Discrete choice models with unobserved heterogeneity are commonly used Econometric models for dynamic Economic behavior which have been adopted in practice to predict behavior of individuals and firms from schooling and job choices to strategic decisions in market competition. These models feature optimizing agents who choose among a finite set of options in a sequence of periods and receive choice-specific payoffs that depend on both variables that are observed by the agent and recorded in the data and variables that are only observed by the agent but not recorded in the data. Existing work in Econometrics assumes that optimizing agents are fully rational and requires finding a functional fixed point to find the optimal policy. We show that in an important class of discrete choice models the value function is globally concave in the policy. That means that simple algorithms that do not require fixed point computation, such as the policy gradient algorithm, globally converge to the optimal policy. This finding can both be used to relax behavioral assumption regarding the optimizing agents and to facilitate Econometric analysis of dynamic behavior. In particular, we demonstrate significant computational advantages in using a simple implementation policy gradient algorithm over existing “nested fixed point” algorithms used in Econometrics.

Despite significant empirical success in prediction of dynamic economic behavior under uncertainty, dynamic discrete choice models frequently lead to seemingly unrealistic optimization problems that economic agents need to solve. For instance, (Hendel and Nevo, 2006a) features an elaborate functional fixed point problem with constraints, which is computationally intensive, especially in continuous state spaces, for consumers to buy laundry detergent in the supermarket. At the same time, rich literature on Markov Decision Processes (cf. Sutton and Barto, 2018) have developed several effective optimization algorithms, such as the policy gradient algorithm and its variants, that do not require solving for a functional fixed point. The high-level takeaway message “use policy gradients” for dynamic discrete choice models have been discussed in the machine learning community. For example, Ermon et al. (2015) and Ho et al. (2016) justify the advantage of policy gradient method by showing that Dynamic Discrete Choice models are equivalent to Maximum Entropy IRL models under some conditions with an algorithm close to policy gradient. However, the drawback of the policy gradient and previous justification are that the value function in a generic Markov Decision problem is not concave in the policy. This means that gradient-based algorithms have no guarantees for global convergence for
a generic MDP. There is a recent trend which studies the global convergence of the policy gradient algorithm under different specific models and assumptions (e.g. Fazel et al., 2018; Agarwal et al., 2019; Bhandari and Russo, 2019; Wang et al., 2019; Jansch-Porto et al., 2020).

In this paper our main goal is to resolve the dichotomy in empirical social science literature that the rationality of consumers requires for them to be able to solve the functional fixed point problem which is computationally intensive. Our main theoretic contribution is the proof that, in the class of dynamic discrete choice models with unobserved heterogeneity, under certain smoothness assumption, the value function of the optimizing agent is globally concave in the policy. This implies that a large set of policy gradient algorithms that have a modest computational power requirement for the optimizing agents have a fast convergence guarantee in our considered class of dynamic discrete choice models. The importance of this result is twofold.

First, it gives a promise that seemingly complicated dynamic optimization problems faced by consumers can be solved by relatively simple algorithms that do not require fixed point computation or functional optimization. This means that the policy gradient-style methods have an important behavioral interpretation. As a result, consumer behavior following policy gradient can serve as a behavioral assumption for estimating consumer preferences from data which is more natural for consumer choice settings than other assumptions that have been used in the past for estimation of preferences (e.g. ϵ-regret learning in Nekipelov et al., 2015).

Second, more importantly, our result showing fast convergence of the policy gradient algorithm makes it an attractive alternative to the search for the functional fixed point in this class of problems. While the goal of the Econometric analysis of the data from dynamically optimizing consumers is to estimate consumer preferences by maximizing the likelihood function, it requires to sequentially solve the dynamic optimization problem for each value of utility parameters along the parameter search path. Existing work in Economics prescribes to use fixed point iterations for the value function to solve the dynamic optimization problem (see Rust, 1987; Aguirregabiria and Mira, 2007). The replacement of the fixed point iterations with the policy gradient method significantly speeds up the maximization of the likelihood function.

This makes the policy gradient algorithm our recommended approach for use in Econometric analysis, and establishes practical relevance of many newer reinforcement learning algorithms from behavioral perspective for social sciences.

2. Preliminaries

In this section, we introduce the concepts of the Markov decision process (MDP) with choice-specific payoff heterogeneity, the conditional choice probability (CCP) representation and the policy gradient algorithm.

2.1. Markov Decision Process

A discrete-time Markov decision process (MDP) with choice-specific heterogeneity is defined as a 5-tuple \((\mathcal{S}, \mathcal{A}, r, \epsilon, \beta)\), where \(\mathcal{S}\) is compact convex state space with \(\text{diam}(\mathcal{S}) \leq \bar{S} < \infty\), \(\mathcal{A}\) is the set of actions, \(r : \mathcal{S} \times \mathcal{A} \to \mathbb{R}_+\) is the reward function, such that \(r(s,a)\) is the immediate non-negative reward for the state-action pair \((s, a)\), \(\epsilon\) are independent random variables, \(\mathcal{P}\) is a Markov transition model where \(p(s'|s,a)\) defines the transition density between state \(s\) and \(s'\) under action \(a\), and \(\beta \in (0,1)\) is the discount factor for future payoff. We assume that random variables \(\epsilon\) are observed by the optimizing agent and not recorded in the data. These variables reflect idiosyncratic differences in preferences of different optimizing agents over choices. In the following discussion we refer to these variables as “random choice-specific shocks.”

In each period \(t = 1, 2, \ldots, \infty\), the nature realizes the current state \(s_t\) based on the Markov transition \(\mathcal{P}\) given the state-action pair \((s_{t-1}, a_{t-1})\) in the previous period \(t-1\), and the choice-specific shocks \(\epsilon_t = \{\epsilon_{t,a}\}_{a \in \mathcal{A}}\) drawn i.i.d. from distribution \(\epsilon\). The optimizing agent chooses an action \(a \in \mathcal{A}\), and her current period payoff is sum of the immediate reward and the choice-specific shock, i.e., \(r(s_t, a_t) + \epsilon_{t,a}\). Given initial state \(s_1\), the agent’s long-term payoff is \(E_{\epsilon_1, \epsilon_2, \epsilon_3} \sum_{t=1}^{\infty} \beta^{t-1} r(s_t, a_t) + \epsilon_{t,a_t}\). This expression makes it clear that random shocks \(\epsilon\) play a crucial role in this model by allowing us to define the \(\text{ex ante}\) value function of the optimizing agent which reflects the expected reward from agent’s choices before the agent observes realization of \(\epsilon_t\). When the distribution of shocks \(\epsilon\) is sufficiently smooth (differentiable), the corresponding \(\text{ex ante value function is smooth (differentiable) as well. This allows us to characterize the impact of agent’s policy on the expected value by considering functional derivatives of the value function with respect to the policy.}

In the remainder of the paper, we rely on the following assumptions.

Assumption 2.1. The state space \(\mathcal{S}\) is compact in \(\mathbb{R}\) and
Assumption 2.2. For all states s, the immediate reward $r(s, 0)$ for the state-action pair $(s, 0)$ is zero i.e., $r(s, 0) = 0$, and the immediate reward $r(s, 1)$ for the state-action pair $(s, 1)$ is bounded between $[R_{\text{min}}, R_{\text{max}}]$ where $R_{\text{min}} \geq 0$.

Assumption 2.3. Choice-specific shocks ϵ are Type I Extreme Value random variables with location parameter 0 (cf. Hotz and Miller, 1993) which are independent over choices and time periods.

Assumption 2.1, 2.2, 2.3 are present in most of the papers on dynamic decision-making in economics, marketing and finance (e.g. Dubé et al., 2002; Aguirregabiria and Mira, 2010; Arcidiacono and Miller, 2011; Aguirregabiria and Magesan, 2016; Müller and Reich, 2018).

The policy and the value function. A stationary Markov policy is a function $\sigma: S \times \mathbb{R}^A \to A$ which maps the current state s and choice-specific shock ϵ to an action. In our further discussion we will show that there is a natural more restricted definition of the set of all feasible policies in this model.

Given any stationary Markov policy σ, the value function $V_\sigma: S \to \mathbb{R}$ is a mapping from the initial state to the long-term payoff under policy σ, i.e.,

$$V_\sigma(s) = \mathbb{E}_{\epsilon_1, \epsilon_2, \ldots} \left[\sum_{t=1}^{\infty} \beta^{t-1} \left\{ r(s_t, \sigma(s_t, \epsilon_t)) + \epsilon_t, \sigma(s_t, \epsilon_t) \right\} \right].$$

Since the reward is non-negative and bounded, and the discount $\beta \in [0, 1)$, value function V_σ is well-defined and the optimal policy $\bar{\sigma}$ (i.e., $V_{\bar{\sigma}}(s) \geq V_\sigma(s)$ for all policies σ and states s) exists. Furthermore, for all policies σ, the following Bellman equation holds

$$V_\sigma(s) = \mathbb{E}_{\epsilon} \left[r(s, \sigma(s, \epsilon)) + \epsilon(s, \epsilon) + \beta E_{s'} \left[V_\sigma(s') | s, \sigma(s, \epsilon) \right] \right]. \quad (1)$$

2.2. Conditional Choice Probability Representation

Based on the Bellman equation (1) evaluated at the optimal policy, the optimal Conditional Choice Probability $\delta(a|s)$ (i.e., the probability of choosing action a given state s in the optimal policy $\bar{\sigma}$) can be defined as

$$\delta(a|s) = \mathbb{E}_{\epsilon} \left[1 \{ r(s, a) + \epsilon_a + \beta E_{s'} \left[V_\bar{\sigma}(s') | s, a \right] \geq r(s, a') + \epsilon_a' + \beta E_{s'} \left[V_\bar{\sigma}(s') | s, a' \right] \} \right] \quad \forall a',$$

where $1(\mathcal{E})$ is the indicator variable for event \mathcal{E}. The optimal policy $\bar{\sigma}$ can, therefore, be equivalently characterized by threshold function $\pi(s, a) = r(s, a) + \beta E_{s'} \left[V_\bar{\sigma}(s') | s, a \right]$, such that the optimizing agent chooses action a^\dagger which maximizes the sum of the threshold and the choice-specific shock, i.e., $a^\dagger = \arg\max_a \{ \pi(s, a) + \epsilon_a \}$. Similarly, all non-optimal policies can be characterized by the corresponding threshold functions denoted π.

Under Assumption 2.3 the conditional choice probability δ can be explicitly expressed in terms of the respective threshold π as (cf. Rust, 1996)

$$\delta(a|s) = \exp(\pi(s, a)) / (\sum_{a' \in A} \exp(\pi(s, a'))).$$

We note that this expression induces a one-to-one mapping from the thresholds to the conditional choice probabilities. Therefore, all policies are fully characterized by their respective conditional choice probabilities. For notation simplicity, since we consider the binary action space $A = \{0, 1\}$, and the reward $r(s, 0)$ is normalized to 0 we denote the immediate reward $r(s, 1)$ as $r(s)$; denote the conditional choice probability $\delta(0|s)$ as $\delta(s)$; and denote $\pi(s, 1)$ as $\pi(s)$.

In the subsequent discussion given that the characterization of policy σ via its threshold is equivalent to its characterization by conditional choice probability δ, we interchangeably refer to δ as the “policy.” Then we rewrite the Bellman equation for a given policy δ as

$$V_\delta(s) = (1 - \delta(s)) r(s) - \delta(s) \log(\delta(s)) - (1 - \delta(s)) \log(1 - \delta(s)) + \beta E_{s'} \left[V_\delta(s') | s \right]. \quad (2)$$

Now we make two additional assumptions that are compatible with standard assumptions in the Econometrics literature.

Assumption 2.4. For all states $s \in S$, the conditional distribution of the next period Markov state $p(\cdot|s, 1)$ first-order stochastically dominates distribution $p(\cdot|s, 0)$, i.e., for all $\hat{s} \in S$, $\Pr_{s'}[s' \leq \hat{s}|s, 1] \leq \Pr_{s'}[s' \leq \hat{s}|s, 0]$.

Assumption 2.5. Under the optimal policy $\bar{\delta}$, the value function is non-decreasing in states, i.e., $V_{\bar{\delta}}(s) \leq V_{\bar{\delta}}(s')$ for all $s, s' \in S$ s.t. $s < s'$.

Assumption 2.4 implies that taking one action results in next-period state distribution that first order stochastic dominates the next-period state distribution if the other action is taken. This assumption would be satisfied in multiple economic setting such as, for example: The bus engine replacement studied in Rust (1987): Replacing the engine today implies that the engine today is less likely that by the end of tomorrow the bus mileage will be close to the maximum (think of the state as
the negative mileage). Choice about schooling studied in Card (2001): Getting a college degree increases the probability of getting a higher salary. Behavior of consumers making purchasing decisions with respect to storables goods studied in Hendel and Nevo (2006b): Purchasing a good today implies lower probability of having low inventories (and possibly running out of) the good tomorrow. Assumption 2.3 suggests monotonicity of preferences of the decision maker over states. That is, higher values of the state are associated with higher utility, which would be true in all of the situations described in Assumption 2.4: the larger is the difference between the maximum mileage and the current mileage, the cheaper it is to maintain the bus; the larger the salary/the higher the inventory, the better off the person is. Consider a myopic policy \(\bar{\delta}(s) = (\exp(r(s)) + 1)^{-1} \) which uses threshold \(\bar{\pi}(s) = r(s) \). This policy corresponds to agent optimizing the immediate reward without considering how current actions impact future rewards. Under Assumption 2.4 and Assumption 2.5, the threshold for optimal policy is at least the threshold of myopic policy, i.e., \(\bar{\pi}(s) \geq \bar{\pi}(s) \). Hence, Lemma 2.1 holds.

Lemma 2.1. The optimal policy \(\bar{\delta} \) chooses action 0 with weakly lower probability than the myopic policy \(\bar{\delta} \) in all states \(s \in S \), i.e., \(\bar{\delta}(s) \leq \bar{\delta}(s) \).

2.3. MDP in Economics and Policy Gradient

Our motivation in this paper comes from empirical work in Economics and Marketing where optimizing agents are consumers or small firms who make dynamic decisions while observing the current state \(s \) and the reward \(r(s, a) \) for their choice \(a \). These agents often have limited computational power making it difficult for them to solve the Bellman equation to find the optimal policy. They also may have only sample access to the distribution of Markov transition which further complicates the computation of the optimal policy. In this context we contrast the value function iteration method which is based on solving the fixed point problem induced by the Bellman equation and the policy gradient method.

Value function iteration In the value function iterations, e.g., discussed in Jaksch et al. (2010); Haskell et al. (2016), the exact expectation in the Bellman equation (1) is replaced by an empirical estimate and then functional iteration uses the empirical Bellman equation to find the fixed point, i.e., the optimal policy. Under certain assumptions on MDPs, one can establish convergence guarantees for the value function iterations, e.g., Jaksch et al. (2010); Haskell et al. (2016). However, to run these iterations may require significant computation power which may not be practical when optimizing agents are consumers or small firms.

Policy gradient In contrast to value function iterations, policy gradient algorithm and its variations are model-free sample-based methods. At a high level, policy gradient parametrizes policies \(\{\delta_{\theta}\}_{\theta \in \Theta} \) by \(\theta \in \Theta \) and computes the gradient of the value function with respect to the current policy \(\delta_{\theta} \) and updates the policy in the direction of the gradient, i.e., \(\theta \leftarrow \theta + \alpha \nabla_{\theta} V_{\delta_{\theta}} \). Though the individuals considered in the Economic MDP models may not compute the exact gradient with respect to a policy due to having only sample access to the Markov transition, previous work has provided approaches to produce an unbiased estimator of the gradient. For example, REINFORCE (Williams, 1992) updates the policy by \(\theta \leftarrow \theta + \alpha R \nabla_{\theta} \log(\delta_{\theta}(a|s)) \) where \(R \) is the long-term payoff on path. Notice that this updating rule is simple comparing with value function iteration. The caveat of the policy gradient approach is the lack of its global convergence guarantee for a generic MDP. In this paper we show that such guarantee can be provided for the specific class of MDPs that we consider.

3. Warm-up: Local Concavity of the Value Function at the Optimal Policy

To understand the convergence of the policy gradient, in this section we introduce our main technique and show that the concavity of the value function with respect to policies is satisfied in a fixed neighborhood around the optimal policy. We rely on the special structure of the value function induced by random shocks \(\epsilon \) which essentially “smooth it” making it differentiable. We then use Bellman equation (2) to compute strong Fréchet functional derivatives of the value functions and argue that the respective second derivative is negative at the optimal policy. We use this approach in Section 4 to show the global concavity of the value function with respect to policies.

By \(\Delta \) we denote the convex compact set that contains all continuous functions \(\delta : S \to [0, 1] \) such that \(0 \leq \delta(\cdot) \leq \bar{\delta}(\cdot) \). The Bellman equation (2) defines the functional \(V_{\delta}(\cdot) \). Recall that Fréchet derivative of functional \(V_{\delta}(\cdot) \), which maps bounded linear space \(\Delta \) into the space of all continuous bounded functions of \(s \), at a given \(\delta(\cdot) \) is a bounded linear functional \(DV_{\delta}(\cdot) \) such that for all continuous \(h(\cdot) \) with \(\|h\|_{2} \leq H \): \(V_{\delta+h}(\cdot) - V_{\delta}(\cdot) = DV_{\delta}(\cdot) h(\cdot) + o(\|h\|_{2}) \). When functional \(DV_{\delta}(\cdot) \) is also Fréchet differentiable, we refer to its Fréchet derivative as the second Fréchet derivative of functional \(V_{\delta}(\cdot) \) and denote it \(D^{2}V_{\delta}(\cdot) \).

Theorem 3.1. Value function \(V_{\delta} \) is twice Fréchet differentiable with respect to \(\delta \) at the choice probability \(\bar{\delta} \) corresponding to optimal policy and its Fréchet derivative is negative at \(\bar{\delta} \) in all states \(s \), i.e., \(D^{2}V_{\bar{\delta}}(s) \leq 0 \).

We sketch the proof idea of Theorem 3.1 and defer its formal proof to Supplementary Material. Start with the Bellman
equation (2) of the value function, the Fréchet derivative of the value function is the fixed point of the following Bellman equation

$$D V_\delta(s) = (\log(1 - \delta(s)) - \log(\delta(s)) - r(s)) + \beta E_{-,\delta}[V_\delta(s')|s, 0] - E_{+,\delta}[V_\delta(s')|s, 1] \quad (3)$$

and

$$D^2 V_\delta(s) = -\frac{1}{\delta(s)(1 - \delta(s))} - 2\beta E_{-,\delta}[D V_\delta(s')|s, 1] + 2\beta E_{+,\delta}[D V_\delta(s')|s, 0] + \beta E_{-,\delta}[D^2 V_\delta(s')|s]. \quad (4)$$

A necessary condition for its optimum yielding $\delta = 0$ for all states s. As a result, equation (4) implies that its second Fréchet derivative is negative for all states, i.e., $D^2 V_\delta(s) \leq 0$.

The Bellman equation (4) of the second Fréchet derivative suggests that $D^2 V_\delta(s) \leq 0$ for all states s if

$$2\beta E_{-,\delta}[D V_\delta(s')|s, 0] - E_{+,\delta}[D V_\delta(s')|s, 1] \leq \frac{1}{\delta(s)(1 - \delta(s))} \quad (5)$$

The first term in the inequality (5) is always positive for all policies in Δ, but the second term can be arbitrary small. In the next section, we will introduce a nature smoothness assumption on MDP (i.e., Lipschitz MDP) and show that the local concavity can be extended to global concavity, which implies that the policy gradient algorithm for our problem converges globally under this assumption.

4. Global Concavity of the Value Function

In this section, we introduce the notion of the Lipschitz Markov decision process, and Lipschitz policy space. We then restrict our attention to this subclass of MDPs. Our main result shows the optimal policy belongs to the Lipschitz policy space and the policy gradient globally converges in that space. We defer all the proofs of the results in this section to Supplementary Material.

4.1. Lipschitz Markov Decision Process

Lipschitz Markov decision process has the property that for two state-action pairs that are close with respect to Euclidean metric in S, their immediate rewards r and Markovian transition p should be close with respect to the Kantorovich or L_1-Wasserstein metric. Kantorovich metric is, arguably, the most common metric used in the analysis of MDPs (cf. Hinderer, 2005; Ratchelson and Lagoudakis, 2010; Pirotta et al., 2015).

Definition 4.1 (Kantorovich metric). For any two probability measures p, q, the Kantorovich metric between them is

$$K(p, q) = \sup_{f} \left\{ \left| \int_X f(p - q) \right| : f \text{ is 1-Lipschitz continuous} \right\}. \quad (6)$$

Definition 4.2 (Lipschitz MDP). A Markov decision process is (L_r, L_p)-Lipschitz if

$$\forall s, s' \in S, |r(s) - r(s')| \leq L_r |s - s'|$$

$$\forall s, s' \in S, a, a' \in A, |p(\cdot|s, a) - p(\cdot|s', a')| \leq L_p (|s - s'| + |a - a'|)$$

4.2. Characterization of the Optimal Policy

Our result in Section 3, demonstrates that the second Fréchet derivative of V_δ with respect to δ is negative for a given policy δ when inequality (5) holds. To bound the second term of (5) from below, i.e., $E_{-,\delta}[D V_\delta(s')|s, 0] - E_{+,\delta}[D V_\delta(s')|s, 1]$, it is sufficient to show that Fréchet derivative $D V_\delta(\cdot)$ is Lipschitz-continuous. Even though we already assume that the Markov transition is Lipschitz, it is still possible that $D V_\delta$ is not Lipschitz: Bellman equation (3) for $D V_\delta$ depends on policy $\delta(s)$ via $\log(1 - \delta(s)) - \log(\delta(s))$, which can be non-Lipschitz in state s for general policies δ. Therefore, to guarantee Lipschitzness of the Fréchet derivative of the value function it is necessary to restrict attention to the space of Lipschitz policies. In this subsection, we show that this restriction is meaningful since the optimal policy is Lipschitz.

Theorem 4.1. Given (L_r, L_p)-Lipschitz MDP, the optimal policy δ satisfies

$$\left| \log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - \log \left(\frac{1 - \delta(s')}{\delta(s')} \right) \right| \leq \left(L_r + \frac{2\beta R_{max} L_p}{1 - \beta} \right) |s - s'|$$

for all state $s, s' \in S$ where $R_{max} = \max_{s \in S} r(s)$ is the maximum of the immediate reward r over S.

4.3. Concavity of the Value Function with respect to Lipschitz Policies

In this subsection, we present our main result showing the global concavity of the value function for our specific class of Lipschitz MDPs with unobserved heterogeneity over the space of Lipschitz policies.

Definition 4.3. Given (L_r, L_p)-Lipschitz MDP, define its
Lipschitz policy space Δ as
\[
\Delta = \{ \delta : \delta(s) \leq \bar{\delta}(s) \, \forall s \in S \ \text{and} \ \left| \log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - \log \left(\frac{1 - \delta(s^1)}{\delta(s^1)} \right) \right| \leq \left(Lr + \frac{2\beta R_{\text{max}} L_{p}}{1 - \beta} \right) |s - s^1| \, \forall s, s^1 \in S \},
\]
where $\bar{\delta}$ is the myopic policy.

Theorem 4.1 and Lemma 2.1 imply that the optimal policy $\bar{\delta}$ lies in this Lipschitz policy space Δ for any Lipschitz MDP.

Definition 4.4 (Condition for global convergence). We say that (L_r, L_p)-Lipschitz MDP satisfies the sufficient condition for global convergence if
\[
\frac{2L_{p}}{1 - 2L_{p}} \left(2L_{r} + \frac{4\beta R_{\text{max}} L_{p}}{1 - \beta} \right) \leq \left(\frac{\exp(R_{\text{min}}) + 1}{\exp(R_{\text{min}})} \right)^{2} \ \text{and} \ 2\beta L_{p} < 1.
\]

Definition 4.4 is a general theoretical condition for the global convergence for dynamic discrete choice model under unobserved heterogeneity. It mainly characterizes the relation between the Lipschitz-smoothness, range of reward and the upper bound of discount factor. For a specific MDP (i.e., Rust model studied in experiment section), directly using Definition 4.4 will ensure the convergence for discount factor less than 0.5 without any additional restrictions on the utility model. However, the guarantee can improved with some additional knowledge of the structure of the model, or the optimal policy. In experiment section (Section 5), since the optimal policy in Rust model is monotone, by further restricting to policy space of all monotone policies, our experiment suggests that the convergence happen even for discount factor equal 0.9 or 0.99.

With the condition for global convergence (Definition 4.4), we develop the main result in our paper.

Theorem 4.2. Given (L_r, L_p)-Lipschitz MDP which satisfies the condition for global convergence (6), value function V_δ is concave with respect to policy δ in the Lipschitz policy space Δ, i.e., $D^2V_\delta(s) \leq 0$ for all $s \in S, \delta \in \Delta$.

The main technique used in the proof of Theorem 4.2 is to develop an Lipschitz smoothness bound on the Fréchet derivative of the respective value function $DV_\delta(\cdot)$ by introducing a contracting mapping and applying the fixed point theorem on it. We defer its formal proof to Supplementary Material.

4.4. The Rate of Global Convergence of the Policy Gradient Algorithm

In this subsection, we establish the rate of global convergence a simple version of the policy gradient algorithm assuming oracle access to the Fréchet derivative of the value function. While this analysis provides only a theoretical guarantee, as discussed in Section 2.3, in practice the individuals are able to produce an unbiased estimator of the exact gradient. As a result, the practical application of the policy gradient algorithm would only need to adjust for the impact of stochastic noise in the estimator.

Since we assume that individuals know the immediate reward function r, the algorithm can be initialized at the myopic policy $\bar{\delta}$ with threshold $\bar{\pi}(s) = r(s)$, which is in the Lipschitz policy space Δ. From Lemma 2.1 it follows that the myopic policy is pointwise in S greater than the optimal policy, i.e., $\delta(s) \leq \bar{\delta}(s)$. Consider policy $\tilde{\delta}$ with threshold $\tilde{\pi}(s) = r(s) + \frac{\beta}{1 - \beta} R_{\text{max}} - \frac{\beta}{1 - \beta} R_{\text{min}}$. Note that Bellman equation (2) implies that $V(s)$ is between R_{min} and R_{max} for all states s. Thus, policy $\tilde{\delta}$ pointwise bounds the optimal policy δ from below, i.e., $\delta(s) \leq \tilde{\delta}(s)$. Our convergence rate result applies to the policy gradient within the bounded Lipschitz policy set $\tilde{\Delta}$.

Definition 4.5. Given (L_r, L_p)-Lipschitz MDP, define its bounded Lipschitz policy space $\tilde{\Delta}$ as
\[
\tilde{\Delta} = \{ \delta : \delta(s) \leq \bar{\delta}(s) \, \forall s \in S \ \text{and} \ \left| \log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - \log \left(\frac{1 - \tilde{\delta}(s)}{\tilde{\delta}(s)} \right) \right| \leq \left(Lr + \frac{2\beta R_{\text{max}} L_{p}}{1 - \beta} \right) |s - s^1| \, \forall s, s^1 \in S \}.
\]

For simplicity of notation, we introduce constants m and M which only depend on $\beta, R_{\text{min}}, R_{\text{max}}, L_r$ and L_p, whose exact expressions are deferred to the supplementary material for this paper.

Theorem 4.3. Given a (L_r, L_p)-Lipschitz MDP, which satisfies the condition for global convergence (6) and constants m and M defined above, for any step size $\alpha \leq \frac{1}{M}$, the policy gradient initialized at the myopic policy $\bar{\delta}$ and updating as $\delta \leftarrow \alpha \nabla_\delta V_\delta$ in the bounded Lipschitz policy space $\tilde{\Delta}$ after k iterations, it produces policy $\delta(k)$ satisfying
\[
V_\delta(s) - V_\delta^{(k)}(s) \leq \frac{(1 - \alpha m)^k}{(\exp(R_{\text{min}}) + 1)^{2}} \quad \text{at all } s \in S.
\]

Our analysis follows the standard steps establishing convergence of the conventional gradient descent algorithm which bounds the second Fréchet derivative of the value function V_δ with respect to the policy δ from above and from below by m and M respectively. The formal proof is deferred to Supplementary Material.

5. Empirical Application

To demonstrate the performance of the algorithm, we use the data from Rust (1987) which made the standard bench-
mark for the Econometric analysis of MDPs. Even most recent Econometric papers on single-agent dynamic decision-making use this setup to showcase their results (e.g. Arcidiacono and Miller, 2011; Aguirregabiria and Magesan, 2016; Müller and Reich, 2018).

The paper estimates the cost associated with maintaining and replacing bus engines using data from maintenance records from Madison Metropolitan Bus Company over the course of 10 years (December, 1974—May, 1985). The data contains monthly observations on the mileage of each bus as well as the dates of major maintenance events (such as bus engine replacement).

Rust (1987) assumes that the engine replacement decisions follow an optimal stopping policy derived from solving a dynamic discrete choice model of the type that we described earlier. Using this assumption and the data, he estimates the cost of operating a bus as a function of the running mileage as well as the cost of replacing the bus engine. We use his estimates of the parameters of the return function and the state transition probabilities (bus mileage) to demonstrate convergence of the gradient descent algorithm.

In (Rust, 1987) the state s_t is the running total mileage of the bus accumulated by the end of period t. The immediate reward is specified as a function of the running mileage as:

$$r(s_t, a, \theta_1) = \begin{cases} -RC + \epsilon_1, & \text{if } a = 1 \\ -c(s_t, \theta_1) + \epsilon_0, & \text{if } a = 0 \end{cases}$$

where RC is the cost of replacing the engine, $c(s_t, \theta_1)$ is the cost of operating a bus that has s_t miles.3

Following Rust (1987), we take $c(s_t, \theta_1) = \theta_1 s_t$. Further, as in the original paper, we discretize the mileage taking values into an even grid of 2,571 intervals. Given the observed monthly mileage, (Rust, 1987) assumes that transitions on the grid can only be of increments 0, 1, 2, 3 and 4. Therefore, transition process for discretized mileage is fully specified by just four parameters $\theta_2 = \Pr[s_{t+1} = s_t + j|s_t, a = 0]$, $j = 0, 1, 2, 3$. Table 1 describes parameter values that we use directly from Rust (1987).

We use the gradient descent algorithm to update the policy threshold π:

$$\epsilon_1 + \pi \geq \epsilon_0 \Rightarrow a = 1,$$

where $a = 1$ denotes the decision to replace the engine. We set the learning rate using the RMSProp method4.

![Figure 1](image)

Table 1. parameter values in from Rust (1987).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>11.7257</td>
</tr>
<tr>
<td>θ_1</td>
<td>0.001 x 2.45569</td>
</tr>
<tr>
<td>$(\theta_{20}, \theta_{21}, \theta_{22}, \theta_{23})$</td>
<td>(0.0937, 0.4475, 0.4459, 0.0127)</td>
</tr>
<tr>
<td>β</td>
<td>0.99</td>
</tr>
</tbody>
</table>

We use “the lazy projection” method to guarantee the search over Lipschitz policy space. The policy space is parametrized by the vector of thresholds (π_1, \ldots, π_N) corresponding to discretized state space (s_1, \ldots, s_N). It is initialized at the myopic policy, i.e. $\pi_i^{(0)} = u(s_1), \ldots, \pi_i^{(0)} = u(s_N)$. At step k the algorithm updates the thresholds to the value $\pi_i^{(k)} = \pi_i^{(k-1)} - \alpha \delta_i \L(\pi_i^{(k-1)}(1 - \L(\pi_i^{(k-1)})))$, where $\L(\cdot)$ is the logistic function and policy $\delta_j = \L(\pi_j^{(k)})$ for $i, j = 1, \ldots, N$. To make the “lazy projection” updated values $\pi_i^{(k)}$ are adjusted to the closest monotone set of values $\pi_1^{(k)} \leq \pi_2^{(k)} \leq \ldots \leq \pi_N^{(k)}$. The algorithm terminates at step k where the norm $\max_i |D\L(\pi_i^{(k)})| \leq \tau$ for a given tolerance τ.5 The formal definition of lazy projection is Algorithm 1.

Algorithm 1 “Lazy projection”, (π_1, \ldots, π_N): thresholds corresponding to discretized STATE space (s_1, \ldots, s_N); $\L(\cdot)$: logistic function; policy $\delta_j = \L(\pi_j)$; α: step size; τ: termination tolerance
1: $\pi_1^{(0)} \leftarrow u(s_1), \ldots, \pi_N^{(0)} \leftarrow u(s_N)$ // Initialize $\pi^{(0)}$ at the myopic policy
2: while $\max_i |D\L(\pi_i^{(k)})| \leq \tau$ do
3: $\pi_i^{(k)} \leftarrow \pi_i^{(k-1)} - \alpha \delta_i \L(\pi_i^{(k-1)}(1 - \L(\pi_i^{(k-1)})))$ for all $i \in [N]$
4: $(\pi_1^{(k)}, \ldots, \pi_N^{(k)}) \leftarrow$ the closest monotone thresholds of $(\pi_1^{(k)}, \ldots, \pi_N^{(k)})$ // Lazy projection
5: end while
6: return $(\pi_1^{(k)}, \ldots, \pi_N^{(k)})$

Figure 1 demonstrates convergence properties of our considered version of the policy gradient algorithm. We used the “oracle” versions of the gradient and the value function that were obtained by solving the corresponding Bellman equations. We initialized the algorithm using the myopic threshold $\bar{\pi}(s) = -RC + c(s, \theta_1)$; with the convergence

3Although at first glance the setup in (Rust, 1987) does not directly correspond to the model described in the theoretical section of the paper (which is a more classic presentation for the models if this type in the Economics literature), it can be recast in a way so that the two models were aligned. The reason we did not do that is that we wanted to preserve the original notation of Rust’s paper.

4We use standard parameter values for RMSProp method: $\beta = 0.9, \nu = 0.001$ and $\epsilon = 10^{-8}$. The performance of the the method was very similar to that when we used ADAM to update the threshold values.

5To optimize the performance of the method it is also possible to consider a mixed norm of the form $\max_i |\pi_i^{(k)}(s_i) - \bar{\pi}^{(k)}(s_i)| + \lambda \max_i |D\L(\pi_i^{(k)})| \leq \tau$ for some calibrated weight λ. This choice would control both the rate of decay of the gradient and the advancement of the algorithm in adjusting the thresholds.
criterion set to be based on the value $\max_{i} |DV_{\delta}(s_{i})|^{6}$.

In the original model in (Rust, 1987), the discount factor used when estimating parameters of the cost function was very close to 1. However, performance of the algorithm improves drastically when the discount factor is reduced. This feature is closely related to the Hadamard stability of the solution of the Bellman equation (e.g. observed in Bajari et al., 2013) and is not algorithm-specific. In all of the follow-up analysis by the same author (e.g. Rust, 1996) the discount factor is set to more moderate values of .99 or .9 indicating that these performance issues were indeed observed with the settings in (Rust, 1987). Figure 1 (resp. Figure 3) illustrate the performance of the algorithm for the case where the discount factor is set to 0.99 (resp. 0.9). For the same convergence criterion, the algorithm converges much faster.

Acknowledgements

Denis Nekipelov was supported in part by NSF grants CCF-1563708. The authors thank anonymous reviewers for their insightful discussions and suggestions.

References

Figure 1. Convergence of gradient descent, discount factor $\beta = 0.99$

Figure 2. Performance of the norm $\max_i |D V_\delta(s_i)|$ and the second derivative $\max_i |D^2 V_\delta(s_i)|$, discount factor $\beta = 0.99$

Figure 3. Convergence of gradient descent, discount factor $\beta = 0.9$

Figure 4. Performance of the norm $\max_i |D V_\delta(s_i)|$ and the second derivative $\max_i |D^2 V_\delta(s_i)|$, discount factor $\beta = 0.9$
Rust, J. (1996). Numerical dynamic programming in eco-
Muller, P. and Reich, G. (2018). Structural estimation using parametric mathematical programming with equilibrium constraints and homotopy path continuation. Available at SSRN 3303999.

Appendix

A. Omitted proof for Theorem 3.1

Theorem 3.1. Value function V_δ is twice Fréchet differentiable with respect to δ at the choice probability $\tilde{\delta}$ corresponding to optimal policy and its Fréchet derivative is negative at $\tilde{\delta}$ in all states s, i.e., $D^2V_\delta(s) \preceq 0$.

Proof. We start with the Bellman equation of the value function.

$$V_\delta(s) = (1 - \delta(s)) r(s) - \delta(s) \log(\delta(s)) - (1 - \delta(s)) \log(1 - \delta(s)) + \beta E_{s', r}[V_\delta(s')|s]$$

Under standard technical conditions that allow the swap of the derivative and the integral

$$D E_{s'}[V_\delta(s')|s] = (E_{s'}[V_\delta(s')|s, 0] - E_{s'}[V_\delta(s')|s, 1]) + E_{s'}[DV_\delta(s')|s]$$

Thus, the Fréchet derivative of the value function should be the fixed point of the following Bellman equation

$$DV_\delta(s) = (\log(1 - \delta(s)) - \log(\delta(s)) - r(s)) + \beta (E_{s'}[V_\delta(s')|s, 0] - E_{s'}[V_\delta(s')|s, 1]) + \beta E_{c, s'}[DV_\delta(s')|s]$$
Theorem 4.1. Given an integral equations for $D\frac{\partial}{\partial s} V_\delta(s)$ which have unique solutions whenever $\beta < 1$ that are bounded and continuous (see Dunford and Schwartz, 1957) and, thus, unique solutions for both equations exist and $V_\delta(\cdot)$ is indeed Fréchet-differentiable. This means that the necessary condition for its optimum yielding $\hat{\delta}$ is $D^2 V_\delta(s) = 0$ for all states s. As a result, equation (4) implies that its second Fréchet derivative is negative for all states, i.e., $D^2 V_\delta(s) \leq 0$.

B. Omitted proofs in Section 4

B.1. Omitted proof of Theorem 4.1

Theorem 4.1. Given an (L_r, L_p)-Lipschitz MDP, the optimal policy δ satisfies

$$\log \left(\frac{1 - \tilde{\delta}(s)}{\delta(s)} \right) - \log \left(\frac{1 - \tilde{\delta}(s^\dagger)}{\delta(s^\dagger)} \right) \leq \left(L_r + \frac{2\beta R_{\max} L_p}{1 - \beta} \right) |s - s^\dagger|$$

for all state $s, s^\dagger \in S$ where $R_{\max} = \max_{s \in S} r(s)$ is the maximum of the immediate reward r over S.

Proof. At the optimal policy δ, the Fréchet derivative of the value function is zero, i.e., $D^2 V_\delta(s) = 0$ for all state s. Therefore, from the Bellman equation (3) we establish that

$$\log \left(\frac{1 - \tilde{\delta}(s)}{\delta(s)} \right) = r(s) + \beta (E_{s'} [V_\delta(s') | s, 1] - E_{s'} [V_\delta(s') | s, 0])$$

Thus, for all states $s, s^\dagger \in S$,

$$E_{s'} [V_\delta(s') | s, a] - E_{s'} [V_\delta(s') | s^\dagger, a] = \int_{s' \in S} V_\delta(s') (p(s' | s, a) - p(s' | s^\dagger, a)) ds'$$

$$= \sup_{f, \|f\|_1 \leq 1} \left\{ \int_{s' \in S} f(s') (p(s' | s, a) - p(s' | s^\dagger, a)) ds' \right\} \leq \sup_{\|f\|_1 \leq 1} \left\{ \int_{s' \in S} f(s') (p(s' | s, a) - p(s' | s^\dagger, a)) ds' \right\}$$

$$= R_{\max} \frac{L_p}{1 - \beta} \sup_{\|f\|_1 \leq 1} \left\{ \int_{s' \in S} f(s') (p(s' | s, a) - p(s' | s^\dagger, a)) ds' \right\} \leq R_{\max} \frac{L_p}{1 - \beta} \left| s - s^\dagger \right|$$

where we use upper bounds $\sup_{s \in S} V_\delta(s) \leq \frac{R_{\max}}{1 - \beta}$ and $\| \frac{1 - \beta}{R_{\max}} V_\delta(s') \| \leq 1$. Thus,

$$|r(s) - r(s^\dagger) + \beta (E_{s'} [V_\delta(s') | s, 1] - E_{s'} [V_\delta(s') | s, 0]) - \beta (E_{s'} [V_\delta(s') | s^\dagger, 1] - E_{s'} [V_\delta(s') | s^\dagger, 0])|$$

$$\leq |r(s) - r(s^\dagger)| + \beta |E_{s'} [V_\delta(s') | s, 1] - E_{s'} [V_\delta(s') | s^\dagger, 1]| + \beta |E_{s'} [V_\delta(s') | s, 0] - E_{s'} [V_\delta(s') | s^\dagger, 0]|$$

which finishes the proof.

B.2. Omitted proof of Theorem 4.2

Theorem 4.2. Given an (L_r, L_p)-Lipschitz MDP which satisfies the condition for global convergence (6), the value function V_δ is concave with respect to policy δ in the Lipschitz policy space Δ, i.e., $D^2 V_\delta(s) \leq 0$ for all $s \in S, \delta \in \Delta$.

To show Theorem 4.2, we first introduce the following lemma establishing Lipschitz continuity of the Fréchet derivative of the value function.

Lemma B.1. Given an (L_r, L_p)-Lipschitz MDP, for all policies δ in the Lipschitz policy space Δ, the Fréchet derivative of the respective value function $D V_\delta(\cdot)$ is Lipschitz continuous, i.e., for all states $s, s^\dagger \in S$,

$$|D V_\delta(s) - D V_\delta(s^\dagger)| \leq \frac{2L_r + \frac{4\beta R_{\max} L_p}{1 - 2\beta L_p}}{1 - 2\beta L_p} |s - s^\dagger|$$

Proof. We begin with the Bellman equation (3) for the Fréchet derivative of value function.

$$D V_\delta(s) = \log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - r(s) + \beta (E_{s'} [V_\delta(s') | s, 1] - E_{s'} [V_\delta(s') | s, 0]) + \beta E_{s'} [D V_\delta(s')]$$

We use the concept of the contraction mapping to prove the result of the lemma.

Definition B.1. Let $T : X \to X$ be a mapping from a metric space X to itself.

- T is a contraction mapping (with modulus $\gamma \in [0, 1]$) if $\rho(T(x), T(y)) \leq \gamma \rho(x, y)$ for all $x, y \in X$, where ρ is a metric on X.

Title Suppressed Due to Excessive Size
Lemma B.2. Suppose that X is a complete metric space and that $T : X \to X$ is a contraction mapping with modulus γ. Then,

- T has a unique fixed point x^*.
- If $X' \subseteq X$ is a closed subset for which $T(X') \subseteq X'$, then $x^* \in X'$.

Consider the contraction mapping

$$T_\delta(x)(s) = \log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - r(s) + \beta (E_{s'}[V_\delta(s')]|s, 0] - E_{s'}[V_\delta(s')]|s, 1]) + \beta E_{s',s'}[x(s')|s],$$

then the Bellman equation implies that DV_δ is the fixed point of contraction mapping T_δ. Since the Lipschitz continuity property forms a closed subset, by Lemma B.2, it is sufficient to show for any L_{DV}-Lipschitz continuous x, $T_\delta(x)$ is also L_{DV}-Lipschitz continuous, where $L_{DV} = \frac{2L_r + 4\beta R_{\max}L_p}{1 - 2\beta L_p}$. Thus, consider states $s, s' \in S$,

$$\left| T(x)(s) - T(x)(s') \right| \\ \leq \left| \log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - \log \left(\frac{1 - \delta(s')}{\delta(s')} \right) \right| + \left| r(s) - r(s') \right| + \beta \left| E_{s'}[V_\delta(s')]|s, 0] - E_{s'}[V_\delta(s')]|s, 1] \right| + \beta \left| E_{s'}[x(s')|s, 1] \delta(s) - E_{s'}[x(s')|s', 1] \delta(s') \right| + \beta \left| E_{s'}[x(s')|s, 1] (1 - \delta(s)) - E_{s'}[x(s')|s', 1] (1 - \delta(s')) \right|$$

where

$$\left| \log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - \log \left(\frac{1 - \delta(s')}{\delta(s')} \right) \right| \leq \left(L_r + \frac{2\beta R_{\max}L_p}{1 - \beta} \right) \left| s - s' \right|$$

and $\left| r(s) - r(s') \right| \leq L_r \left| s - s' \right|$.

by the same calculation in the proof of Theorem 4.1, for both $\alpha = 0, 1$,

$$\beta \left| E_{s'}[V_\delta(s')]|s, a] - E_{s'}[V_\delta(s')]|s', a] \right| \leq \left(L_r + \frac{2\beta R_{\max}L_p}{1 - \beta} \right) \left| s - s' \right|$$

and

$$\left| E_{s'}[x(s')|s, 0] \delta(s) - E_{s'}[x(s')|s', 0] \delta(s') \right| \leq \left(L_r + \frac{2\beta R_{\max}L_p}{1 - \beta} \right) \left| s - s' \right|$$

We bound both sides separately. Since the policy satisfies $\delta(s) \leq \delta(s')$ for all states s, and $\delta(s) = \frac{1}{\exp(R_{\min}) + 1} \leq \frac{1}{2}$, the left hand side can be bounded from below as

$$\frac{1}{\delta(s)(1 - \delta(s))} \geq \frac{1}{\delta(s)(1 - \delta(s))} \geq \frac{\exp(R_{\min}) + 1}{\exp(R_{\min})}$$

Meanwhile, the righthand side can be bounded from above
by Lemma B.1. Let $L_{DV} = \frac{2L_r + \frac{4\beta R_{\text{max}} L_p}{1 - \beta}}{1 - \beta L_p}$,

$$2\beta |E_\alpha[D\hat{V}_\delta(s')|s, 1] - E_\alpha[D\hat{V}_\delta(s')|s, 0]|$$

$$= 2\beta \left| \int_{s' \in S} D\hat{V}_\delta(s')(p(s'|s, 1) - p(s'|s, 0))ds' \right|$$

$$= 2\beta L_{DV} \left[\int_{s' \in S} D\hat{V}_\delta(s') \frac{L_{DV}}{p(s'|s, 1) - p(s'|s, 0))ds'} \right]$$

$$\leq 2\beta L_{DV} \sup_{\|f\|_1 \leq 1} \left\{ \left(\int_{s' \in S} f(s')(p(s'|s, 1) - p(s'|s, 0))ds' \right) \right\}$$

$$= 2\beta L_{DV} \mathcal{K}(p|s, 1), p|s, 0))$$

$$\leq \frac{2\beta L_p}{1 - 2\beta L_p} \left[2L_r + \frac{4\beta R_{\text{max}} L_p}{1 - \beta} \right] \leq \frac{(\exp(R_{\text{min}}) + 1)^2}{\exp(R_{\text{min}})}$$

From this condition of global convergence

$$\frac{2\beta L_p}{1 - 2\beta L_p} \left[2L_r + \frac{4\beta R_{\text{max}} L_p}{1 - \beta} \right] \leq \frac{(\exp(R_{\text{min}}) + 1)^2}{\exp(R_{\text{min}})}$$

it follows that the inequality (7) is satisfied and the Bellman equation (4) implies that $D^2 V_\delta(s) \leq 0$ for all states $s \in S$. □

B.3. Ommitted proof of Theorem 4.3

For notation simplicity, we introduce notations m and M such that

$$m = \frac{1}{1 - \beta} \left(\frac{(\exp(R_{\text{min}}) + 1)^2}{\exp(R_{\text{min}})} - \frac{2\beta L_p}{1 - 2\beta L_p} \left[2L_r + \frac{4\beta R_{\text{max}} L_p}{1 - \beta} \right] \right)$$

$$M = \frac{1}{(1 - \beta)^2} \left(2\beta \exp \left(\frac{1}{1 - \beta} R_{\text{max}} - \frac{\beta}{2} R_{\text{min}} \right) \right)$$

$$+ (1 - \beta) \left(\frac{\exp \left(\frac{1}{1 - \beta} R_{\text{max}} - \frac{\beta}{2} R_{\text{min}} \right)}{\exp \left(\frac{1}{1 - \beta} R_{\text{max}} - \frac{\beta}{2} R_{\text{min}} \right)} + \frac{2\beta}{1 - \beta} R_{\text{max}} \right)$$

Theorem 4.3. Given a (L_r, L_p)-Lipschitz MDP, which satisfies the condition for global convergence (6) and constants m and M defined above, for any step size $\alpha \leq \frac{1}{\beta}$, the policy gradient initialized at the myopic policy δ and updating as $\delta \leftarrow \alpha \nabla \delta \hat{V}_\delta$ in the bounded Lipschitz policy space Δ after k iterations, it produces policy $\delta^{(k)}$ satisfying

$$V_\delta^{(k)}(s) - V_\delta(s) \leq \frac{(1 - \alpha m)^k}{(\exp(R_{\text{min}}) + 1)^2}$$

at all $s \in S$.

Our analysis follows the standard steps establishing convergence of the conventional gradient descent algorithm which bounds the second Fréchet derivative of the value function V_δ with respect to the policy δ from above and from below by m and M respectively.

Lemma B.3. Given a (L_r, L_p)-Lipschitz MDP, which satisfies the condition for global convergence (6), for all policies δ in the bounded Lipschitz policy space Δ, for all states $s \in S$, the second Fréchet derivative of the value function V_δ with respect to the policy δ is upperbounded as

$$D^2 V_\delta(s) \leq -m.$$

Proof. The Bellman equation (4) implies that

$$\max_s D^2 V_\delta(s) \leq \frac{1}{1 - \beta} \left(\frac{(\exp(R_{\text{min}}) + 1)^2}{\exp(R_{\text{min}})} + 2\beta \max_s (E_\alpha[D\hat{V}_\delta(s')|s, 0] - E_\alpha[D\hat{V}_\delta(s')|s, 1]) \right)$$

By the same argument as in Theorem 4.2,

$$\min_s \frac{1}{\delta(s)(1 - \delta(s))} \geq \left(\frac{(\exp(R_{\text{min}}) + 1)^2}{\exp(R_{\text{min}})} \right)$$

$$\max_s (E_\alpha[D\hat{V}_\delta(s')|s, 1] - E_\alpha[D\hat{V}_\delta(s')|s, 1]) \leq \frac{2\beta L_p}{1 - 2\beta L_p} \left[2L_r + \frac{4\beta R_{\text{max}} L_p}{1 - \beta} \right]$$

Thus, for all state $s \in S$,

$$D^2 V_\delta(s) \leq -m. \quad \Box$$

Lemma B.4. Given a (L_r, L_p)-Lipschitz MDP, which satisfies the condition for global convergence, for all policy δ in the bounded Lipschitz policy space Δ, for all state $s \in S$, the second derivative of the value function V_δ with respect to the policy δ is lowerbounded as

$$D^2 V_\delta(s) \geq -M.$$

Proof. The Bellman equation (4) implies that

$$\min_s D^2 V_\delta(s) \geq \frac{1}{1 - \beta} \left(-\max_s \frac{1}{\delta(s)(1 - \delta(s))} + 2\beta \left(\min_s D\hat{V}_\delta(s) - \max_s D\hat{V}_\delta(s) \right) \right)$$

By restricting policy to the bounded Lipschitz policy space Δ we bound

$$\max_s \frac{1}{\delta(s)(1 - \delta(s))} \leq \max_s \frac{1}{\hat{\delta}(s)(1 - \hat{\delta}(s))}$$

$$\leq \left(\frac{\exp \left(\frac{1}{1 - \beta} R_{\text{max}} - \frac{\beta}{2} R_{\text{min}} \right)}{\exp \left(\frac{1}{1 - \beta} R_{\text{max}} - \frac{\beta}{2} R_{\text{min}} \right)} + \frac{2\beta}{1 - \beta} R_{\text{max}} \right)^2.$$
Provided
\[
\min_s V_\delta(s) \geq \frac{R_{\min}}{2}
\]
\[
\max_s V_\delta(s) \leq \frac{R_{\max}}{1 - \beta}
\]
\[
\min_s \left(\log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - r(s) \right)
\]
\[
\geq \min_s \left(\log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - r(s) \right) = 0
\]
\[
\max_s \left(\log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - r(s) \right)
\]
\[
\leq \max_s \log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - \min s r(s)
\]
\[
\leq \exp \left(\frac{1 - \beta R_{\max} - \beta}{2} R_{\min} \right) - R_{\min}
\]

it follows from Bellman equation (3) that
\[
\min_s D^2 V_\delta(s) \geq \frac{1}{1 - \beta} \left(\min_s \left(\log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - r(s) \right) + \beta (\min_s V_\delta(s) - \max_s V_\delta(s)) \right)
\]
\[
\geq \frac{\beta}{1 - \beta} \left(\frac{R_{\min}}{2} - \frac{R_{\max}}{1 - \beta} \right)
\]
\[
\max_s D^2 V_\delta(s) \leq \frac{1}{1 - \beta} \left(\max_s \left(\log \left(\frac{1 - \delta(s)}{\delta(s)} \right) - r(s) \right) + \beta (\max_s V_\delta(s) - \min_s V_\delta(s)) \right)
\]
\[
\leq \frac{\beta}{1 - \beta} \left(\exp \left(\frac{1}{1 - \beta} R_{\max} - \frac{\beta}{2} R_{\min} \right) + \frac{\beta}{1 - \beta} \frac{R_{\max} - R_{\min}}{2} \right)
\]

Thus, for all state \(s \in S \),
\[
D^2 V_\delta(s) \geq -M. \quad \Box
\]

Proof of Theorem 4.3. The convergence rate guarantee follows from Lemma B.3 and Lemma B.4, under the standard arguments for the gradient descent algorithm for \(m \)-strongly concave and \(M \)-smooth (i.e., \(M \)-Lipschitz gradient) functions (cf. Bansal and Gupta, 2017). \(\Box \)