
Training Neural Networks for and by Interpolation: Supplementary

Leonard Berrada 1 Andrew Zisserman 2 M. Pawan Kumar 2

1. Local Interpretation of the Polyak Step-Size
In this section, we provide two results that shed light on a geometrical interpretation of the Polyak step-size. First, proposition
1 provides a proximal interpretation for the standard Polyak step-size. Second, proposition 2 gives a similar result when
using a maximal learning-rate, which corresponds to the update used by ALI-G.

Proposition 1. Suppose that the problem is unconstrained: Ω = Rp. Let wt+1 = wt − f(wt)−f?
‖∇f(wt)‖2∇f(wt). Then wt+1

verifies:
wt+1 = argmin

w∈Rp

‖w −wt‖ subject to: f(wt) +∇f(wt)
>(w −wt) = f?, (1)

where we remind that f? is the minimum of f , and w 7→ f(wt) +∇f(wt)
>(w −wt) is the linearization of f at wt. In

other words, wt+1 is the closest point to wt that lies on the hyper-plane f(wt) +∇f(wt)
>(w −wt) = f?.

Proof : First we show that wt+1 satisfies the linear equality constraint:

f(wt) +∇f(wt)
>(wt+1 −wt)

= f(wt) +∇f(wt)
>
(
− f(wt)− f?
‖∇f(wt)‖2

∇f(wt)

)
,

= f(wt)− f(wt) + f?,

= f?.

(2)

Now let us show that it has a minimal distance to wt.

We take ŵ ∈ Rp a solution of the linear equality constraint, and we will show that ‖wt+1 −wt‖ ≤ ‖ŵ −wt‖. By definition, we
have that ŵ satisfies:

f(wt) +∇f(wt)
>(ŵ −wt) = f?. (3)

Now we can write:

‖wt+1 −wt‖ = ‖ f(wt)− f?
‖∇f(wt)‖2

∇f(wt)‖,

=
f(wt)− f?
‖∇f(wt)‖

,

=
|∇f(wt)

>(ŵ −wt)|
‖∇f(wt)‖

,

≤ ||∇f(wt)‖‖ŵ −wt‖
‖∇f(wt)‖

, (Cauchy-Schwarz)

= ‖ŵ −wt‖.

(4)

1DeepMind, London, United Kingdom. Work performed while at University of Oxford. 2Department of Engineering Science,
University of Oxford, Oxford, United Kingdom. Correspondence to: Leonard Berrada <lberrada@google.com>.

Proceedings of the 37 th International Conference on Machine Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by the
author(s).

Training Neural Networks for and by Interpolation

Proposition 2. [Proximal Interpretation] Suppose that Ω = Rp and let δ = 0. We consider the update performed
by SGD: wSGD

t+1 = wt − ηt∇`zt(wt); and the update performed by ALI-G: wALI-G
t+1 = wt − γt∇`zt(wt), where γt =

min
{

`zt (wt)

‖∇`zt (wt)‖2+δ , η
}

. Then we have:

wSGD
t+1 = argmin

w∈Rp

{ 1

2ηt
‖w −wt‖2 + `zt(wt) +∇`zt(wt)

>(w −wt)
}
, (5)

wALI-G
t+1 = argmin

w∈Rp

{ 1

2η
‖w −wt‖2 + max

{
`zt(wt) +∇`zt(wt)

>(w −wt), 0
}}

. (6)

Proof : In order to make the notation simpler, we use dt , ∇`zt(wt) and lt , `zt(wt).
First, let us consider dt = 0.

Then we choose γt = 0 and it is clear that wt+1 = wt − ηγtdt = wt is the optimal solution of problem (6).

We now assume dt 6= 0.

We can successively re-write the proximal problem (6) as :

min
w∈Rp

{
1

2η
‖w −wt‖2 + max

{
`zt(wt) +∇`zt(wt)

>(w −wt), 0
}}

,

min
w∈Rp

{
1

2η
‖w −wt‖2 + max

{
lt + d>t (w −wt), 0

}}
,

min
w∈Rp,υ

{
1

2η
‖w −wt‖2 + υ

}
subject to: υ ≥ 0, υ ≥ lt + d>t (w −wt)

min
w∈Rp,υ

sup
µ,ν≥0

{
1

2η
‖w −wt‖2 + υ − µυ − ν(υ − lt − d>t (w −wt))

}
sup
µ,ν≥0

min
w∈Rp,υ

{
1

2η
‖w −wt‖2 + υ − µυ − ν(υ − lt − d>t (w −wt))

}
, (7)

where the last equation uses strong duality. The inner problem is now smooth in w and υ. We write its KKT conditions:

∂·
∂υ

= 0 : 1− µ− ν = 0 (8)

∂·
∂w

= 0 :
1

η
(w −wt) + νdt = 0 (9)

We plug in these results and obtain:

sup
µ,ν≥0

{
1

2η
‖ηνdt‖2 + ν(lt + d>t (−ηνdt))

}
st: µ+ ν = 1

sup
ν∈[0,1]

{η
2
ν2‖dt‖2 + νlt − ην2‖d>t ‖2

}
sup
ν∈[0,1]

{
−η

2
ν2‖dt‖2 + νlt

}
(10)

This is a one-dimensional quadratic problem in ν. It can be solved in closed-form by finding the global maximum of the quadratic
objective, and projecting the solution on [0, 1]. We have:

∂·
∂ν

= 0 : −ην‖dt‖2 + lt = 0 (11)

Since dt 6= 0 and η 6= 0, this gives the optimal solution:

ν = min

{
max

{
lt

η‖dt‖2
, 0

}
, 1

}
= min

{
lt

η‖dt‖2
, 1

}
, (12)

Training Neural Networks for and by Interpolation

since lt, η, ‖dt‖2 ≥ 0.
Plugging this back in the KKT conditions, we obtain that the solution wt+1 of the primal problem can be written as:

wt+1 = wt − ηνdt,

= wt − ηmin

{
lt

η‖dt‖2
, 1

}
dt,

= wt − ηmin

{
`zt(wt)

η‖∇`zt(wt)‖2
, 1

}
∇`zt(wt),

= wt −min

{
`zt(wt)

‖∇`zt(wt)‖2
, η

}
∇`zt(wt).

(13)

2. Summary of Convergence Results
Problem Formulation. We remind the problem setting as follows. The learning task can be expressed as the problem (P)
of finding a feasible vector of parameters w? ∈ Ω that minimizes f :

w? ∈ argmin
w∈Ω

f(w). (P)

Also note that f? refers to the minimum value of f over Ω: f? , minw∈Ω f(w).

In the remainder of this section, we give an overview of convergence results of ALI-G in various stochastic settings. First,
we summarize convergence results in the convex setting in section 2.1. Notably, these results show convergence for any
maximal learning-rate η, including η =∞, which is equivalent to not using any clipping to a maximal value. Second, we
give results for a class of non-convex problems. These results show that a maximal learning-rate is necessary and sufficient
for convergence of the Polyak step-size. Indeed we show that the Polyak step-size can oscillate indefinitely without a
maximal learning-rate, and that using a maximal learning-rate provably leads to (exponentially fast) convergence.

2.1. Convex Setting

For simplicity purposes, we assume that we are in the perfect interpolation setting: ∀z, `z(w?) = 0. Detailed results with
an interpolation tolerance ε > 0 are given in section 3. Since we are in the perfect interpolation setting, note that we can
safely set the small constant for numerical stability to zero: δ = 0. The summary of the results is presented in table 1.

Assumption on Loss Functions Distance Considered Convergence Rate

Small η Large η (potentially∞)

Convex and C-Lipschitz f

(
1

T+1

T∑
t=0

wt

)
− f? ‖w0−w?‖2

η(T+1)
+
√

C2‖w0−w?‖2
T+1

√
C2‖w0−w?‖2

T+1

Convex and β-Smooth f

(
1

T+1

T∑
t=0

wt

)
− f? ‖w0−w?‖2

η(T+1)
2β‖w0−w?‖2

T+1

α-Strongly Convex and β-Smooth E[f(wT+1)]− f? β
2

exp
(−αηT

2

)
‖w0 −w?‖2 β

2
exp

(
−αt

4β

)
‖w0 −w?‖2

Table 1. Summary of convergence rates for convex problems in the perfect interpolation setting. We remind that η denotes the hyper-
parameter used by ALI-G to clip its learning-rate to a maximal value. Our convergence results yield different results when η has a small
value (middle column), and when η has a large, possibly even infinite, value (right column). The formal statements of these results are
available in section 3, along with their proofs.

The overall convergence speed is similar to that of non-stochastic Polyak step-size, which is itself the same as the optimal
rate of non-stochastic gradient descent: O(1/

√
T) for convex Lipschitz functions,O(1/T) for convex and smooth functions,

and O(exp(−kT)) (for some constant k) for smooth and strongly convex functions (Hazan & Kakade, 2019).

2.2. Non-Convex Setting

We also assume that we are in the perfect interpolation setting and thus we set the constant for numerical stability δ to zero.
We further assume that the problem is unconstrained. The summary of the results is presented in table 2.

Training Neural Networks for and by Interpolation

Convergence Result

0 < η ≤ 2α
β2 η =∞

f(wT+1)− f? ≤ β
2

exp (−κT) ‖w0 −w?‖2 Can Fail to Converge (Proved)

Table 2. Summary of convergence results for α-RSI and β-smooth loss functions in the perfect interpolation setting. We remind that η
denotes the hyper-parameter used by ALI-G to clip its learning-rate to a maximal value. The constant κ depends on α, β and η. These
results show that using a maximal learning-rate is necessary and sufficient for convergence. The formal statements of these results are
available in section 4, along with their proofs.

3. Detailed Convex Results
3.1. Lipschitz Convex Functions

Theorem 1. We assume that Ω is a convex set, and that for every z ∈ Z , `z is convex and C-Lipschitz. Let w? be a solution
of (P) such that ∀z ∈ Z, `z(w?) ≤ ε. We further assume that η > ε

δ . Then if we apply ALI-G with a maximal learning-rate
of η to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

‖w0 −w?‖2

(η − ε
δ)(T + 1)

+
ε2

δ(η − ε
δ)

+

√
(C2 + δ)‖w0 −w?‖2

T + 1
+ ε

√
C2

δ
+ 1.

(14)

Proof :

We consider the update at time t, which we condition on the draw of zt ∈ Z:

‖wt+1 −w?‖2

= ‖ΠΩ(wt − γt∇`zt(wt))−w?‖2

≤ ‖wt − γt∇`zt(wt)−w?‖2 (ΠΩ projection)

= ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γ2

t ‖∇`zt(wt)‖2

≤ ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γt

`zt(wt)

‖∇`zt(wt)‖2 + δ
‖∇`zt(wt)‖2

(because γt ≤
`zt(wt)

‖∇`zt(wt)‖2 + δ
)

≤ ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γt

`zt(wt)

‖∇`zt(wt)‖2
‖∇`zt(wt)‖2

(because `zt(wt) ≥ 0 and δ ≥ 0)

≤ ‖wt −w?‖2 − 2γt(`zt(wt)− `zt(w?)) + γt`zt(wt) (convexity of `zt)

= ‖wt −w?‖2 − 2γt(`zt(wt)− `zt(w?)) + γt(`zt(wt)− `zt(w?)) + γt`zt(w?)

= ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt`zt(w?) (15)

We now consider different cases, according to the value that γt takes: γt =
`zt (wt)

‖∇`zt (wt)‖2+δ
or γt = η.

Training Neural Networks for and by Interpolation

First, suppose that γt =
`zt (wt)

‖∇`zt (wt)‖2+δ
. Then we have:

‖wt+1 −w?‖2

≤ ‖wt −w?‖2 − γt
(
`zt(wt)− 2`zt(w?)

)
= ‖wt −w?‖2 −

1

‖∇`zt(wt)‖2 + δ

(
`zt(wt)

2 − 2`zt(wt)`zt(w?)
)

= ‖wt −w?‖2 −
1

‖∇`zt(wt)‖2 + δ

(
(`zt(wt)− `zt(w?))

2 − `zt(w?)
2
)

= ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

‖∇`zt(wt)‖2 + δ
+

`zt(w?)
2

‖∇`zt(wt)‖2 + δ

≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

C2 + δ
+
`zt(w?)

2

δ

(because we have 0 ≤ ‖∇`zt(wt)‖2 ≤ C2)

≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

C2 + δ
+
ε2

δ
(definition of ε) (16)

Now suppose γt = η and `zt(wt)− `zt(w?) ≤ 0. We can use γt ≤
`zt (wt)

‖∇`zt (wt)‖2+δ
to write:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt`zt(w?),

≤ ‖wt −w?‖2 −
`zt(wt)

‖∇`zt(wt)‖2 + δ
(`zt(wt)− `zt(w?)) +

`zt(wt)

‖∇`zt(wt)‖2 + δ
`zt(w?),

(17)

where the last inequality has used γt ≤
`zt (wt)

‖∇`zt (wt)‖2+δ
, `zt(wt)− `zt(w?) ≤ 0 and `zt(w?) ≥ 0. Therefore we are exactly

in the same situation as the first case (where we used γt =
`zt (wt)

‖∇`zt (wt)‖2+δ
), and thus we have again:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

C2 + δ
+
ε2

δ
. (18)

Now suppose that γt = η and `zt(wt)− `zt(w?) ≥ 0. The inequality (15) gives:

‖wt+1 −w?‖2

≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt`zt(w?),

= ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + γt`zt(w?), (γt = η)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + γtε, (definition of ε, γt ≥ 0)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ε
`zt(wt)

‖∇`zt(wt)‖2 + δ
,

(because γt ≤
`zt(wt)

‖∇`zt(wt)‖2 + δ
, ε ≥ 0)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ε
`zt(wt)

δ
,

(because ‖∇`zt(wt)‖2 ≥ 0)

= ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ε
`zt(wt)− `zt(w?) + `zt(w?)

δ
,

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ε
`zt(wt)− `zt(w?) + ε

δ
,

(because `zt(w?) ≤ ε)

= ‖wt −w?‖2 −
(
η − ε

δ

)
(`zt(wt)− `zt(w?)) +

ε2

δ
.

(19)

Training Neural Networks for and by Interpolation

We now introduce IT and JT as follows:

IT , {t ∈ {0, ..., T} : γt = η and `zt(wt)− `zt(w?) ≥ 0}
JT , {0, ..., T} \ IT

(20)

Then, by combining inequalities (16), (18) and (19), and using a telescopic sum, we obtain:

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 +
∑
t∈JT

(
− (`zt(wt)− `zt(w?))

2

C2 + δ
+
ε2

δ

)

+
∑
t∈IT

(
−
(
η − ε

δ

)
(`zt(wt)− `zt(w?)) +

ε2

δ

) (21)

Using ‖wT+1 −w?‖2 ≥ 0, we obtain:

1

C2 + δ

∑
t∈JT

(`zt(wt)− `zt(w?))
2 +

(
η − ε

δ

) ∑
t∈IT

(`zt(wt)− `zt(w?))

≤ ‖w0 −w?‖2 + (T + 1)
ε2

δ

(22)

In particular, the inequality (22) gives that:(
η − ε

δ

) ∑
t∈IT

(`zt(wt)− `zt(w?)) ≤ ‖w0 −w?‖2 + (T + 1)
ε2

δ
. (23)

Furthermore, for every t ∈ IT , we have (`zt(wt) − `zt(w?)) ≥ 0, which yields
(
η − ε

δ

) ∑
t∈IT

(`zt(wt) − `zt(w?)) ≥ 0 since

η > ε
δ

. Thus the inequality (22) also gives:

1

C2 + δ

∑
t∈JT

(`zt(wt)− `zt(w?))
2 ≤ ‖w0 −w?‖2 + (T + 1)

ε2

δ
. (24)

Using the Cauchy-Schwarz inequality, we can further write:∑
t∈JT

`zt(wt)− `zt(w?)

2

≤ |JT |
∑
t∈JT

(`zt(wt)− `zt(w?))
2. (25)

Therefore we have: ∑
t∈JT

`zt(wt)− `zt(w?) ≤
√
|JT |

∑
t∈JT

(`zt(wt)− `zt(w?))2,

≤

√
|JT |(C2 + δ)

(
‖w0 −w?‖2 + (T + 1)

ε2

δ

)
.

(26)

Training Neural Networks for and by Interpolation

We can now put together inequalities (23) and (26) by writing:

T∑
t=0

`zt(wt)− `zt(w?)

=
∑
t∈IT

`zt(wt)− `zt(w?) +
∑
t∈JT

`zt(wt)− `zt(w?)

≤ 1

η − ε
δ

(
‖w0 −w?‖2 + (T + 1)

ε2

δ

)

+

√
|JT |(C2 + δ)

(
‖w0 −w?‖2 + (T + 1)

ε2

δ

)
≤ 1

η − ε
δ

(
‖w0 −w?‖2 + (T + 1)

ε2

δ

)

+

√
(T + 1)(C2 + δ)

(
‖w0 −w?‖2 + (T + 1)

ε2

δ

)

(27)

Dividing by T + 1 and taking the expectation, we obtain:

f

(
1

T + 1

T∑
t=0

wt

)
− f?

≤ 1

T + 1

T∑
t=0

f(wt)− f?, (f is convex)

≤ ‖w0 −w?‖2

(η − ε
δ
)(T + 1)

+
ε2

δ(η − ε
δ
)

+

√
(C2 + δ)

(
‖w0 −w?‖2

T + 1
+
ε2

δ

)
,

≤ ‖w0 −w?‖2

(η − ε
δ
)(T + 1)

+
ε2

δ(η − ε
δ
)

+

√
(C2 + δ)‖w0 −w?‖2

T + 1
+ ε

√
C2

δ
+ 1.

(28)

When η is small, the convergence error of Theorem 1 is large. This is corrected in the following result which is informative
in the regime where η is small:

Theorem 2. We assume that Ω is a convex set, and that for every z ∈ Z , `z is convex and C-Lipschitz. Let w? be a solution
of (P) such that ∀z ∈ Z, `z(w?) ≤ ε. Then if we apply ALI-G with a maximal learning-rate of η to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

‖w0 −w?‖2

η(T + 1)
+ ε+

√
(C2 + δ)‖w0 −w?‖2

T + 1
+ ηε

√
C2 + δ. (29)

Proof :

We consider the update at time t, which we condition on the draw of zt ∈ Z . We re-use the inequality (15) from the proof of
Theorem 1:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt`zt(w?) (30)

We consider again different cases, according to the value of γt and the sign of `zt(wt)− `zt(w?).

Training Neural Networks for and by Interpolation

Suppose that `zt(wt)− `zt(w?) ≤ 0. Then the inequality (30) gives:

‖wt+1 −w?‖2

≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt`zt(w?),

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + γt`zt(w?),

(because γt ≤ η, `zt(wt)− `zt(w?) ≤ 0)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + γtε, (definition of ε, γt ≥ 0)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ηε, (γt ≤ η, ε ≥ 0)

(31)

Now suppose `zt(wt)− `zt(w?) ≥ 0 and γt = η. Then the inequality (30) gives:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt`zt(w?),

= ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + η`zt(w?),

(because γt = η)

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) + ηε,

(definition of ε, η ≥ 0)

(32)

Finally, suppose that `zt(wt)− `zt(w?) ≥ 0 and γt =
`zt (wt)

‖∇`zt (wt)‖2+δ
. Then the inequality (30) gives:

‖wt+1 −w?‖2

≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt`zt(w?),

≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + η`zt(w?),

(because γt ≤ η, `zt(w?) ≥ 0)

≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + ηε, (definition of ε, η ≥ 0)

= ‖wt −w?‖2 −
`zt(wt)

‖∇`zt(wt)‖2 + δ
(`zt(wt)− `zt(w?)) + ηε,

(because γt =
`zt(wt)

‖∇`zt(wt)‖2 + δ
)

≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

‖∇`zt(wt)‖2 + δ
+ ηε,

(because `zt(wt) ≥ `zt(wt)− `zt(w?) ≥ 0)

≤ ‖wt −w?‖2 −
(`zt(wt)− `zt(w?))

2

C2 + δ
+ ηε, (‖∇`zt(wt)‖2 ≤ C2)

(33)

We now introduce IT and JT as follows:

JT ,

{
t ∈ {0, ..., T} : γt =

`zt(wt)

‖∇`zt(wt)‖2 + δ
and `zt(wt)− `zt(w?) ≥ 0

}
IT , {0, ..., T} \ IT

(34)

Then, by combining inequalities (31), (32) and (33), and using a telescopic sum, we obtain:

‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 +
∑
t∈JT

(
− (`zt(wt)− `zt(w?))

2

C2 + δ
+ ηε

)
+
∑
t∈IT

(−η(`zt(wt)− `zt(w?)) + ηε)
(35)

Training Neural Networks for and by Interpolation

Using ‖wT+1 −w?‖2 ≥ 0, we obtain:

1

C2 + δ

∑
t∈JT

(`zt(wt)− `zt(w?))
2 + η

∑
t∈IT

(`zt(wt)− `zt(w?))

≤ ‖w0 −w?‖2 + (T + 1)ηε

(36)

We now take the expectation and obtain:

1

C2 + δ

∑
t∈JT

E
[
(`zt(wt)− `zt(w?))

2]+ η
∑
t∈IT

(f(wt)− f?)

≤ ‖w0 −w?‖2 + (T + 1)ηε

(37)

Since E[U]2 ≤ E[U2] for any real-valued random variable, we can write:

1

C2 + δ

∑
t∈JT

(f(wt)− f?)2 + η
∑
t∈IT

(f(wt)− f?) ≤ ‖w0 −w?‖2 + (T + 1)ηε (38)

Since each f(wt)− f? ≥ 0, the inequality (38) gives that:

η
∑
t∈IT

(f(wt)− f?) ≤ ‖w0 −w?‖2 + (T + 1)ηε, (39)

and:
1

C2 + δ

∑
t∈JT

(f(wt)− f?)2 ≤ ‖w0 −w?‖2 + (T + 1)ηε. (40)

Using the Cauchy-Schwarz inequality, we can further write:∑
t∈JT

f(wt)− f?

2

≤ |JT |
∑
t∈JT

(f(wt)− f?)2. (41)

Therefore we have: ∑
t∈JT

f(wt)− f? ≤
√
|JT |

∑
t∈JT

(f(wt)− f?)2,

≤
√
|JT |(C2 + δ) (‖w0 −w?‖2 + (T + 1)ηε).

(42)

We can now put together inequalities (39) and (42) by writing:

T∑
t=0

f(wt)− f? =
∑
t∈IT

f(wt)− f? +
∑
t∈JT

f(wt)− f?

≤ 1

η

(
‖w0 −w?‖2 + (T + 1)ηε

)
+
√
|JT |(C2 + δ) (‖w0 −w?‖2 + (T + 1)ηε)

≤ 1

η

(
‖w0 −w?‖2 + (T + 1)ηε

)
+
√

(T + 1)(C2 + δ) (‖w0 −w?‖2 + (T + 1)ηε)

(43)

Training Neural Networks for and by Interpolation

Dividing by T + 1, we obtain:

f

(
1

T + 1

T∑
t=0

wt

)
− f?

≤ 1

T + 1

T∑
t=0

f(wt)− f?, (f is convex)

≤ ‖w0 −w?‖2

η(T + 1)
+ ε+

√
(C2 + δ)

(
‖w0 −w?‖2

T + 1
+ ηε

)
,

≤ ‖w0 −w?‖2

η(T + 1)
+ ε+

√
(C2 + δ)‖w0 −w?‖2

T + 1
+ ηε

√
C2 + δ.

(44)

3.2. Smooth Convex Functions

We now tackle the convex and β-smooth case. Our proof techniques naturally produce the separation η ≥ 1
2β and η ≤ 1

2β .

Lemma 1. Let z ∈ Z . Assume that `z is β-smooth and non-negative on Rp. Then we have:

∀w ∈ Rp, `z(w) ≥ 1

2β
‖∇`z(w)‖2 (45)

Note that we do not assume that `z is convex.

Proof :

Let w ∈ Rp. By Lemma 3.4 of (Bubeck, 2015), we have:

∀ u ∈ Rp, |`z(u)− `z(w)−∇`z(w)>(u−w)| ≤ β

2
‖u−w‖2. (46)

Therefore we can write:
∀ u ∈ Rp, `z(u) ≤ `z(w) +∇`z(w)>(u−w) +

β

2
‖u−w‖2. (47)

And since ∀ u ∈ Rp, `z(u) ≥ 0, we have:

∀ u ∈ Rp, 0 ≤ `z(w) +∇`z(w)>(u−w) +
β

2
‖u−w‖2. (48)

We now choose u = w − 1

β
∇`z(w), which yields:

0 ≤ `z(w)− 1

β
‖∇`z(w)‖2 +

1

2β
‖∇`z(w)‖2, (49)

which gives the desired result.

Lemma 2. Let z ∈ Z . Assume that `z is β-smooth and non-negative on Rp. Then we have:

∀w ∈ Rp,
`z(w)

‖∇`z(w)‖2 + δ
≥ 1

2β
− δ

4β2`z(w)
(50)

Proof :

Let w ∈ Rp. We apply Lemma 1 and we write successively:

Training Neural Networks for and by Interpolation

`z(w)

‖∇`z(w)‖2 + δ
≥ `z(w)

2β`z(w) + δ
, (Lemma 1)

=
`z(w) + δ

2β
− δ

2β

2β(`z(w) + δ
2β

)
,

=
1

2β
−

δ
2β

2β(`z(w) + δ
2β

)
,

≥ 1

2β
− δ

4β2`z(w)
. (δ ≥ 0)

(51)

Theorem 3. We assume that Ω is a convex set, and that for every z ∈ Z , `z is convex and β-smooth. Let w? be a solution
of (P) such that ∀z ∈ Z, `z(w?) ≤ ε, and suppose that δ > 2βε. Further assume that η ≥ 1

2β . Then if we apply ALI-G
with a maximal learning-rate of η to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

δ

β(1− 2βε
δ)

+
2β

1− 2βε
δ

‖w0 −w?‖2

T + 1
. (52)

Proof :

We re-use the inequality (15) from the proof of Theorem 1:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt`zt(w?) (53)

As previously, we lower bound γt(`zt(wt)− `zt(w?)) and upper bound γt`zt(w?) individually.

We begin with γt(`zt(wt)− `zt(w?)). We remark that either γt =
`zt (wt)

‖∇`zt (wt)‖2+δ
or γt = η.

Suppose `zt(wt)− `zt(w?) ≥ 0 and γt =
`zt (wt)

‖∇`zt (wt)‖2+δ
. Then we can write:

γt(`zt(wt)− `zt(w?))

=
`zt(wt)

‖∇`zt(wt)‖2 + δ
(`zt(wt)− `zt(w?)), (definition of γt)

≥
(

1

2β
− δ

4β2`z(wt)

)
(`zt(wt)− `zt(w?))

(using Lemma 2, `zt(wt)− `zt(w?) ≥ 0)

=
1

2β
(`zt(wt)− `zt(w?))−

δ

4β2

`zt(wt)− `zt(w?)

`zt(wt)

≥ 1

2β
(`zt(wt)− `zt(w?))−

δ

4β2
(`zt(w?) ≥ 0, `zt(wt) ≥ 0)

(54)

Now suppose `zt(wt)− `zt(w?) ≥ 0 and γt = η. Then we have:

γt(`zt(wt)− `zt(w?)) = η(`zt(wt)− `zt(w?))

≥ η(`zt(wt)− `zt(w?))−
δ

4β2

≥ 1

2β
(`zt(wt)− `zt(w?))−

δ

4β2

(because η ≥ 1

2β
, `zt(wt)− `zt(w?) ≥ 0). (55)

Training Neural Networks for and by Interpolation

Now suppose `zt(wt)− `zt(w?) ≤ 0. We have:

γt ≤
`zt(wt)

‖∇`zt(wt)‖2 + δ

≤ `zt(w?)

‖∇`zt(wt)‖2 + δ
(`zt(wt)− `zt(w?) ≤ 0)

≤ ε

‖∇`zt(wt)‖2 + δ
(definition of ε)

≤ ε

δ
(‖∇`zt(wt)‖ ≥ 0)

≤ 1

2β
(δ ≥ 2βε)

(56)

We now write:

γt (`zt(wt)− `zt(w?)) ≥
1

2β
(`zt(wt)− `zt(w?)) (`zt(wt)− `zt(w?) ≤ 0, γt ≤

1

2β
)

≥ 1

2β
(`zt(wt)− `zt(w?))−

δ

4β2

(57)

In conclusion, in all cases, it holds true that:

γt(`zt(wt)− `zt(w?)) ≥
1

2β
(`zt(wt)− `zt(w?))−

δ

4β2
(58)

We now upper bound γt`zt(w?):

γt`zt(w?) ≤
`zt(wt)`zt(w?)

‖∇`zt(wt)‖2 + δ
, (definition of γt and `zt(w?) ≥ 0)

≤ `zt(wt)`zt(w?)

δ
, (‖∇`zt(wt)‖ ≥ 0)

≤ (`zt(wt)− `zt(w?) + ε)ε

δ
, (definition of ε twice)

=
ε

δ
(`zt(wt)− `zt(w?)) +

ε2

δ
.

(59)

We now put together inequalities (53), (58) and (59):

‖wt+1 −w?‖2

≤ ‖wt −w?‖2 −
1

2β
(`zt(wt)− `zt(w?)) +

δ

4β2
+
ε

δ
(`zt(wt)− `zt(w?)) +

ε2

δ
,

= ‖wt −w?‖2 −
(

1

2β
− ε

δ

)
(`zt(wt)− `zt(w?)) +

δ

4β2
+
ε2

δ
.

(60)

Therefore we have: (
1

2β
− ε

δ

)
(`zt(wt)− `zt(w?))−

(
δ

4β2
+
ε2

δ

)
≤ ‖wt −w?‖2 − ‖wt+1 −w?‖2. (61)

Training Neural Networks for and by Interpolation

By summing over t and taking the expectation over the zt, we obtain:

T∑
t=0

(
δ − 2βε

2βδ
(f(wt)− f(w?))−

δ2 + 4β2ε2

4β2δ

)
≤ ‖w0 −w?‖2 − E

[
‖wT+1 −w?‖2

]
,

≤ ‖w0 −w?‖2.

(62)

By assumption, we have that δ − 2βε > 0. Dividing by T + 1 and using the convexity of f , we finally obtain:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

1

T + 1

T∑
t=0

f(wt)− f? (convexity of f),

=
2βδ

δ − 2βε

δ2 + 4β2ε2

4β2δ
+

2βδ

δ − 2βε

‖w0 −w?‖2

T + 1
,

=
δ2 + 4β2ε2

2β(δ − 2βε)
+

2βδ

δ − 2βε

‖w0 −w?‖2

T + 1
,

≤ δ2

β(δ − 2βε)
+

2βδ

δ − 2βε

‖w0 −w?‖2

T + 1
, (δ − 2βε ≥ 0)

=
δ

β(1− 2βε
δ

)
+

2β

1− 2βε
δ

‖w0 −w?‖2

T + 1
.

(63)

Theorem 4. We assume that Ω is a convex set, and that for every z ∈ Z , `z is convex and β-smooth. Let w? be a solution
of (P) such that ∀z ∈ Z, `z(w?) ≤ ε, and suppose that δ > 2βε. Further assume that η ≤ 1

2β . Then if we apply ALI-G
with a maximal learning-rate of η to f , we have:

f

(
1

T + 1

T∑
t=0

wt

)
− f? ≤

‖w0 −w?‖2

η(T + 1)
+

δ

2β
+ ε. (64)

Proof :

Similarly to the beginning of previous proofs, we have that:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − γt(`zt(wt)− `zt(w?)) + γt`zt(w?) (65)

As previously, we lower bound γt(`zt(wt)− `zt(w?)) and upper bound γt`zt(w?) individually.

We begin with γt(`zt(wt)− `zt(w?)). We remark that either γt =
`zt (wt)

‖∇`zt (wt)‖2+δ
or γt = η.

Training Neural Networks for and by Interpolation

Suppose γt =
`zt (wt)

‖∇`zt (wt)‖2+δ
and `zt(wt)− `zt(w?) ≥ 0. First we write:

γt =
`zt(wt)

‖∇`zt(wt)‖2 + δ

=
`zt(wt) + δ

2β

‖∇`zt(wt)‖2 + δ
−

δ
2β

‖∇`zt(wt)‖2 + δ

≥
‖∇`zt (wt)‖2

2β
+ δ

2β

‖∇`zt(wt)‖2 + δ
− δ

2β

1

‖∇`zt(wt)‖2 + δ
(Lemma 1)

=
1

2β
− δ

2β

1

‖∇`zt(wt)‖2 + δ

≥ η − δ

2β

1

‖∇`zt(wt)‖2 + δ
(η ≤ 1

2β
)

(66)

Since `zt(wt)− `zt(w?) ≥ 0, this yields:

γt(`zt(wt)− `zt(w?)) ≥
(
η − δ

2β

1

‖∇`zt(wt)‖2 + δ

)
(`zt(wt)− `zt(w?))

= η(`zt(wt)− `zt(w?))−
δ

2β

`zt(wt)− `zt(w?)

‖∇`zt(wt)‖2 + δ

≥ η(`zt(wt)− `zt(w?))−
δ

2β

`zt(wt)

‖∇`zt(wt)‖2 + δ

(because `zt(w?) ≥ 0)

(67)

We now notice that since γt =
`zt (wt)

‖∇`zt (wt)‖2+δ
, and γt ≤ η, then necessarily `zt (wt)

‖∇`zt (wt)‖2+δ
≤ η. This gives:

γt(`zt(wt)− `zt(w?)) ≥ η(`zt(wt)− `zt(w?))−
ηδ

2β
(68)

Now suppose γt = η and `zt(wt)− `zt(w?) ≥ 0. Then we have:

γt(`zt(wt)− `zt(w?)) = η(`zt(wt)− `zt(w?))

≥ η(`zt(wt)− `zt(w?))−
ηδ

2β
. (69)

Now suppose `zt(wt)− `zt(w?) ≤ 0. Since γt ≤ η by definition, we have that:

γt (`zt(wt)− `zt(w?)) ≥ η(`zt(wt)− `zt(w?)) (`zt(wt)− `zt(w?) ≤ 0)

≥ η(`zt(wt)− `zt(w?))−
ηδ

2β
.

(70)

In conclusion, in all cases, it holds true that:

γt(`zt(wt)− `zt(w?)) ≥ η(`zt(wt)− `zt(w?))−
ηδ

2β
(71)

We upper bound γt`zt(w?) as follows:

γt`zt(w?) ≤ η`zt(w?) (`zt(w?) ≥ 0)
≤ ηε (definition of ε)

(72)

Training Neural Networks for and by Interpolation

We combine inequalities (65), (71) and (72) and obtain:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) +
ηδ

2β
+ ηε. (73)

By taking the expectation and using a telescopic sum, we obtain:

0 ≤ ‖wT+1 −w?‖2 ≤ ‖w0 −w?‖2 −
T∑
t=0

(
η(f(wt)− f?) +

ηδ

2β
+ ηε

)
. (74)

Re-arranging and using the convexity of f , we finally obtain:

f

(
1

T + 1

T∑
t=0

wt

)
≤ ‖w0 −w?‖2

η(T + 1)
+

δ

2β
+ ε. (75)

3.3. Smooth and Strongly Convex Functions

Finally, we consider the α-strongly convex and β-smooth case. Again, our proof yields a natural separation between η ≥ 1
2β

and η ≤ 1
2β .

Lemma 3. Let z ∈ Z . Assume that `z is α-strongly convex, non-negative on Rp, and such that inf `z ≤ ε. In addition,
suppose that δ ≥ 2αε. Then we have:

∀w ∈ Rp,
`z(w)

‖∇`z(w)‖2 + δ
≤ 1

2α
. (76)

Proof :

Let w ∈ Rp and suppose that `z reaches its minimum at w ∈ Rp (this minimum exists because of strong convexity). By definition
of strong convexity, we have that:

∀ ŵ ∈ Rp, `z(ŵ) ≥ `z(w) +∇`z(w)>(ŵ −w) +
α

2
‖ŵ −w‖2 (77)

We minimize the right hand-side over ŵ, which gives:

∀ŵ ∈ Rp, `z(ŵ) ≥ `z(w) +∇`z(w)>(ŵ −w) +
α

2
‖ŵ −w‖2

≥ `z(w)− 1

2α
‖∇`z(w)‖2

(78)

Thus by choosing ŵ = w and re-ordering, we obtain the following result (a.k.a. the Polyak-Lojasiewicz inequality):

`z(w)− `z(w) ≤ 1

2α
‖∇`z(w)‖2 (79)

Therefore we can write:

`z(w)

‖∇`z(w)‖2 + δ
≤ `z(w)− `z(w) + ε

‖∇`z(w)‖2 + δ
≤

1
2α
‖∇`z(w)‖2 + ε

‖∇`z(w)‖2 + δ
. (80)

We introduce the function ψ : x ∈ R+ 7→
1

2α
x+ ε

x+ δ
, and we compute its derivative:

ψ′(x) =
1

2α
(x+ δ)− 1

2α
x− ε

(x+ δ)2
,

=
δ

2α
− ε

(x+ δ)2
≥ 0. (δ ≥ 2αε)

(81)

Training Neural Networks for and by Interpolation

Therefore ψ is monotonically increasing. As a result, we have:

∀ x ∈ R+, ψ(x) ≤ lim
x→∞

ψ(x) =
1

2α
. (82)

Therefore we have that:
1

2α
‖∇`z(w)‖2 + ε

‖∇`z(w)‖2 + δ
= ψ

(
‖∇`z(w)‖2

)
≤ 1

2α
, (83)

which concludes the proof.

Lemma 4. For any a, b ∈ Rp, we have that:

‖a‖2 + ‖b‖2 ≥ 1

2
‖a− b‖2 (84)

Proof : This is a simple application of the parallelogram law, but we give the proof here for completeness.

‖a‖2 + ‖b‖2 − 1

2
‖a− b‖2 = ‖a‖2 + ‖b‖2 − 1

2
‖a‖2 − 1

2
‖b‖2 + a>b

=
1

2
‖a‖2 +

1

2
‖b‖2 + a>b

=
1

2
‖a+ b‖2

≥ 0

Lemma 5. Let z ∈ Z . Assume that `z is α-strongly convex and achieves its (possibly constrained) minimum at w? ∈ Ω.
Then we have:

∀w ∈ Ω, `z(w)− `z(w?) ≥
α

2
‖w −w?‖2 (85)

Proof : By definition of strong-convexity (Bubeck, 2015), we have:

∀w ∈ Ω, `z(w)− `z(w?)−∇`z(w?)
>(w −w?) ≥

α

2
‖w −w?‖2. (86)

In addition, since w? minimizes `z , then necessarily:

∀w ∈ Ω, ∇`z(w?)
>(w −w?) ≥ 0. (87)

Combining the two equations gives the desired result.

Theorem 5. We assume that Ω is a convex set, and that for every z ∈ Z , `z is α-strongly convex and β-smooth. Let w? be
a solution of (P) such that ∀z ∈ Z, `z(w?) ≤ ε, and suppose that δ > 2βε. Further assume that η ≥ 1

2β . Then if we apply
ALI-G with a maximal learning-rate of η to f , we have:

E[f(wT+1)]− f? ≤ β exp

(
−αt

4β

)
‖w0 −w?‖2 +

δ

α
+ 2

β

α
ε+ 2

β2

α2
ε. (88)

Proof :

We condition the update on zt drawn at random. The beginning of the proof is identical to that of Theorem 3 (and in particular
requires δ > 2βε). In addition, we remark that δ > 2βε ≥ 2αε, because it always holds true that β ≥ α. Combining inequalities
(15) and (58), we obtain:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 −
1

2β
(`zt(wt)− `zt(w?)) +

δ

4β2
+ γt`zt(w?),

≤ ‖wt −w?‖2 −
1

2β
(`zt(wt)− `zt(w?)) +

δ

4β2
+ γtε, (definition of ε)

≤ ‖wt −w?‖2 −
1

2β
(`zt(wt)− `zt(w?)) +

δ

4β2
+

ε

2α
. (Lemma 3) (89)

Training Neural Networks for and by Interpolation

Taking the expectation over zt, we obtain:

Ezt [‖wt+1 −w?‖2] ≤ ‖wt −w?‖2 −
1

2β
(f(wt)− f(w?)) +

δ

4β2
+

ε

2α
,

≤ ‖wt −w?‖2 −
α

4β
‖wt −w?‖2 +

δ

4β2
+

ε

2α
. (by lemma 5)

We use a trivial induction over t and write:

E[‖wt+1 −w?‖2]

≤
(

1− α

4β

)
E[‖wt −w?‖2] +

δ

4β2
+

ε

2α
,

≤
(

1− α

4β

)t
‖w0 −w?‖2 +

t∑
k=0

(
1− α

4β

)t−k (
δ

4β2
+

ε

2α

)
,

≤
(

1− α

4β

)t
‖w0 −w?‖2 +

∞∑
k=0

(
1− α

4β

)k (
δ

4β2
+

ε

2α

)
,

=

(
1− α

4β

)t
‖w0 −w?‖2 +

1
α
4β

(
δ

4β2
+

ε

2α

)
,

=

(
1− α

4β

)t
‖w0 −w?‖2 +

4β

α

(
δ

4β2
+

ε

2α

)
. (90)

Given an arbitrary w ∈ Rp, we now wish to relate the distance ‖w −w?‖2 to the function values f(w)− f(w?).

Since each `z is α-strongly convex and β-smooth, so is f = Ez[`z]. We introduce w the minimizer of f on its unconstrained
domain Rp. Then we can write that for any w ∈ Rp:

f(w)− f(w?)

≤ f(w)− f(w), (f(w) ≤ f(w?))

≤ ∇f(w)>(w −w) +
β

2
‖w −w‖2, (f is β-smooth)

=
β

2
‖w −w‖2, (∇f(w) = 0)

≤ β(‖w −w?‖2 + ‖w? −w‖2), (Lemma 4)

≤ β‖w −w?‖2 +
2β

α
(f(w?)− f(w)) , (f is α-strongly convex)

≤ β‖w −w?‖2 +
2β

α
f(w?), (0 ≤ f(w))

≤ β‖w −w?‖2 + 2
βε

α
, (definition of ε) (91)

Taking the expectation, we can combine the results to obtain the final result:

E[f(wt+1)]− f(w?) ≤ βE[‖wt+1 −w?‖2] + 2
βε

α
,

≤ β

((
1− α

4β

)t
‖w0 −w?‖2 +

4β

α

(
δ

4β2
+

ε

2α

))
+ 2

βε

α
,

= β

(
1− α

4β

)t
‖w0 −w?‖2 +

4β

α

(
δ

4β
+
εβ

2α

)
+ 2

βε

α
,

= β

(
1− α

4β

)t
‖w0 −w?‖2 +

δ

α
+ 2

β

α
ε+ 2

β2

α2
ε,

Training Neural Networks for and by Interpolation

≤ β exp

(
−αt

4β

)
‖w0 −w?‖2 +

δ

α
+ 2

β

α
ε+ 2

β2

α2
ε.

Theorem 6. We assume that Ω is a convex set, and that for every z ∈ Z , `z is α-strongly convex and β-smooth. Let w? be
a solution of (P) such that ∀z ∈ Z, `z(w?) ≤ ε, and suppose that δ > 2βε. Further assume that η ≤ 1

2β . Then if we apply
ALI-G with a maximal learning-rate of η to f , we have:

E[f(wT+1)]− f? ≤ β exp

(
−αηT

2

)
‖w0 −w?‖2 +

δ

α
+

4εβ

α
. (92)

Proof : Re-using inequalities (65) and (71) from the proof of Theorem 4, we can write:

‖wt+1 −w?‖2 ≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) +
ηδ

2β
+ γt`zt(w?),

≤ ‖wt −w?‖2 − η(`zt(wt)− `zt(w?)) +
ηδ

2β
+ ηε

(using γt ≤ η, 0 ≤ `zt(w?) ≤ ε).

(93)

Taking the expectation over zt, we obtain:

Ezt [‖wt+1 −w?‖2] ≤ ‖wt −w?‖2 − η(f(wt)− f(w?)) +
ηδ

2β
+ ηε. (94)

Therefore, we can write:

Ezt [‖wt+1 −w?‖2] ≤ ‖wt −w?‖2 −
αη

2
‖wt −w?‖2 +

ηδ

2β
+ ηε, (Lemma 5)

=
(

1− αη

2

)
‖wt −w?‖2 +

ηδ

2β
+ ηε.

(95)

Then a trivial induction gives that:

E[‖wT+1 −w?‖2] ≤
(

1− αη

2

)T
‖w0 −w?‖2 +

(
ηδ

2β
+ ηε

) T∑
t=0

(
1− αη

2

)t
,

≤
(

1− αη

2

)T
‖w0 −w?‖2 +

(
ηδ

2β
+ ηε

) ∞∑
t=0

(
1− αη

2

)t
,

=
(

1− αη

2

)T
‖w0 −w?‖2 +

(
ηδ

2β
+ ηε

)
1

1−
(

1− αη

2

) ,
=
(

1− αη

2

)T
‖w0 −w?‖2 +

δ

αβ
+

2ε

α
.

(96)

We now re-use the inequality (91) in expectation to write:

E[f(wT+1)]− f? ≤ βE[‖wT+1 −w?‖2] +
2βε

α
,

≤ β
(

1− αη

2

)T
‖w0 −w?‖2 +

δ

α
+

4εβ

α
,

≤ β exp

(
−αηT

2

)
‖w0 −w?‖2 +

δ

α
+

4εβ

α
.

(97)

4. Detailed Non-Convex Results
The Restricted Secant Inequality (RSI) is a milder assumption than convexity. It can be defined as follows:

Definition 1. Let f : Rp → R be a lower-bounded differentiable function achieving its minimum at w?. We say that f
satisfies the RSI if there exists α > 0 such that:

∀w ∈ Rp, ∇f(w)>(w −w?) ≥ α‖w −w?‖2. (98)

Training Neural Networks for and by Interpolation

The RSI is sometimes used to prove convergence of optimization algorithms without assuming convexity (Vaswani et al.,
2019).

As we prove below, the Polyak step-size may fail to converge under the RSI assumption, even in a non-stochastic setting
with the exact minimum known.

wt=− 3
5

wt+1=3
5

f : w 7→ w2 − |w|3

Linearizations of f

Figure 1. Illustration of the function f , which satisfies the RSI. When starting at w = −3/5, gradient descent with the Polyak step-size
oscillates between w = −3/5 and w = 3/5.

Proposition 3. Let f : w ∈ [−3
5 ; 3

5] 7→ w2 − |w|3. Then f satisfies the RSI with α = 1
5 .

Proof : First we note that f achieves its minimum at w? = 0, and that f(w?) = 0. In addition, we introduce the sign function σ(w),
which is equal to 1 if w ≥ 0, and −1 otherwise. Now let w ∈ [−3

5
; 3

5
]. Then we have that:

∇f(w)(w − w?)−
1

5
(w − w?)2, = (2w − 3σ(w)w2)(w − 0)− 1

5
(w − 0)2,

=
9

5
w2 − 3σ(w)w3,

= 3w2(
3

5
− σ(w)w),

≥ 0.

(99)

Proposition 4. Assume that we apply the Polyak step-size to f : w ∈ [−3
5 ; 3

5] 7→ w2 − |w|3, starting from the initial point
w0 = −3/5. Then the iterates oscillate between −3/5 and 3/5.

Proof : We show that, starting with w0 = − 3
5

, we obtain w1 = 3
5

. This will prove oscillation of the iterates by symmetry of the problem.
Since w0 = −3

5
, we have f(w0) = 9

25
− 27

125
= 18

125
. Furthermore,∇f(w0) = 2(−3

5
) + 3(9

25
) = −3

25
. Therefore:

w1 = w0 −
f(w0)

(∇f(w0))2
∇f(w0),

= w0 −
f(w0)

∇f(w0)
,

=
−3

5
+

18
125
3
25

,

=
−3

5
+

6

5
,

=
3

5
.

(100)

Theorem 7. We assume that Ω = Rp, and that for every z ∈ Z , `z is β-smooth and satisfies the RSI with constant α. We
further assume that there exists w? a solution of (P) such that ∀z ∈ Z, `z(w?) = 0. Let η be such that 1

2β ≤ η ≤
2α
β2 . Then

if we apply ALI-G with a maximal learning-rate of η to f , we have:

f(wT+1)− f? ≤
β

2
exp

((
−α
β

+
ηβ

2

)
T

)
‖w0 −w?‖2. (101)

Note: this result assumes perfect interpolation, and thus we set δ = 0 (no small constant for numerical stability).

Training Neural Networks for and by Interpolation

Proof : We consider the update at time t, which we condition on the draw of zt ∈ Z . Since we consider δ = 0, we have γt =

min
{

`zt (wt)

‖∇`zt (wt)‖2 , η
}

. We suppose∇`zt(wt) 6= 0.

‖wt+1 −w?‖2 = ‖ΠΩ(wt − γt∇`zt(wt))−w?‖2,
≤ ‖wt − γt∇`zt(wt)−w?‖2, (ΠΩ projection)

= ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γ2

t ‖∇`zt(wt)‖2,

≤ ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γt`zt(wt), (since γt ≤

`zt(wt)

‖∇`zt(wt)‖2
)

≤ ‖wt −w?‖2 − 2γt∇`zt(wt)
>(wt −w?) + γt

β

2
‖wt −w?‖2, (Lemma 3.4 of (Bubeck, 2015))

≤ ‖wt −w?‖2 − 2γtα‖wt −w?‖2 + γt
β

2
‖wt −w?‖2, (RSI inequality)

=
(

1− 2γtα+ γt
β

2

)
‖wt −w?‖2.

(102)

Since we know that `zt (wt)

‖∇`zt (wt)‖2 ≥
1

2β
(Lemma 1) and η ≥ 1

2β
, we have that γt ≥ 1

2β
. Then, using both γt ≥ 1

2β
and γt ≤ η, we can

write:

‖wt+1 −w?‖2 ≤
(

1− α

β
+
ηβ

2

)
‖wt −w?‖2. (103)

With a trivial induction we obtain:

‖wT+1 −w?‖2 ≤
(

1− α

β
+
ηβ

2

)T
‖w0 −w?‖2,

≤ exp

((
−α
β

+
ηβ

2

)
T

)
‖w0 −w?‖2.

(104)

Since f is β-smooth and the problem is unconstrained by assumption, we have f(wT+1) ≤ β
2
‖wT+1 − w?‖2 (by Lemma 3.4 of

(Bubeck, 2015)), and we obtain the desired result.

Theorem 8. We assume that Ω = Rp, and that for every z ∈ Z , `z is β-smooth and satisfies the RSI with constant α. We
further assume that there exists w? a solution of (P) such that ∀z ∈ Z, `z(w?) = 0. Let η be such that 0 < η ≤ 1

2β . Then
if we apply ALI-G with a maximal learning-rate of η to f , we have:

f(wT+1)− f? ≤
β

2
exp

((
−η
(

2α− β

2

))
T

)
‖w0 −w?‖2. (105)

Note: this result assumes perfect interpolation, and thus we set δ = 0 (no small constant for numerical stability).

Proof : We consider the update at time t, which we condition on the draw of zt ∈ Z . Since we consider δ = 0, we have γt =

min
{

`zt (wt)

‖∇`zt (wt)‖2 , η
}

. We suppose∇`zt(wt) 6= 0. We re-use equation (102) to write:

‖wt+1 −w?‖2 ≤
(

1− 2γtα+ γt
β

2

)
‖wt −w?‖2. (106)

Since we know that `zt (wt)

‖∇`zt (wt)‖2 ≥
1

2β
(Lemma 1) and η ≤ 1

2β
, we have that γt = η necessarily. Thus we obtain:

‖wt+1 −w?‖2 ≤
(

1− 2ηα+ η
β

2

)
‖wt −w?‖2.

With a trivial induction we obtain:

‖wT+1 −w?‖2 ≤
(

1− η
(

2α− β

2

))T
‖w0 −w?‖2,

≤ exp

((
−η
(

2α− β

2

))
T

)
‖w0 −w?‖2.

Since f is β-smooth and the problem is unconstrained by assumption, we have f(wT+1) ≤ β
2
‖wT+1 − w?‖2 (by Lemma 3.4 of

(Bubeck, 2015)), and we obtain the desired result.

Training Neural Networks for and by Interpolation

5. Additional Experimental Details
5.1. Standard Deviation of CIFAR Results

Task Optimizer Avg Std

DN10 ADAMW 92.6 0.08
DN10 ALIG 95.0 0.16
DN10 AMSGRAD 91.7 0.25
DN10 DFW 94.6 0.22
DN10 L4ADAM 90.8 0.09
DN10 L4MOM 91.9 0.17
DN10 SGD 95.1 0.21
DN10 YOGI 92.1 0.38

DN100 ADAMW 69.5 0.54
DN100 ALIG 76.3 0.14
DN100 AMSGRAD 69.4 0.41
DN100 DFW 73.2 0.29
DN100 L4ADAM 60.5 0.64
DN100 L4MOM 62.6 1.98
DN100 SGD 76.3 0.22
DN100 YOGI 69.6 0.34

WRN10 ADAMW 92.1 0.34
WRN10 ALIG 95.2 0.09
WRN10 AMSGRAD 90.8 0.31
WRN10 DFW 94.2 0.19
WRN10 L4ADAM 90.5 0.09
WRN10 L4MOM 91.6 0.24
WRN10 SGD 95.3 0.31
WRN10 YOGI 91.2 0.27

WRN100 ADAMW 69.6 0.51
WRN100 ALIG 75.8 0.29
WRN100 AMSGRAD 68.7 0.70
WRN100 DFW 76.0 0.24
WRN100 L4ADAM 61.7 2.17
WRN100 L4MOM 61.4 0.86
WRN100 SGD 77.8 0.13
WRN100 YOGI 68.7 0.47

Table 3. Test Accuracy (%) on CIFAR including standard deviations. Each experiment was run three times.

5.2. Additional Details About Training Protocol on ImageNet

Data Processing. We use 1.23M images for training. As mentioned in the paper, we do not use any data augmentation on
this task. Our data processing can be described as follows. Each training image is resized so that its smaller dimension is of
224 pixels, after which we take a centered square crop of 224 by 224. The cropped image is then centered and normalized
per channel (for this, the mean and standard deviation per channel is computed across all training images), before being fed
to the neural network.

Loss Function. We use the top-k truncated cross-entropy (Lapin et al., 2016) as our loss function for training the model
on ImageNet. In particular, we use k = 5 so that we optimize for the commonly used top-5 error, and we use the default
temperature parameter τ = 1.

Our PyTorch code re-uses the implementation from https://github.com/locuslab/lml.

https://github.com/locuslab/lml

Training Neural Networks for and by Interpolation

References
Bubeck, S. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine Learning, 2015.

Hazan, E. and Kakade, S. Revisiting the polyak step size. arXiv preprint, 2019.

Lapin, M., Hein, M., and Schiele, B. Loss functions for top-k error: Analysis and insights. Conference on Computer Vision
and Pattern Recognition, 2016.

Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel, G., and Lacoste-Julien, S. Painless stochastic gradient: Interpola-
tion, line-search, and convergence rates. arXiv preprint, 2019.

