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Abstract

Data containing human or social attributes may
over- or under-represent groups with respect to
salient social attributes such as gender or race,
which can lead to biases in downstream applica-
tions. This paper presents an algorithmic frame-
work that can be used as a data preprocessing
method towards mitigating such bias. Unlike prior
work, it can efficiently learn distributions over
large domains, controllably adjust the representa-
tion rates of protected groups and achieve target
fairness metrics such as statistical parity, yet re-
mains close to the empirical distribution induced
by the given dataset. Our approach leverages the
principle of maximum entropy — amongst all dis-
tributions satisfying a given set of constraints, we
should choose the one closest in KL-divergence
to a given prior. While maximum entropy distri-
butions can succinctly encode distributions over
large domains, they can be difficult to compute.
Our main contribution is an instantiation of this
framework for our set of constraints and priors,
which encode our bias mitigation goals, and that
runs in time polynomial in the dimension of the
data. Empirically, we observe that samples from
the learned distribution have desired representa-
tion rates and statistical rates, and when used for
training a classifier incurs only a slight loss in
accuracy while maintaining fairness properties.

1. Introduction

Datasets often under- or over-represent social groups de-
fined by salient attributes such as gender and race, and can
be a significant source of bias leading to discrimination in
the machine learning applications that use this data (O’Neil,
2016; Calders & 2liobaité, 2013; Kay et al., 2015). Methods
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to debias data strive to ensure that either 1) the representa-
tion of salient social groups in the data is consistent with
ground truth (King & Zeng, 2001; Chawla et al., 2002; Ze-
laya, 2019), or 2) the outcomes (where applicable) across
salient social groups are fair (Calders et al., 2009; Kamiran
& Calders, 2012; Wang et al., 2019; Calmon et al., 2017;
Xu et al., 2018; Feldman et al., 2015; Gordaliza et al., 2019).
The goal of this paper is to learn a distribution that corrects
for representation and outcome fairness but also remains as
close as possible to the original distribution from which the
dataset was drawn. Such a distribution allows us to generate
new pseudo-data that can be used in downstream applica-
tions which is both true to the original dataset yet mitigates
the biases it contains; this has the additional benefit of not
requiring the original data to be released when there are pri-
vacy concerns. Learning this distribution in time polynomial
in the size of the dataset and dimension of the domain (as
opposed to the size of the domain, which is exponential in
the number of attributes and class labels) is crucial in order
for the method to be scalable. Further, attaining provable
guarantees on the efficiency and desired fairness properties
is an important concern. Hence, the question arises:

Can we develop methods to learn accurate distributions that
do not suffer from biases, can be computed efficiently over
large domains, and come with theoretical guarantees?

Our contributions. We propose a framework based on
the maximum entropy principle which asserts that among
all distributions satisfying observed constraints one should
choose the distribution that is “maximally non-committal”
with regard to the missing information. It has its origins in
the works of Boltzmann, Gibbs and Jaynes (Gibbs, 1902;
Jaynes, 1957a;b) and it is widely used in learning (Dudik,
2007; Singh & Vishnoi, 2014). Typically, it is used to learn
probabilistic models of data from samples by finding the dis-
tribution over the domain that minimizes the KL-divergence
with respect to a “prior” distribution, and whose expectation
matches the empirical average obtained from the samples.

Our framework leverages two properties of max-entropy
distributions: 1) any entropy maximizing distribution can
be succinctly represented with a small (proportional to the
dimension of the data) number of parameters (a consequence
of duality) and, 2) the prior and expectation vector provides
simple and interpretable “knobs” with which to control the
statistical properties of the learned distribution.
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Table 1. Comparison of our paper with related work: The first two rows denote the fairness metrics that can be controlled by each
approach (see Definitions 2.1 and 2.2). The last two rows denote whether the approach has the ability to sample from the entire domain,
and whether it has a succinct representation. We compare our performance against these methods empirically in Section 5.

Properties (Kamiran & Calders, 2012)  (King & Zeng, 2001) (Calmon et al., 2017)  This paper
- Statistical Rate v'(only for 7 = 1) X v'(only for 7 = 1) v
- Representation Rate X v X v
- Entire domain X X v v
- Succinct representation v v X v

We show that by appropriately setting the prior distribu-
tion and the expectation vector, we can provably enforce
constraints on the fairness of the resulting max-entropy dis-
tribution, as measured by the representation rate (the ratio of
the probability assigned to the under-represented group and
the probability assigned to the over-represented group - Def-
inition 2.1) and statistical rate (the ratio of the probability
of belonging to a particular class given individual is in the
under-represented group and the probability of belonging
to the same class given individual is in the over-represented
group - Definition 2.2); see Theorem 4.5. However, existing
algorithms to compute max-entropy distributions depend on
the existence of fast oracles to evaluate the dual objective
function and bounds on the magnitude of the optimal (dual)
parameters (Singh & Vishnoi, 2014; Straszak & Vishnoi,
2019). Our main technical contribution addresses these prob-
lems by showing the existence of an efficient and scalable
algorithm for gradient and Hessian oracles for our setting
and a bound on the magnitude of the optimal parameters that
is polynomial in the dimension. This leads to algorithms for
computing the max-entropy distribution that runs in time
polynomial in the size of the dataset and dimension of the
domain (Theorem 4.4). Thus, our preprocessing framework
for debiasing data comes with a provably fast algorithm.

Empirically, we evaluate the fairness and accuracy of the
distributions generated by applying our framework to the
Adult and COMPAS datasets, with gender as the protected
attribute. Unlike prior work, the distributions obtained using
the above parameters perform well for both representational
and outcome-dependent fairness metrics. We further show
that classifiers trained on samples from our distributions
achieve high fairness (as measured by the classifier’s statis-
tical rate) with minimal loss to accuracy. Both with regard
to the learned distributions and the classifiers trained on the
de-biased data, our approach either matches or surpasses
the performance of other state-of-the-art approaches across
both fairness and accuracy metrics. Further, it is efficient
on datasets with large domains (e.g., approx 10! for the
large COMPAS dataset), for which some other approaches
are infeasible with regard to runtime.

Related work. Prior work on this problem falls, roughly,

into two categories: 1) those that try to modify the dataset
either by reassigning the protected attributes or reweighting
the existing datapoints (Calders et al., 2009; Kamiran &
Calders, 2012; Wang et al., 2019; King & Zeng, 2001),
or 2) those that try to learn a distribution satisfying given
constraints defined by the target fairness metric on the entire
domain (Calmon et al., 2017).

The first set of methods often leads to efficient algorithms,
but are unable to generate points from the domain that are
not in the given dataset; hence, the classifiers trained on the
re-weighted dataset may not generalize well (Chawla, 2009).
Unlike the re-labeling/re-weighting approach of (Calders
et al., 2009; Kamiran & Calders, 2009; 2012; King & Zeng,
2001) or the repair methods of (Gordaliza et al., 2019; Wang
et al., 2019; Feldman et al., 2015; Zemel et al., 2013), we
instead aim to learn a debiased version of the underlying
distribution of the dataset across the entire domain. The
second approach also aims to learn a debiased distribution
on the entire domain. E.g., (Calmon et al., 2017) presents
an optimization-based approach to learning a distribution
that is close to the empirical distribution induced by the
samples subject to fairness constraints. However, as their
optimization problem has a variable for each point in the
domain, the running time of their algorithm is at least the
size of the domain, which is exponential in the dimension of
the data, and hence often infeasible for large datasets. Since
the max-entropy distribution can be efficiently represented
using the dual parameters, our framework does not suffer
from the enumeration problem of (Calders et al., 2009)
and the inefficiency for large domains as in (Calmon et al.,
2017). See Table 1 for a summary of the properties of our
framework with key related prior work. Other preprocessing
methods include selecting a subset of data that satisfies
specified fairness constraints such as representation rate
without attempting to model the distribution (Celis et al.,
2016; 2018).

GAN-based approaches towards mitigating bias (Mariani
et al., 2018; Sattigeri et al., 2019; Xu et al., 2018) are inher-
ently designed to simulate continuous distributions and are
neither optimized for discrete domains that we consider in
this paper nor are prevalently used for social data and bench-
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mark datasets for fairness in ML. While (Choi et al., 2017;
Xu et al., 2018) suggest methods to round the final samples
to the discrete domain, it is not clear whether such rounding
procedures preserve the distribution for larger domains.

While our framework is based on preprocessing the dataset,
bias in downstream classification tasks can also be addressed
by modifying the classifier itself. Prior work in this direction
fall into two categories: inprocessing methods that change
the objective function optimized during training to include
fairness constraints (Celis et al., 2019; Zhang et al., 2018),
and post-processing methods that modify the outcome of the
existing machine learning models by changing the decision
boundary (Kamiran et al., 2012; Hardt et al., 2016).

2. Preliminaries

Dataset & Domain. We consider data from a discrete
domain Q = O x .-+ x Qg = {0,1}4, i.e., each at-
tribute €2; is binary.! The convex hull of €2 is denoted by
conv(2) = [0,1]% and the size of the domain Q is 2%, i.e.,
exponential in the dimension d. We let the set (not multiset)
S C Q, along with a frequency n, > 1 for each point
a € S, denote a dataset consisting of N = ) | _ 5 nq dis-
tinct points. We consider the attributes of €2, indexed by the
set [d] := {1,...,d}, as partitioned into three index sets
where 1) I, denotes the indices of protected attributes, 2) I,
denotes the set of outcomes or class labels considered for
fairness metric evaluation, and 3) I, denotes the remaining
attributes. We denote the corresponding sub-domains by
X = Xielei, y = Xie[yQi, and Z := XieIzQi~

Fairness metrics. We consider the following two common
fairness metrics; the first is “representational” (also known
as “outcome independent”) and depends only on the pro-
tected attributes and not on the class label, and the second
one is an “outcome dependent” and depends on both the
protected attribute and the class label.

Definition 2.1 (Representation rate). For 7 € (0,1], a
distribution p : Q@ — [0, 1] is said to have representation
rate T with respect to a protected attribute { € I, if for all
i, 25 € Sy, we have

plZ = zi

T?
plZ = 2]

where Z is distributed according to the marginal of p re-
stricted to §y.

'Our results can be extended to domains with discrete or cate-
gorical attributes by encoding an attribute of size k as binary using
one-hot encodings: i.e., replace the cell with e € {0, 1}* where
for a value j € [k] we sete = {e1,...,er} withe; = 1 and
e¢ = 0 for all £ # k. To handle continuous features, one can apply
discretization to reduce a continuous feature to a non-binary dis-
crete feature. However, there is a natural tradeoff between domain
size and correctness. We refer the reader to the survey (Kotsiantis
& Kanellopoulos, 2006) for research on discretization techniques.

Definition 2.2 (Statistical rate). For m € (0, 1], a distribu-
tionp : Q — [0,1] is said to have statistical rate T with
respect to a protected attribute { € I, and a class label
y € Yifforall z;, zj € Qq, we have

plY =y | Z = z] -

plY =ylZ=2z]""
where Y is the random variable when p is restricted to )
and Z when p is restricted to §y.

We also refer to the statistical rate when the outcome labels
are instead obtained using a classifier f : X x Z — ). The
classifier is said to have statistical rate 7 if for all z;, z; € £,
Plfla)=y|Z=z:] PP
we have Plf(a)=yZ=2] > 7, where the probability is over

the empirical distribution of the test data.

In the definitions above, 7 = 1 can be thought of as “perfect”
fairness and is referred to as representation parity and statis-
tical parity respectively. In practice, however, these perfect
measures of fairness are often relaxed: a popular example is
the “80% rule” in US labor law (Biddle, 2006) to address dis-
parate impact in employment, which corresponds to 7 = 0.8.
The exact value of 7 desired is context-dependent and will
vary by application and domain.

The reweighting approach to debiasing data. A weight
w(«) is assigned to each data point & € S such that
w(a) > 0, and ) sw(a) = 1. Le., a probability dis-
tribution over samples is computed. These weights are
carefully chosen in order to satisfy the desired fairness met-
rics, such as statistical parity (Kamiran & Calders, 2012) or
representation parity (King & Zeng, 2001).

The optimization approach to debiasing data. The goal
of learning a debiased probability distribution over the entire
domain is formulated as a constrained optimization problem
over the space P of all probability distributions over 2
(and not just S). A prior distribution ¢ is chosen that is
usually supported on S, a distance measure D is chosen to
compare two probability distributions, and a function J :
P — R? that encodes the fairness criteria on the distribution
is given. The goal is to find the solution to the following
optimization problem: min,ep D(p, ¢) s.t. J(p) = 0. For
instance, (Calmon et al., 2017) use the total variation (TV)
distance as the distance function and encode the fairness
criteria as a linear constraint on the distribution.

The maximum entropy framework. Given (2 C R%, a
prior distribution ¢ : Q — [0,1] and a marginal vector
0 € conv(2), the maximum entropy distribution p* : Q) —
[0, 1] is the maximizer of the following convex program,

sup Z p(a)log @, (primal-MaxEnt)
PGR‘ZQO‘ aef p(a)
s.t. Z ap(a) =6 and Z pla) = 1.
ael aeQ
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The objective can be viewed as minimizing the KL-
divergence with respect to the prior q. To make this program
well defined, if ¢(c) = 0, one has to restrict p(a) = 0 and
define log% = 1. The maximum entropy framework is
traditionally used to learn a distribution over {2 by setting
0 = % Y aes @ - Mg and g to be the uniform distribu-
tion over (2. This maximizes entropy while satisfying the
constraint that the marginal is the same as the empirical
marginal. It is supported over the entire domain 2 (as ¢
is also supported on all of €2) and, as argued in the litera-
ture (Dudik, 2007; Singh & Vishnoi, 2014), is information-
theoretically the “least constraining” choice on the distribu-
tion that can explain the statistics of S. Later we consider
other choices for ¢ that take S and our fairness goals into
account and are also supported over the entire domain 2.

Computationally, the number of variables in
(primal-MaxEnt) is equal to the size of the domain
and, hence does not seem scalable. However, a key property
of this optimization problem is that it suffices to solve
the dual (see below) that only has d variables (i.e., the
dimension of the domain and not the size of the domain):

inf ho.q(A) :=log (Z q(a)e<a0’)‘>> ,

ACR aEeQ)

(dual-MaxEnt)
where the function hg , : R — R is referred to as the dual
max-entropy objective. For the objectives of the primal and
dual to be equal (i.e., for strong duality to hold), one needs
that 6 lie in the “relative interior” of conv({2); see (Singh &
Vishnoi, 2014). In the case conv(§2) = [0, 1]%, this simply
means that 0 < 6; < 1forall 1 <4 < d. This is satisfied if
for each attribute €; there is at least one point in the set S
that takes value 0 and at least one point that takes value 1.

Strong duality also implies that, if A* is a minimizer of hg g4,
then p* can be computed as

gla)e

p*(a) = 2569 q(ﬂ)eQ*-ﬂ) ;

see (Dudik, 2007; Singh & Vishnoi, 2014). Thus, the distri-
bution p* can be represented only using d numbers A} for
1 < ¢ < d. However, note that as some 6; go close to an
integral value or some ¢(«) — 0, these optimal dual vari-
ables might tend to infinity. Further, given a A\, computing
hg 4 requires computing a summation over the entire do-
main €2 — even in the simplest setting when g is the uniform
distribution on () — that can a priori take time proportional
to || = 2¢. Hence, even though the dual optimization
problem is convex and has a small number of variables (d),
to obtain a polynomial (in d) time algorithm to solve it, we
need both an algorithm that evaluate the dual function hg 4
(a summation over the entire domain €2) and its gradient ef-
ficiently at a given point A, and (roughly) a bound on || A*||2
that is polynomial in d.

3. Our framework

Our approach for preprocessing data uses the maximum
entropy framework and combines both the reweighting and
optimization approaches. Recall that the maximum entropy
framework requires the specification of the marginal vector
# and a prior distribution q. We use ¢ and 6 to enforce our
goals of controlling representation and statistical rates as
defined in Definitions 2.1 and 2.2, while at the same time
ensuring that the learned distribution has support all of 2
and is efficiently computable in the dimension of €2. Another
advantage of computing the max-entropy distribution (as
opposed to simply using the prior g) is that it pushes the prior
towards the empirical distribution of the raw dataset, while
maintaining the fairness properties of the prior. This leads
to a distribution which is close to the empirical distribution
and has fairness guarantees.

Prior distributions. Let u denote the uniform distribution
on : u(w) := ﬁ for all & € . Note that the uniform
distribution satisfies statistical rate with 7 = 1. We also
use a reweighting algorithm (Algorithm 1) to compute a
distribution w supported on S. Our algorithm is inspired
by the work of (Kamiran & Calders, 2012) and, for any
given 7 € (0, 1], Algorithm 1 can ensure that w satisfies the
T-statistical rate property; see Theorem 4.1. We introduce a
parameter C' € [0, 1] that allows us to interpolate between
w and v and define:

¢ =C-u+(1-C)- w. (D

A desirable property of g¢, that we show is true, is that
the dual objective function i, g and its gradient are com-
putable in time polynomial in IV, d and the number of bits
needed to represent § for any weight vector w supported
on S; see Lemma 4.3. Further, we show that, if w has 7-
statistical rate, then for any C' € [0, 1], the distribution ¢
also has 7-statistical rate; see Theorem 4.1.

Thus, the family of priors we consider present no compu-
tational bottleneck over exponential-sized domains. More-
over, by choosing the parameter C, our framework allows
the user to control how close they would like the learned
distribution to be to the empirical distribution induced by
S. Finally, using appropriate weights w which encode the
desired statistical rate, one can aim to ensure that the opti-
mal distribution to the max-entropy program is also close to
satisfying statistical parity (Theorem 4.5).

Marginal vectors. The simplest choice for the marginal
vector 6 is the marginal of the empirical distribution
% > aes Ma * Q. However, in our framework, the user
can select any vector 6. In particular, to control the repre-
sentation rate of the learned distribution with respect to a
protected attribute ¢, we can choose to set it differently. For
instance, if Q, = {0, 1} and we would like that in learned
distribution the probability of this attribute being 1 is 0.5, it
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Algorithm 1 Re-weighting algorithm to assign weights to
samples for the prior distribution
1: Input: Dataset S := {(Xa, Yo, Za)} s C© X x Y %
€y, frequency list {nq }, g and parameter 7 € (0, 1]
for y € Y do
c(y) < Pges 1Yo =y)
c(y,0) % Yaes 1Yo =y, Za =0) -nq
c(y, 1) > qes 1Yo =
end for
w+ 0
for o € S do
w(a) ¢ ng - Vo) e(Ya,Za)
end for
W3 egw(a)
: return {w(e)/w}

—_ =
TeYeRankwd

—_
N

acsS

suffices to set 6y = 0.5. This follows immediately from the
constraint imposed in the max-entropy framework. Once
we fix a choice of 6 and ¢, we need to solve the dual of
the max-entropy program and we discuss this in the next
section. The dual optimal A* can then be used to sample
from the distribution p* in a standard manner; see Section B
in the supplementary material.

4. Theoretical results

Throughout this section we assume that we are given C' €

[0,1], S € € and the frequency of elements in S, {14}, s-

The reweighting algorithm and its properties. We start
by showing that there is an efficient algorithm to compute
the weights w discussed in the previous section.

Theorem 4.1 (Guarantees on the reweighting algo-
rithm). Given the dataset S, frequencies {n.},.s and

aT € 0,1], Algorithm I outputs a probability distribution
w: S — [0, 1] such that

1. The algorithm runs in time linear in N.
2. q@, defined in Eq. (1) using w, satisfies T-statistical rate,
i.e, foranyy € Y and for all z1, zo € Qy,
wY =ylZ==)
(Y =y|Z=2)

>T.

The proof of this theorem uses the fact that g¢ is a convex
combination of uniform distribution, which has statistical
rate 1, and weights from Algorithm 1, which by construction
satisfy statistical rate 7; it is presented in Section A in the
supplementary material.

Computability of maximum entropy distributions.

Since the prior distribution g¢ is not uniform in general, the
optimal distribution p* is not a product distribution. Thus,
as noted earlier, the number of variables in (primal-MaxEnt)
is || = 24 je., exponential in d, and standard methods
from convex programming to directly solve primal-MaxEnt

do not lead to efficient algorithms. Instead, we focus on
computing (dual-MaxEnt). Towards this, we appeal to the
general algorithmic framework of (Singh & Vishnoi, 2014;
Straszak & Vishnoi, 2019). To use their framework, we
need to provide (1) a bound on ||A\*||2 and (2) an efficient
algorithm (polynomial in d) to evaluate the dual objective
hg,q and its gradient. Towards (1), we prove the following.

Lemma 4.2 (Bound on the optimal dual solution). Sup-
pose 0 is such that there is an n > 0 for which we have
n < 0; <1—mnforalli € [d]. Then, the optimal dual
solution corresponding to such a 0 and g@ satisfies

d. 1
My < Zlog =.
| ||2_77 g 7

The proof uses a result from (Singh & Vishnoi, 2014) and
appears in Section B in the supplementary material. We note
that, for our applications, we can show that the assumption
on 6 follows from an assumption on the “non-redundancy’
of the data set. Using recent results of (Straszak & Vishnoi,
2019), we can get around this assumption and we omit the
details from this version of the paper.

i

Towards (2), we show that g/ has the property that not only
can one evaluate hg),qg, but also its gradient (and Hessian).

Lemma 4.3 (Oracles for the dual objective function).
There is an algorithm that, given a reweighted distribution
w: 8 — (0,1], values 6, X € RY, and distribution ¢ = q¥,
computes hg 4(N\), Vhg 4(X), and V2hg 4(N) in time poly-
nomial in N, d and the bit complexities of all the numbers
involved: w(a) for a € S, and e, 0; for 1 < i < d.

The proof of this lemma, along with the algorithm, appears
in Section B.3 in the supplementary material. It uses the fact
that g¢ is a convex combination of uniform distribution (for
which efficient oracles can be constructed) and a weighted
distribution supported only on S, and can be generalized to
any prior ¢ that similarly satisfies these properties.

Thus, as a direct corollary to Theorem 2.8 in the arxiv ver-
sion of (Singh & Vishnoi, 2014) we obtain the following.

Theorem 4.4 (Efficient algorithm for max-entropy dis-
tributions). There is an algorithm that, given a reweighted
distributionw : S — [0,1], a0 € [n,1—n]%, and an e > 0,
computes a \° such that

ho,q(A°) < hg q(X*) +e.

Here \* is an optimal solution to the dual of the max-entropy
convex program for q := q¢ and 0. The running time of the
algorithm is polynomial in d, 71], % and the number of bits
needed to represent 6 and w.

Fairness guarantees. Given a marginal vector 6 that has
representation rate 7, we can bound the statistical rate and
representation rate of the the max-entropy distribution ob-
tained using g¢ and 6.
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Theorem 4.5 (Fairness guarantees). Given the dataset
S, protected attribute { € I,, class label y € Y and
parameters 7,C € [0,1], let w : S — [0,1] be the
reweighted distribution obtained from Algorithm 1. Sup-
pose 0 is a vector that satisfies % <6, < 1_%7 The max-
entropy distribution p* corresponding to the prior distribu-
tion q¢ and expected value 0 has statistical rate at least
7' with respect to ¢ and vy, where 7' = T — %, and
§ =max,ecq,p(Y =y, Z =2)—qa(Y =y, Z = 2)|;
here Y is the random variable when the distribution is re-
stricted to Y and Z is the random variable when the distri-

bution is restricted to §.

The condition on 6, when simplified, implies that
(1=0¢)/g, > 7 and 0¢/(1-6,) > 1, i.e., the marginal prob-
ability of Z = 0 is atleast 7 times the marginal probability
of Z = 1. This directly implies that the representation rate
of p* is at least 7. As we control the statistical rate using the
prior gg&, the statistical rate of p* depends on the distance
between g and p*. The proof of Theorem 4.5 is provided
in Section C in the supplementary material.

Remark 4.6. Two natural choices for 0 that satisfy the
conditions of Theorem 4.5 are the following:

1. The reweighted vector 0" := 3 _cw(a) - o, where w
is the weight distribution obtained using Algorithm I;
since w has representation rate T, it can be seen that
0y =1/1+ 7).

2. The vector 0° that is the mean of the dataset S for all
non-protected attributes and class labels, and is balanced
across the values of any protected attribute. lLe.,

b._ Na Nay, 1
9._<ZNXQ, NYmQ).

a€eS a€eS

5. Empirical analysis

Our approach, as described above, is flexible and can be
used for a variety of applications. 2 In this section we show
its efficacy as compared with other state-of-the-art data de-
biasing approaches, in particular reweighting methods by
(Kamiran & Calders, 2012; King & Zeng, 2001) and an opti-
mization method by (Calmon et al., 2017). We consider two
applications and three different domain sizes: The COM-
PAS criminal defense dataset using two versions of the
data with differently sized domains, and the Adult financial
dataset. With regard to fairness, we compare the statisti-
cal rate and representation rate of the de-biased datasets
as well as the statistical rate of a classifier trained on the
de-biased data. With regard to accuracy, we report both the
divergence of the de-biased dataset from the raw data, as

2The code for our framework is available at https:
//github.com/vijaykeswani/Fair-Max—-Entropy—
Distributions.

well as the resulting classifier accuracy. We find that our
methods perform at least as well as if not better than existing
approaches across all fairness metrics; in particular, ours are
the only approaches that can attain a good representation
rate while, simultaneously, attaining good statistical rate
both with regard to the data and the classifier. Further, the
loss as compared to the classifier accuracy when trained
on raw data is minimal, even when the KL divergence be-
tween our distribution and the empirical distribution is large
as compared to other methods. Finally, we report the run-
time of finding the de-biased distributions, and find that our
method scales well even for large domains of size ~ 10!,

5.1. Setup for empirical analysis

Datasets. We consider two benchmark datasets from the
fairness in machine learning literature.’

(a) The COMPAS dataset (Angwin et al., 2016; Larson
et al., 2016) contains information on criminal defendants at
the time of trial (including criminal history, age, sex, and
race), along with post-trail instances of recidivism (coded as
any kind of re-arrest). We use two versions of this dataset:
the small version has a domain of size 144, and contains sex,
race, age, priors count, and charge degree as features, and
uses a binary marker of recidivism within two years as the
label. We separately consider race (preprocessed as binary
with values “Caucasian” vs “Not-Caucasian”) and gender
(which is coded as binary) as protected attributes. The large
dataset has a domain of size approximately 1.4 x 10'! and
consists of 19 attributes, 6 different racial categories and
additional features such as the type of prior and juvenile
prior counts.

(b) The Adult dataset (Dheeru & Karra Taniskidou, 2017)
contains demographic information of individuals along with
a binary label of whether their annual income is greater
than $50k, and has a domain of size 504. The demographic
attributes include race, sex, age and years of education. We
take gender (which is coded as binary) as the protected
attribute.

Using our approach. We consider the prior distribution g,
which assigns weights returned by Algorithm 1 for input
Sand 7 = 1 and C = 0.5.* Further, we consider the two
different choices for the expectation vector as defined in
Remark 4.6, namely: (1) The weighted mean of the samples
0" using the weights w as obtained from Algorithm 1, and
(2) the empirical expectation vector with the marginal of the
protected attribute modified to ensure equal representation
of both groups 6°. In this case, since the protected attribute

3The details of both datasets, including a description of features
are presented in Sections D and E of the supplementary material.

*This choice for C is arbitrary; we evaluate performance as a
function of C in Section D of the supplementary material.
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is binary we set 65 = 1/2. 3

Baselines and metrics. We compare against the raw data,
simply taking the prior g¢ defined above, a reweighting
method (Kamiran & Calders, 2012) for statistical parity, a
reweighting method (King & Zeng, 2001) for representation
parity, and an optimized preprocessing method (Calmon
et al., 2017). We consider the distributions themselves in
addition to classifiers trained on simulated datasets drawn
from these distributions, and evaluate them with respect to
well-studied metrics of fairness and accuracy.

For fairness metrics, we report the statistical rate (see Defini-
tion 2.2), i.e., the ratio between the probability of observing
a favorable outcome given unprivileged group membership
and the probability of observing a favorable outcome given
privileged group membership. Note that this can be eval-
uated both with regard to the instantiation of the outcome
variable in the simulated data, and with regard to the out-
come predicted by the classifier; we report both. We also
report the representation rate (see Definition 2.1) of the sim-
ulated data; for gender this corresponds to the ratio between
fraction of women and men in the simulated datasets, while
for race this corresponds to the ratio between fraction of
Caucasian and Non-Caucasian individuals in the simulated
datasets. For all fairness metrics, larger values, closer to 1,
are considered to be “more fair”.

We report the classifier accuracy when trained on the syn-
thetic data. Further, we aim to capture the distance between
the de-biased distribution and the distribution induced by the
empirical samples. For the Adult dataset and small COM-
PAS dataset we report the KL-divergence.® For the large
COMPAS dataset, the KL-divergence is not appropriate as
most of the domain is not represented in the data. We instead
consider the covariance matrix of the output dataset and the
raw dataset and report the Frobenius norm of the difference
of these matrices. In either case, lower values suggest the
synthetic data better resembles the original dataset. Lastly,
we report the runtime (in seconds) of each approach.

Implementation details. @ We perform 5-fold cross-
validation for every dataset, i.e., we divide each dataset into
five partitions. First, we select and combine four partitions
into a training dataset and use this dataset to construct the
distributions. Then we sample 10,000 elements from each
distribution and train the classifier on this simulated dataset.
We then evaluate our metrics on this simulated dataset and
classifier (where the classifier accuracy and statistical rate
is measured over the test set, i.e., the fifth partition of the

>In Section D of the supplementary material we evaluate the
performance using alternate priors and expectation vectors such as
¢ and 64 which correspond to the raw data.

SFor this to be well-defined, if a point does not appear in the
dataset, before calculating KL-divergence, we assign it a very
small non-zero probability (~ 1077).

original dataset). This sampling process is repeated 100
times for each distribution. We repeat this process 5 times
for each dataset, once for each fold. We report the mean
across all (500) repetitions and folds. Within each fold, the
standard error across repetitions is low, less than 0.01 for all
datasets and methods. Hence, for each fold, we compute the
mean of metrics across the 100 repetitions and then report
the standard deviation of this quantity across folds.

We use a decision tree classifier with gini information crite-
rion as the splitting rule. A Gaussian naive Bayes classifier
gives similar results. Further details are presented in Section
D of the supplementary material. In the computation of the
max-entropy distribution, we use a second-order algorithm
inspired from works of (Allen Zhu et al., 2017; Cohen et al.,
2017) that is also provably polynomial time in the param-
eters above and turns out to be slightly faster in practice.
We present the details in Section F of the supplementary
material. The machine specifications are a 1.8Ghz Intel
Core 15 processor with §GB memory.

5.2. Empirical results

The empirical results comparing our max-entropy approach
against the state-of-the-art are reported in Table 2. The per-
formance of using just the prior g is also reported in the
table. For all datasets, the statistical rate of our max-entropy
distributions is at least 0.97, which is higher than that of
the raw data and higher or comparable to other approaches,
including those specifically designed to optimize statisti-
cal parity (Calmon et al., 2017; Kamiran & Calders, 2012).
Additionally, the representation rate of our max-entropy dis-
tributions is at least 0.97, which is higher than that of the raw
data and higher or similar to other approaches, including
those specifically designed to optimize the representation
rate (King & Zeng, 2001). Recall that both fairness met-
rics can be at most 1, so this suggests the synthetic data
our distributions produce have a near-equal fraction of in-
dividuals from both groups of protected attribute values
(women/men or Caucasian/Not-Caucasian) and the proba-
bility of observing a favorable outcome is almost equally
likely for individuals from both groups.

Note that Theorem 4.5 gives a bound on the statistical rate
7/. While this bound can be strong, the statistical rates
we observe empirically are even better. E.g., for the small
COMPAS dataset with gender as the protected attribute, by
plugging in the value of J for prior ¢ and expected vector
0%, we get that 7/ = 0.85 (i.e., satisfying the 80% rule),
but we observe that empirically it is even higher (0.98).
However, the bound may not always be strong. E.g., or
the Adult dataset, we only get 7/ = 0.23. In this case, the
distance between the prior g and max-entropy distribution
p* is large hence the bound on the statistical rate of p*,

w

derived using g¢, is less accurate. Still, the statistical rate of
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Table 2. Empirical results. Our max-entropy distributions use prior ¢& for C' = 0.5 and expected value 8% or 6° (as defined in
Remark 4.6). “SR” denotes statistical rate. We report the mean across all folds and repetitions, with the standard deviation across folds
in parentheses. For each measurement and dataset, the results that are not statistically distinguishable at p-value = 0.05 from the best
result across all baselines and approaches are given in bold. Note that the approach is infeasible for larger domains, such as the large
version of COMPAS datasets, and hence we do not present the results of (Calmon et al., 2017) on that dataset. The results in this table are
represented graphically in Figure 7 in the Supplementary File.

This paper Baselines
Raw Data Prior g& Max- Max- (Calmon (Kamiran (King
Entropy Entropy et al., & Calders, & Zeng,
with ¢, with  g&, 2017) 2012) 2001)
0% 6°
. DataSR 0.36 (0) 0.97 (0.02) 0.98 (0.02) 0.98 (0.02) 0.96 (0.01) 0.97 (0.02) 0.36 (0)
£ Representation Rate  0.49 (0) 0.97 (0.01) 0.97 (0.02) 0.99 (0.01) 0.49(0.01) 0.49(0.01) 0.98 (0)
= _ug £ Classifier SR 0.36 (0) 0.96 (0.03) 0.95(0.02) 0.96 (0.01) 0.97 (0.01) 0.85(0.03) 0.36(0)
2 “:-’D » KL-divergence w.rt 0 (0) 1.23(0.03) 0.24 (0.01) 0.24 (0.01) 0.16 (0) 0.22 (0.01) 0.08 (0)
5 rawdata
< Classifier Accuracy  0.80 (0) 0.75(0.01) 0.77(0.02) 0.76 (0.01) 0.77(0.01) 0.78 (0.01) 0.80 (0)
Runtime - 0.73s 10s 10s 62s 0.16s 0.57s
. Data SR 0.73(0.02) 0.98 (0.01) 0.98 (0.02) 0.99 (0.01) 0.87(0.02) 0.98 (0.02) 0.73 (0.03)
£ Representation Rate  0.24 (0.01)  0.97 (0.02)  0.98 (0.01) 0.98(0.02) 0.24 (0.01) 0.24 (0.01)  0.98 (0)
g £ Classifier SR 0.72 (0.01)  0.96 (0.02) 0.95(0.02) 0.96 (0.02) 0.93 (0.04) 0.93(0.03) 0.72(0.01)
°§D » KL-divergence w.r.t 0 (0) 0.57 (0.03) 0.35(0.01) 0.37(0.02) 0.02(0) 0.14 (0.02) 0.24 (0)
= 5 rawdata
Tg < Classifier Accuracy  0.66 (0.01)  0.65(0.01) 0.64 (0.01) 0.65(0.02) 0.66 (0.01) 0.66 (0.01) 0.66 (0.01)
;)m’ Runtime - 0.06s 2.5s 2.6s 25s 0.04s 0.10s
é . DataSR 0.76 (0.01) 0.98 (0.01) 0.98 (0.01) 0.99 (0.01) 0.93(0.01) 0.98 (0.01) 0.76 (0.01)
5 £ Representation Rate  0.66 (0.01)  0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.74(0.02) 0.67 (0.02) 0.99 (0)
o 3 £ Classifier SR 0.75(0.02)  0.95(0.03) 0.96 (0.01) 0.94 (0.03) 0.85(0.09) 0.96 (0.03) 0.75(0.02)
= » KL-divergence w.rt 0 (0) 0.36 (0.02) 0.13(0.01) 0.13(0.01) 0.02(0.01) 0.02(0) 0.03 (0)
5 rawdata
< Classifier Accuracy  0.66 (0.01)  0.64 (0.02) 0.65(0.02) 0.65(0.01) 0.58(0.02) 0.65(0.01) 0.66 (0.01)
Runtime - 0.06s 2.5s 2.6s 25s 0.04s 0.10s
. Data SR 0.71 (0.02) 0.97 (0.01) 0.98 (0.01) 0.97 (0.02) - 0.99 (0.01) 0.71 (0.02)
£ Representation Rate  0.26 (0.01)  0.96 (0.01)  0.98 (0.01)  0.98 (0.01) - 0.26 (0.01)  0.98 (0)
g £ Classifier SR 0.73 (0.06) 0.89 (0.02) 0.88 (0.02) 0.85(0.06) - 0.79 (0.01)  0.73 (0.03)
§a » Covariance matrix 0 (0) 4.64(0.26) 3.20(0.44) 5.18(0.84) - 4.89 (0.04) 0.16 (0.01)
> £ difference norm
%‘3 < Classifier Accuracy  0.65 (0.01) 0.63 (0.01) 0.63 (0.01) 0.63 (0.01) - 0.62 (0.02) 0.63 (0.01)
e Runtime - 355 40s 40s - 0.25s 2s
<
% . Data SR 0.73 (0.03) 0.98 (0.02) 0.98 (0.02) 0.97 (0.02) - 0.99 (0) 0.72 (0.03)
o) £ Representation Rate  0.06 (0) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) - 0.01 (0.01) 0.98 (0)
© 3 £ Classifier SR 0.72 (0.01) 0.89 (0.06) 0.91 (0.06) 0.91(0.05) - 0.85(0.11) 0.71(0.13)
£ » Covariance matrix  0.01 (0) 1.94 (0.25) 1.93(0.24) 1.87(0.26) - 0.88 (0.14) 0.36 (0.01)
5 difference norm
< Classifier Accuracy  0.66 (0.01) 0.64 (0.01) 0.64 (0.01) 0.63(0.01) - 0.41 (0.08) 0.64 (0.01)

Runtime - 35s 40s 40s - 0.25s 2s
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max-entropy distribution is observed to be 0.97, suggesting
that perhaps stronger fairness guarantees can be derived.

The statistical rate of the classifiers trained on the synthetic
data generated by our max-entropy approach is comparable
or better than that from other methods, and significantly bet-
ter than the statistical rate of the classifier trained on the raw
data. Hence, as desired, our approach leads to improved fair-
ness in downstream applications. This is despite the fact that
the KL-divergence of the max-entropy distributions from
the empirical distribution on the dataset is high compared
to most other approaches. Still, we note that the difference
between the max-entropy distributions and the empirical
distribution tends to be smaller than the difference between
the prior g& and the empirical distribution (as measured
by KL divergence and the covariance matrix difference as
discussed above). This suggests that, as expected, the max-
entropy optimization helps push the re-weighted distribution
towards the empirical distribution and highlights the benefit
of using a hybrid approach of reweighting and optimization.

For the COMPAS datasets, the raw data has the highest
accuracy and the average loss in accuracy when using the
datasets generated from max-entropy distributions is at most
0.03. This is comparable to the loss in accuracy when using
datasets from other baseline algorithms. In fact, for the small
version of COMPAS dataset, the accuracy of the classifier
trained on datasets from the max-entropy distribution using
marginal 6° is statistically similar to the accuracy of the
classifier trained on the raw dataset. For the Adult dataset,
(King & Zeng, 2001) achieves the same classifier accuracy
as the raw dataset. As the Adult dataset is relatively more
gender-balanced than COMPAS datasets and outcomes are
not considered, (King & Zeng, 2001) do not need to modify
the dataset significantly to achieve a high representation rate
(indeed its KL-divergence from the empirical distribution
of the raw data is the smallest). In comparison, all other
methods that aim to satisfy statistical parity (max-entropy
approach, (Calmon et al., 2017; Kamiran & Calders, 2012))
suffer a similar (but minimal) loss in accuracy of at most
0.03.

With respect to runtime, since (Kamiran & Calders, 2012),
(King & Zeng, 2001) and prior g¢ are simple re-weighting
approaches and do not look at features other than class
labels and protected attribute, it is not surprising that they
have the best processing time. Amongst the generative
models, the max-entropy optimization using our algorithm
is significantly faster than the optimization framework of
(Calmon et al., 2017). In fact, the algorithm of (Calmon
et al., 2017) is infeasible for larger domains, such as the
large COMPAS dataset, and hence we are not able present
the results of their algorithm on that dataset.

6. Conclusion, limitations, and future work

We present a novel optimization framework that can be used
as a data preprocessing method towards mitigating bias. It
works by applying the maximum entropy framework to mod-
ified inputs (i.e., the expected vector and prior distribution)
which are carefully designed to improve certain fairness
metrics. Using this approach we can learn distributions over
large domains, controllably adjust the representation rate or
statistical rate of protected groups, yet remains close to the
empirical distribution induced by the given dataset. Further,
we show that we can compute the modified distribution in
time polynomial in the dimension of the data. Empirically,
we observe that samples from the learned distribution have
desired representation rates and statistical rates, and when
used for training a classifier incurs only a slight loss in
accuracy while significantly improving its fairness.

Importantly, our pre-processing approach is also useful in
settings where group information is not present at runtime
or is legally prohibited from being used in classification
(Edwards & Veale, 2017), and hence we only have access
to protected group status it in the training set. Further,
our method has an added privacy advantage of obscuring
information about individuals in the original dataset, since
the result of our algorithm is a distribution over all points in
the domain rather than a reweighting of the actual dataset.

An important extension would be to modify our approach to
improve fairness metrics across intersectional types. Given
multiple protected attributes, one could pool them together
to form a larger categorical protected attribute that captures
intersectional groups, allowing our approach to be used
directly. However, improving fairness metrics across mul-
tiple protected attributes independently seems to require
additional ideas.

Achieving “fairness” in general is an imprecise and context-
specific goal. The choice of fairness metric depends on
the application, data, and impact on the stakeholders of
the decisions made, and is beyond the scope of this work.
However, our approach is not specific to statistical rate or
representation rate and can be extended to other fairness
metrics by appropriately selecting the prior distribution and
expectation vector for our max-entropy framework.
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