Generating formal-language programs repre-
sented by relational tuples, such as Lisp pro-
grams or mathematical operations, to solve prob-
lems stated in natural language is a challeng-
ing task because it requires explicitly capturing
discrete symbolic structural information implicit
in the input. However, most general neural se-
quence models do not explicitly capture such
structural information, limiting their performance
on these tasks. In this paper, we propose a new
encoder-decoder model based on a structured neu-
ral representation, Tensor Product Representa-
tions (TPRs), for mapping Natural-language prob-
lems to Formal-language solutions, called TP-
N2F. The encoder of TP-N2F employs TPR ‘bind-
ing’ to encode natural-language symbolic struc-
ture in vector space and the decoder uses TPR
‘unbinding’ to generate, in symbolic space, a se-
quential program represented by relational tuples,
each consisting of a relation (or operation) and
a number of arguments. TP-N2F considerably
outperforms LSTM-based seq2seq models on two
benchmarks and creates new state-of-the-art re-
sults. Ablation studies show that improvements
can be attributed to the use of structured TPRs
explicitly in both the encoder and decoder. Anal-
ysis of the learned structures shows how TPRs
enhance the interpretability of TP-N2F.

1. Introduction
When people perform explicit reasoning, they can typically
describe the way to the conclusion step by step via relational

1Microsoft Research, Redmond, USA. 2Department of
Computer Science, Northwestern University, Evanston, USA.
3Department of Cognitive Science, Johns Hopkins Univer-
sity, Baltimore, USA.. Correspondence to: Kezhen Chen
<kzchen@u.northwestern.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

descriptions. There is ample evidence that relational, struc-
tured representations are important for human cognition,
e.g., (Goldin-Meadow & Gentner, 2003; Forbus et al., 2017;
Crouse et al., 2018; Chen & Forbus, 2018; Chen et al., 2019;
Lee et al., 2019). Although a rapidly growing number of
researchers use deep learning to solve complex symbolic
reasoning and language tasks (a recent review is Gao et al.
(2019)), most existing deep learning models, including se-
quence models such as LSTMs, do not explicitly capture
human-like relational structured information.

In this paper we propose a novel neural architecture, TP-
N2F, for mapping a Natural-language (NL) question to a
Formal-language (FL) program represented by a sequence
of relational tuples (N2F). In the tasks we study, math or
programming problems are stated in natural language, and
answers are given as programs: sequences of relational
structured representations, to solve the problems step by
step like a human being, instead of directly generating the fi-
nal answer. For example, from one of our datasets, MathQA:
given a natural-language math problem “20 is subtracted
from 60 percent of a number, the result is 88. Find the num-
ber?”, the formal-language solution program is “(add,n0,n2)
(divide,n1,const100) (divide,#0,#1)”, where n1 indicates
the first number mentioned in the question and #i indicates
the output of the ith previous tuple. TP-N2F encodes the
natural-language symbolic structure of the problem in an
input vector space, maps this to a vector in an intermediate
space, and uses that vector to produce a sequence of output
vectors that are decoded as relational structures. Both input
and output structures are modeled as Tensor Product Rep-
resentations (TPRs) (Smolensky, 1990) and the structured
representations of inputs are mapped to the structured repre-
sentations of outputs. During encoding, NL-input symbolic
structures are encoded as vector space embeddings using
TPR ‘binding’ (following Palangi et al. (2018)); during de-
coding, symbolic constituents are extracted from structure-
embedding output vectors using TPR ‘unbinding’ (following
Huang et al. (2018; 2019)). By employing TPRs, the model
achieves better performance and increased interpretability.

Our contributions in this work are as follows. (i) We intro-
duce the notion of abstract role-level analysis, and propose
such an analysis of N2F tasks. (ii) We present a new TP-N2F

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

model which gives a neural-network-level implementation
of a model solving the N2F task under the role-level de-
scription proposed in (i). To our knowledge, this is the first
model to be proposed which combines both the binding
and unbinding operations of TPRs to solve generation tasks
through deep learning. (iii) State-of-the-art performance
on two recently developed N2F tasks shows that the TP-
N2F model has significant structure learning ability on tasks
requiring symbolic reasoning through program synthesis.

2. Related Work
N2F tasks include many different subtasks such as symbolic
reasoning or semantic parsing (Kamath & Das, 2019; Cai &
Lam, 2019; Liao et al., 2018; Amini et al., 2019; Polosukhin
& Skidanov, 2018; Bednarek et al., 2019). These tasks re-
quire models with strong structure-learning ability. TPR
is a promising technique for encoding symbolic structural
information and modeling symbolic reasoning in vector
space. TPR binding has been used for encoding and explor-
ing grammatical structural information of natural language
(Palangi et al., 2018; Huang et al., 2019). TPR unbinding
has also been used to generate natural language captions
from images (Huang et al., 2018). Some researchers use
TPRs for modeling deductive reasoning processes both on a
rule-based model and deep learning models in vector space
(Lee et al., 2016; Smolensky et al., 2016; Schlag & Schmid-
huber, 2018). However, none of these previous models takes
advantage of combining TPR binding and TPR unbinding to
learn structure representation mappings explicitly, as done
in our model. Although researchers are paying increasing
attention to N2F tasks, most of the proposed models either
do not encode structural information explicitly or are spe-
cialized to particular tasks. Our proposed TP-N2F neural
model is general and can be applied to many tasks.

TP-N2F represents inputs and outputs as structures and
learns to map these structures. In cognitive science and psy-
chology, mapping one domain to another is also an impor-
tant field. For example, Goldin-Meadow & Gentner (2003)
proposed the Structure Mapping Theory to model human
analogy within cognitive science, and Forbus et al. (2017)
introduced the computational implementation, the Structure
Mapping Engine (SME), of the Structure Mapping Theory.
Following these works, Crouse et al. (2018); Chen & Forbus
(2018); Chen et al. (2019) applied SME on language and
vision problems. Researchers also explore the use of con-
cept theory to map structural representations from different
domains (Roads & Love, 2019; Martin, 2020). In this paper,
we propose the structure-to-structure scheme to build neural
models: the TP-N2F model follows this scheme.

3. Structured Representations using TPRs
The Tensor Product Representation (TPR) mechanism is
a method to create a vector space embedding of complex
symbolic structures. The type of a symbol structure is de-
fined by a set of structural positions or roles, such as the
left-child-of-root position in a tree, or the second-argument-
of-R position of a given relation R. In a particular instance
of a structural type, each of these roles may be occupied
by a particular filler, which can be an atomic symbol or a
substructure (e.g., the entire left sub-tree of a binary tree
can serve as the filler of the role left-child-of-root). For now,
we assume the fillers to be atomic symbols.1

The TPR embedding of a symbol structure is the sum of
the embeddings of all its constituents, each constituent com-
prising a role together with its filler. The embedding of a
constituent is constructed from the embedding of a role and
the embedding of the filler of that role: these are joined
together by the TPR ‘binding’ operation, the tensor (or gen-
eralized outer) product
.

Formally, suppose a symbolic type is defined by the roles
frig, and suppose that in a particular instance of that type,
S, role ri is bound by filler fi. The TPR embedding of S is
the order-2 tensor

T =
X
i

fi
 ri =
X
i

fir
>
i (1)

where ffig are vector embeddings of the fillers and frig
are vector embeddings of the roles. In Eq. 1, and below,
for notational simplicity we conflate order-2 tensors and
matrices.

A TPR scheme for embedding a set of symbol structures
is defined by a decomposition of those structures into roles
bound to fillers, an embedding of each role as a role vector,
and an embedding of each filler as a filler vector. Let
the total number of roles and fillers available be nR, nF,
respectively. Define the matrix of all possible role vectors
to be R 2 RdR�nR , with column i, [R]:i = ri 2 RdR ,
comprising the embedding of ri. Similarly let F 2 RdF�nF

be the matrix of all possible filler vectors. The TPR T 2
RdF�dR . Below, dR, nR, dF, nF will be hyper-parameters,
while R,F will be learned parameter matrices.

Using summation in Eq.1 to combine the vectors embedding
the constituents of a structure risks non-recoverability of
those constituents given the embedding T of the structure
as a whole. The tensor product is chosen as the binding
operation in order to enable recovery of the filler of any role
in a structure S given its TPR T. This can be done with

1When fillers are structures themselves, binding can be used
recursively, giving tensors of order higher than 2. In general,
binding is done with the tensor product, since conflation with
matrix algebra is only possible for order-2 tensors. Our unbinding
of relational tuples involves the order-3 TPRs defined in Sec. 4.1.

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

perfect precision if the embeddings of the roles are linearly
independent. In that case the role matrix R has a left inverse
U : UR = I . Now define the unbinding (or dual) vector
for role rj , uj , to be the jth column of U>: U>:j . Then,
since [I]ji = [UR]ji = Uj:R:i = [U>:j]>R:i = u>j ri =

r>i uj , we have r>i uj = δji. This means that, to recover
the filler of rj in the structure with TPR T, we can take its
tensor inner product (or matrix-vector product) with uj :2

Tuj =

"X
i

fir
>
i

#
uj =

X
i

fiδij = fj (2)

In the architecture proposed here, we make use of TPR
‘binding’ for the structured embedding encoding the natural-
language problem statement; we use TPR ‘unbinding’ of the
structured output embedding to decode the formal-language
solution programs represented by relational tuples. Because
natural-language and formal-language pertain to different
representations (natural-language is an order-2 tensor and
formal-language is an order-3 tensor), the NL-binding and
FL-unbinding vectors are not related to one another. The
structured neural Tensor Product Representations of natural-
language and formal-language, and the details of binding
and unbinding process used in the architecture, will be in-
troduced in 4.1.

4. TP-N2F Model
We propose a general TP-N2F neural network architecture
operating over TPRs to solve N2F tasks under a proposed
role-level description of those tasks. In this description,
natural-language input is represented as a straightforward
order-2 tensor role structure, and formal-language relational
representations of outputs are represented with a new order-
3 tensor recursive role structure proposed here. Figure 1
shows an overview diagram of the TP-N2F model. It depicts
the following high-level description.

As shown in Figure 1, while the natural-language input is
a sequence of words, the output is a sequence of multi-
argument relational tuples such as (R A1 A2), a 3-tuple
consisting of a binary relation (or operation) R with its two
arguments. The “TP-N2F encoder” uses two LSTMs to
produce a pair consisting of a filler vector and a role vector,
which are bound together with the tensor product. These
tensor products, concatenated, comprise the “context” over
which attention will operate in the decoder. The sum of
the word-level TPRs, flattened to a vector, is treated as a
representation of the entire problem statement; it is fed to

2When the role vectors are not linearly independent, this oper-
ation performs unbinding approximately, taking U to be the left
pseudo-inverse of R. Because randomly chosen vectors on the unit
sphere in a high-dimensional space are approximately orthogonal,
the approximation is often excellent.

the “Reasoning MLP”, which transforms this encoding of
the problem into a vector encoding the solution. This is
the initial state of the “TP-N2F decoder” attentional LSTM,
which outputs at each time step an order-3 tensor repre-
senting a relational tuple. To generate a correct tuple from
decoder operations, the model must learn to give the order-3
tensor the form of a TPR for a (R A1 A2) tuple (detailed
explanation in Sec. 4.1). In the following sections, we first
introduce the details of our proposed role-level description
for N2F tasks, and then present how our proposed TP-N2F
model uses TPR binding and unbinding operations to create
a neural network implementation of this description of N2F
tasks.

4.1. Role-level description of N2F tasks

In this section, we propose a role-level description of N2F
tasks, which specifies the filler/role structures of the input
natural-language symbolic expressions and the output rela-
tional representations. As the two structures are different,
we also propose a formal scheme for structure mapping on
TPRs.

Role-Level Description for Natural-Language Input
Instead of encoding each token of a sentence with a non-
compositional embedding vector looked up in a learned
dictionary, we use a learned role-filler decomposition to
compose a tensor representation for each token. Given a sen-
tence S with n word tokens fw0, w1, ..., wn�1g, each word
token wt is assigned a learned role vector rt, soft-selected
from the learned dictionary R, and a learned filler vector
f t, soft-selected from the learned dictionary F (Sec. 3).
The mechanism closely follows that of Palangi et al. (2018),
and we hypothesize similar results: the role and filler ap-
proximately encode the structural role of the token and its
lexical semantics, respectively.3 Then each word token wt

is represented by the tensor product of the role vector and
the filler vector: Tt = f t
 rt. In addition to the set of
all its token embeddings fT0, . . . ,Tn�1g, the sentence S
as a whole is assigned a TPR equal to the sum of the TPR
embeddings of all its word tokens: TS =

Pn�1
t=0 Tt.

Using TPRs to encode natural language has several advan-
tages. First, natural language TPRs can be interpreted by
exploring the distribution of tokens grouped by the role and
filler vectors they are assigned by a trained model (as in
Palangi et al. (2018)). Second, TPRs avoid the Bag of Word
(BoW) confusion (Huang et al., 2018): the BoW encoding
of Jay saw Kay is the same as the BoW encoding of Kay saw
Jay but the encodings are different with TPR embedding,

3Although the TPR formalism treats fillers and roles symmetri-
cally, in use, hyperparameters are selected so that the number of
available fillers is greater than that of roles. Thus, on average, each
role is assigned to more words, encouraging it to take on a more
general function, such as a grammatical role.

Mapping Natural-language Problems to Formal-language Solutions Using Structured Neural Representations

Figure 1.Overview diagram of TP-N2F.

because the role �lled by a symbol changes with its context.

Role-Level Description for Relational Representations
In this section, we propose a novel recursive role-level de-
scription for representing symbolic relational tuples. Each
relational tuple contains a relation token and multiple ar-
gument tokens. Given a binary relationrel , a relational
tuple can be written as(rel arg1 arg2) wherearg1; arg2

indicate two arguments of relationrel . Let us adopt the two
positional roles,prel

i = argi -of-rel for i = 1 ; 2. The �ller
of role prel

i is argi . Now let us use role decomposition re-
cursively, noting that the roleprel

i can itself be decomposed
into a sub-rolepi = argi -of- which has a sub-�llerrel .
Suppose thatargi ; rel; p i are embedded as vectorsa i ; r ; pi .
Then the TPR encoding ofprel

i is r rel
 pi , so the TPR
encoding of �ller argi bound to roleprel

i is a i
 (r rel
 pi).
The tensor product is associative, so we can omit parenthe-
ses and write the TPR for the formal-language expression,
the relational tuple(rel arg1 arg2), as:

H = a1
 r rel
 p1 + a2
 r rel
 p2: (3)

Given the unbinding vectorsp0
i for positional sub-role vec-

torspi and the unbinding relational vectorr 0
rel for the rela-

tional vectorr rel that embeds relationrel , each argument
can be unbound in two steps as shown in Eqs. 4–5.

H � p0
i = a i
 r rel (4)

[a i
 r rel] � r 0
rel = a i (5)

Here � denotes the tensor inner product, which for the
order-3 tensorH and order-1p0

i in Eq. 4 can be de�ned
as[H � p0

i]jk =
P

l [H]jkl [p0
i]l ; in Eq. 5,� is equivalent to

the matrix-vector product.

Our proposed scheme can be contrasted with the TPR
scheme in which(rel arg1 arg2) is embedded asr rel

a1
 a2, e.g., (Smolensky et al., 2016; Schlag & Schmid-
huber, 2018). In that scheme, ann-ary-relation tuple is

embedded as an order-(n +1) tensor, and unbinding an argu-
ment requires knowing all the other arguments (to use their
unbinding vectors). In the scheme proposed here, ann-ary-
relation tuple is still embedded as an order-3 tensor: there
are justn terms in the sum in Eq. 3, usingn positional sub-
role vectorsp1; : : : ; pn ; unbinding simply requires knowing
the unbinding vectors for these �xed position vectors.

In the model, the order-3 tensorH of Eq. 3 has a differ-
ent status than the order-2 tensorT S of Sec. 4.1.T S is a
TPR by construction, whereasH is a TPR as a result of
successful learning. To generate the output relational tuples,
the decoder assumes each tuple has the form of Eq. 3, and
performs the unbinding operations which that structure calls
for. In section 4.4, it is shown that, if unbinding each of a
set of roles from some unknown tensorT gives a target set
of �llers, then T must equal the TPR generated by those
role/�ller pairs, plus some tensor that is irrelevant because
unbinding from it produces the zero vector. In other words,
if the decoder succeeds in producing �ller vectors that corre-
spond to output relational tuples that match the target, then,
as far as what the decoder can see, the tensor that it operates
on is the TPR of Eq. 3.

TP-N2F Scheme for Learning Input-Output Mapping
To generate formal relational tuples from natural-language
descriptions, a learning strategy for the mapping between
the two structures is particularly important. As shown in (6),
we formalize the learning scheme as learning a mapping
functionf mapping (�), which, given a structural representa-
tion of the natural-language input,T S , outputs a tensorT F

from which the structural representation of the output can be
generated. At the role level of description, there's nothing
more to be said about this mapping; how it is modeled at
the neural network level is discussed in Sec. 4.2.

T F = fmapping (T S) (6)

