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Ruibin Xiong'™'? Yunchang Yang"? Di He*> Kai Zheng* Shuxin Zheng> Chen Xing® Huishuai Zhang’
Yanyan Lan'? Liwei Wang*® Tie-Yan Liu’

1. Experimental Settings
1.1. Machine Translation

Experiment on Section 3 The training/validation/test
sets of the IWSLT14 German-to-English (De-En) task con-
tain about 153K/7K/7K sentence pairs, respectively. We
use a vocabulary of 10K tokens based on a joint source and
target byte pair encoding (BPE) (Sennrich et al., 2015). All
of our experiments use a Transformer architecture with a
6-layer encoder and 6-layer decoder. The size of embedding
is set to 512, the size of hidden nodes in attention sub-layer
and position-wise feed-forward network sub-layer are set to
512 and 1024, and the number of heads is set to 4. Label
smoothed cross entropy is used as the objective function by
setting € = 0.1 (Szegedy et al., 2016), and we apply dropout
with a ratio 0.1. The batch size is set to be 4096 tokens.
When we decode translation results from the model during
inference, we set beam size as 5 and the length penalty as
1.2.

Experiment on Section4 The configuration of IWLST14
De-En task is the same as in Section 3. For the WMT14
En-De task, we replicate the setup of (Vaswani et al., 2017),
which consists of about 4.5M training parallel sentence
pairs, and uses a 37K vocabulary based on a joint source
and target BPE. Newstest2013 is used as the validation set,
and Newstest2014 is used as the test set. One of the basic
configurations of the Transformer architecture is the base
setting, which consists of a 6-layer encoder and 6-layer
decoder. The size of the hidden nodes and embeddings are
set to 512. The number of heads is 8. Label smoothed

“Equal contribution TWorks done while interning at Microsoft
Research Asia 'CAS Key Laboratory of Network Data Science
and Technology, Institute of Computing Technolog, Chinese
Academy of Sciences 2University of Chinese Academy of Sci-
ences *Center for Data Science, Peking University, Beijing Insti-
tute of Big Data Research “Key Laboratory of Machine Perception,
MOE, School of EECS, Peking University *Microsoft Research
®College of Computer Science, Nankai University. Correspon-
dence to: Shuxin Zheng <shuxin.zheng @microsoft.com>, Di He
<dihe @microsoft.com>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

cross entropy is used as the objective function by setting
e = 0.1. The batch size is set to be 8192 tokens per GPU
on 16 NVIDIA Tesla P40 GPUs.

1.2. Unsupervised Pretraining

We follow Devlin et al. (2018) to use English Wikipedia
corpus and BookCorpus for the pre-training. As the dataset
BookCorpus (Zhu et al., 2015) is no longer freely distributed.
We follow the suggestions from Devlin et al. (2018) to crawl
and collect BookCorpus' on our own. The concatenation
of two datasets includes roughly 3.4B words in total, which
is comparable with the data corpus used in Devlin et al.
(2018). We first segment documents into sentences with
Spacyz; Then, we normalize, lower-case, and tokenize texts
using Moses (Koehn et al., 2007) and apply BPE(Sennrich
etal., 2016). We randomly split documents into one training
set and one validation set. The training-validation ratio for
pre-training is 199:1. All experiments are conducted on 32
NVIDIA Tesla P40 GPUs.

The base model in Devlin et al. (2018) consists of 12 Trans-
former layers. The size of hidden nodes and embeddings
are set to 768, and the number of heads is set to 12.

1.3. GLUE Dataset

MRPC The Microsoft Research Paraphrase Corpus
(Dolan & Brockett, 2005) is a corpus of sentence pairs auto-
matically extracted from online news sources, with human
annotations for whether the sentences in the pair are seman-
tically equivalent, and the task is to predict the equivalence.
The performance is evaluated by the accuracy.

RTE The Recognizing Textual Entailment (RTE) datasets
come from a series of annual textual entailment challenges
(Bentivogli et al., 2009). The task is to predict whether sen-
tences in a sentence pair are entailment. The performance is
evaluated by the accuracy.

Fine-tuning on GLUE tasks We use the validation set for
evaluation. To fine-tune the models, following Devlin et al.
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(2018); Liu et al. (2019), we search the optimization hyper-
parameters in a search space including different batch sizes
(16/32), learning rates (1e~° - 1e~*) and number of epochs
(3-8). We find that the validation accuracy are sensitive to
random seeds, so we repeat fine-tuning on each task for 6
times using different random seeds and compute the 95%
confidence interval of validation accuracy.

2. Proof of Lemma 1

Proof. Denote X = (X1,Xs,...,X4) in which X;
are i.i.d. Gaussian random variables with distribu-
tion N(0,02). Denote px(z) as the probability den-
sity function of X;.  Then E(||ReLU(X)]|3)

YL EReLU(X;)?] = YL, EReLU(X)?|X; >
OP(X; > 0) = 4EReLUX))*X; > 0] =
IEXZ|X, > 0] = gfj;oﬂpmxw(z)dx =
dfo *2px (z)dr = 3o O

3. Proof of Lemma 2

Proof. Atinitialization, the layer normalization is computed
as LN(v) = = It is easy to see that layer normalization
at initialization projects any vector v onto the d — 1-sphere of

radius v/d since [[LN(v)|[3= || 222 |3= Zimlmw)® _ g

We first estimate the expected /o norm of each intermediate

output 7; ostbl .. P9 for | > 0. Using Xavier initial-

» Ly i
ization, the elements in WV are i.i.d. Gaussian random
variables sampled from N (0, 1/d). Since Hx”“tHQ: d by

the definition of Layer Normalization when [ > 0, we have

E(]| ””S”II ) =E(|l27¢™ |13 )+E(Hx”°5”||§)
oS [oF] T
+ 2B (af 7 a2l ) (1
=E(||}5" 3 )+E(ch”°s”ll )
2 " )09 0S8 T
+EE( at tWVl b ! )
j=1
=E(||273*[13) + E(| p”“ll%) 3)
=E(||=}9* 3 )+E(H*chﬁ?“|\§) “4)
n
1=1
<2d (5)

and E(|«f7"%(3) = E(l«f5"113) + E(lz7™" 13 )
E(J25" 13) + E(I 2 Ty 27213) > E(Jaf5" 13) =

Similarly, we have ||z} 25t:3|12= d by the definition of Layer

Normalization. Agam for the ReLLU activation function,
the elements in Wt and W2 are i.i.d. Gaussian random
variables sampled from N (0,1/d). According to Lemma 1,

we have
E()|279*|3) =E(|ReLU(zp 3> * W) 5 (©)

=E(E(E(|[ReLU (x5 "W W23

‘ lost 3 Wl l)|prOSt 5)) (7)
—E(E(ReLUGE" W) 3lafe" )
®)
US d
—E( a2 1) = 5 ©)
Based on this, we can estimate the scale of ]E(||1:p05t B|2)

as follows.

E([lzf5*113) =E(l5™13) + E(ll:™*13)

T

+ 2E(af a7 (10)
08 3 08 4

=E(||275"°(13) + E([l27"(13)

-
—E(Z ReLU( xf‘;St B et T

Y
d

0S OS 3
=E(l2f5"*|3) + Bt 3) = d+ 5 = Sd

(12)

Using similar technique we can bound E(||z;°[|3) for the
Pre-LN Transformer.

E(l2757°13) =E(l275°115) + E(ll=]5°%[13)
+2E( pre2 ;lo:eT) (13)

=E(| WH ) +E(la;%13)

2 - re, re T
+EQ o W) a4
j=1
=E(|l2]5°113) + E(|l=]52|I3) (15)
n
=E(||l=7;°112 )+E(Hﬁzxﬁe’l|§) (16)
1=1

Itis easy to see that we have E(||z];°(|3) < E([|«]; 3|| ) <
E([|z};[|3) 4 d. And similar to (10)-(12),

E(ll75 :115) =E(l75°*113) + E(l|275°113)
oS a7
=E(||=}5°|I3 )+E(H Al EY ROt
—E(af7*3) + 5d (19)
Combining both, we have E([|z]7°[5) + <
E(l|l2}75 :03) < E([|2]5°)|3) + 3d. Then we have 1+

£)d < E(|l2]7°(13) < (14 %)d by induction.



Supplementary material for: On Layer Normalization in the Transformer Architecture

O

4. Proof of Lemma 3

The proof of Lemma 3 is based on Lemma 4.1:

Lemma 4. 1. Let o € R? be a vector such that ||a||2= 1,
then the eigenvalue of I — o' o is either 1 or 0.

Proof. Let {eq, ..., eq} be unit vectors such that e; = « and

e; Le; for all (i,7). Then we have e1(I —a'a) = e; —

era’a=e—a=0ande;(I—a'a)=¢ —ec;a'a=e;

for i # 1. So e; are all the eigenvectors of I — o' a, and
their corresponding eigenvalues are (0, 1,1, ..., 1). Hence
we complete our proof. O

Proof of Lemma 3. Denote y = x(I — él—rl), where 1 =
(1,1,...,1) € R%, then the layer normalization can be rewrit-
ten as

LN(z); = —2 (20)

1 d
ViXi=1Y;

We explicitly calculate the Jacobian of layer normalization
as

oy, dy; - 1
Yi Yi 322:1 3/1%
1
Siin /ST 2 g d¥%
_ ) dzk—l yk Yi /522:11}%

(22)
522:191%
Sijlwll3—viy; d iYj
m@a%%ﬂ%::ff%iy%)
lyll2 1yl lyll3
(23)

where §;; = 1 when ¢ = j and 0;; = 0 when ¢ # j. In the
matrix form,

.
S ||Z|i ) 29

and
Jin() :3L§f> (25)
_ aLgy(x) % 26)
zyﬁﬂhjb(f—-ﬁ;é)(l—»;lTl) 27)

T

Since the eigenvalue of the matrix (I — ﬁ) and (I— élT 1)
2

are either 1 or 0 (by Lemma 4.1), we have || (I — %)HQ:
2

O(1) and ||(I — élTl)Hg: O(1). So the spectral norm of
JLN(I') is

Vd Vd

13un @)= 0 =) = OG-

) (28)

O

5. Proof of Theorem 1

The proof of Theorem 1 is based on Lemma 4.2:

Lemma 4. 2. Let Y be a random variable that is never
larger than B. Then for all a < B,

E[B - Y]

PrlY <a] <
Y <al < B—-a

(29)

Proof. Let X = B—Y,then X > 0 and Markov’s inequal-
ity tells us that

mszfﬂgg%i (30)

Hence
HW<MSE5::] 31)
m

Proof of Theorem 1. We prove Theorem 1 by estimating

each element of the gradient matrix. Namely, we will an-

C,W";Q,L for p,q € {1,...,d}. The loss of the post-LN
pra

Transformer can be written as

alyze

post post
E(xL+1,1’ ""xL-‘rl,’rL)

1 ost
= Z £($g+§,i) (32)

Through back propagation, foreach i € {1, 2, ..., n} the gra-
dient of L(x 41 ) with respect to the last layer’s parameter
W?2L in the post-LN setting can be written as:

post post post post,5 post,4
ac(xL-ﬁ-l,i) _8£(mL+17i) 8mL+1,i axL,i axm

2,L post post,5 post,4 2,L
OWp4 8xL+Li (“)xL’i 836L’i oWy
(33)
post post,4
_3£(xL+1,i)J ( post,s) LL i (34)
- ) post LN xL,i 8W2,L
Tr4+1, Pq
post
_aL(xL-H,i)J post.5y () ()
_78 post LN(xLJ' )( y Uy oony
TL+1,i

[ReLU(4 W), .., 00 (35)
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Here [ReLU(z?*"*W1L)], means the p-th element of

post,3 1,L OL(ehT1 )
ReLU (27’7 "W). So the absolute value of — 17
can be bounded by B
t t
2L i)y, et
— ost L,i
BWI?QL 8 i+1 7
ost,3 R
10,0, ReLU (@77 WHE)],, .., 0) ]
(36)
8£(x12(f§ ;) o0s
:||W||2||JLN(IIL7§5)H2
L+1 4
ReLU( W), G37)

which implies

post post
|3£($L+1 z) | <| (IL+1 1) || 1T o (2 post 5)H
2,L — t 2
6qu Ox ;Iljlo-il i

[[ReLU (2575 W) |2 (38)

Since all the derivatives are bounded, we have

| 255552 3= 0(1). S0

post
O L+1,i

‘ DL, :
W™
—O([ 113 (@5 3 ReLUG W E)), 2]) (39)

Since ||xp°€t3\|2: d, [24%"*WhE], has distribution

N(0,1), using Chernoff bound we have

2
Prf|fafs W, 12 ao] < exp(-3)).

So
0.01

d

Thus with probability at least 0.99, forall p = 1,2, ...,d we
have ReLU ([} W L],)2 < 21n 100d.

Pr[ReLU([z}%"* W F],)? > 21n100d] <

5 5
=222 I3 —Ell=z72 " 13
]E“ po:.t 5”

Since with probability 1 — d(e),

<e€

b
2

we have ||2775" I3< (1 + OE||2Y post 5H2 Using Lemma
4.2, we have

Pr(||a}5° |3 <aoE|257: " |13] (40)
L+ ORI BBl

(14 € — ag)E[| 25|13
‘ 42)

:1+e—a0

for an arbitrary constant og > 0, which equals

Pr{||2? 13> aoEllaf’ 73] > 1 - (43)

]. +€e€— (67
So according to union bound, with probability at

post
least 0.99 — J(e) — we have \MP:

1+e o 8W§{’1L
O([I3un @ ) IBIRLU (S WER ) <
2d1n 100d dind _ ((lnd
O(H pos, 5H2) (%E” pmoHQ) O(3%). So we have
n aﬁ(xpost z)
| 2L|2_|*Z L2+L1 ‘ (44)
OWpq = OWp
1O~ 0L ) 5, Ind
MRS 0(20)  @s)
. ;\ oW =00
and
oL d2Ind
5wz lF= ZI 2L| o( )
ow v W ap
The loss of the pre-LN Transformer can be written as
’C(le;v;iml 10 xi":iml n/ Z ‘C %T;C;Lal i (46)

Using the same technique, in the pre-LN setting the gradient
of L(x%,41;) With respect to the last layer’s parameter

W2L can be written as

DL imars) _ DLW inari) 0 imars 001 027"
Wy 0 a0 1, Oalo® aW,?qL
47)
OL(xhs l ) .
:#JLN(JJPTE z)(O 0,...,
aQSJID:‘mal i bt
[ReLU(} ¢ W E)],, ..., 0)7 (48)

So the absolute value of each component of the gradient is
bounded by

8£(xp?”6 ) (l_pre )

Final,i | || Final,i

2,L pre
8qu O T Final, )i

1(0,0, .., [ReLU(} $ W E),, .., 0) 2
(49)

2l en (275 )2

_ || 8‘6(]"%:2(1[,1‘)
OzPe

anal i

2T (@ )l

[ReLU (2" W E)], | (50)

Since |75 Y2= d and [z WLL], obeys distribution
N(0,1), using Chernoff bound we have

2
Te, Q
Pr{|[a W, > ao] < exp(~)).
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So
0.01

d

So with probability at least 0.99, forallp = 1,2,...,d we
have ReLU([o}¢* W 1L],)2 < 21n 100d.

=2

Pr[ReLU([z}"¢ W E],)? > 21In100d] <

I2—Ell277 41131

Since with probability 1 — d(¢), wL“]’E'i”zp,-E HLQ“”' 2 <,
L+1,i112
we have |27, [[I5< (1 + €)E[|2}F, ;||5. Using Lemma 5,
we have
[l i3 <ooBll2E 3] (51)
(1+ G)EHxﬁizH%_E”xiTu”Q (52)
T (It e—ao)Ell2 I
€
= 53
1+e— Qp ( )
which equals
P pre‘2> E pre‘2>1_ € 54
r[||xL+1,z||2— Qo ||xL+1,z||2] = Tre_an o (54)
According to union bound, with probability
0.99 — 6(e) — =5 we have |7Mg’;§é’f'2“) |?=
re re,4
O([ITen (@, JBIRLUGY AW 2]) - <
2d1n 100d dlnd _ Ind
O(fere, i) < O(Gmiary,m) = Olger)- So we have
aé 2 - a‘c(x%:;al ’L) Ind
| 2L|_|*Z 5L ?=0(—) (55)
Wy ne= Wy aol
. o
Thos |58 = S gt 52212 < O(/2184)

Take oy = 110, we have that with probability at least
0. 99 — 0(€) — gope- for the Post-LN Transformer we have
I 6W2 = ||F< O(dvInd) and for the Pre-LN Transformer

we have ||8W2 rlr< O(dy/1B4) O

6. Extension to other layers

For simplicity, we denote x; = Concat(x; 1, ...,xlm) €
R" and 2} = Concat(:ﬂé‘il, ,xfn) € R for k =
{1,2,3,4,5}. Then in the Post-LN Transformer, the gra-
dient of the parameters in the [-th layer (take W2 as an
example) can be written as

5 5 L post post
oL _ oL (10 Oy Ox)yy
WL~ gghost post/ gyl
Iy j=l+1 Iz
where
axpost (9l‘p08t 6l‘p08t 5 axpost?) axpost ,2
Jj+1 Jj+1
post post,5 postS post 2 post :
Db 9T 9ot ko2 gy

The Jacobian matrices of the Post-LN Transformer layers
are:

JLN (xpostﬁ)

(9x§ff B l
O post,5 -
“ JLN(UE?f),ft’s)
(56)
8xpost,5 I WQ}j
Jit?) — . +
8%‘?05 s )
J T W2
J W
. 1
Ji W
(57)
where
3
Nl N T
_d1ag( ( fiétg (W}’J) ),...,0 (xfisw (W}i’j> ))
c Rdxd
t,2
gty [ I
8xpost,2
JLN(IT,?’Q)
(58)
Ly Vi IRy AL
axpost,2 I EW / nW ’
post . . .
O I Lyyvii Ly Vi
n n
(59)
Using Holder’s inequality, we have
post
oL,
post
Oz Ty
(EPOSt post,S post,S post 2
<E || =255 ll2l =g ol mssz ol st Il2
— 8.131»)0‘%’5 axpost,B axpost,Q 8$§08t
J J J
(60)
post,5 post,3 post,2
< | 01 | il Prrd bl el
— axé_)ostﬁ 2 8x;;>ost,3 2 6$§08t’2 2 ax;;ost 2
(61)
. oz ;
Since sty = diag(Ion(2f5"), ., T (@85%),
J
we have , [E {H pﬁffo|2} E pms \[when
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H post 5 post, 5”

|5 concentrates around its expectation E||z)5*"(|3

whrch equals 3d according to Lemma 2. Therefore when

we estimate the norm of for post-LN transformer,

8W2 W2l
. (L—1)/2

there exists a term O(§ / ), which exponentially de-

creases as [ goes smaller. Similarly, in the pre-LN Trans-

former, the gradient can be written as

~ ~ pre L pre pre
oL _ oL axFincLl ( 8x]+1 ) axl+1
2,1 - pre pre pre Vi’
ow O pimar 0T 11 Pt Oz~ " OW
where
pre pre pre,3
Oxyyy  Oxjly O
pre — pre,3 pre .
8% or o 833]

The Jacobian matrices of the Pre-LN Transformer layers
are:

T W2
ozl
re,3 . + .
ox? .
J I Wi
W ,
J E ) Wi
() Pyl
JLN( pre, 3)
(62)
re,3
Jon(@807)
e I %anj %WVJ
J — + . .
pre : .
Oz I LyyVii Lyyvi
T (z5)
(63)
JLN( pre)
If [ is sufficiently large, the norm of J LN( x7°) and
JLN(xfge’B) are very small (of order (9( =)) as j is be-
tween [ + 1 and L, which means the elgenvalues of matrix
L PTe sPTe3
o ;:;13 and aa;pm are close to 1. Then we can see that

aszfl ogPTes
]E|| 5z pi.e = |2 and IEHWHQ are nearly 1, and the norm of

aw? 7 for pre-LN transformer is independent of [ when [ is

large.

7. Examples of (¢, §)-bounded random
variables

In this section we give an example of (e, §)-bounded ran-
dom variable. This example comes from Example 2.5 in
(Wainwright, 2019) and we give a short description below.

If Z = (Zy,..., Z,) is a Gaussian vector with distribution
N(0,1,),then Y = || Z||3= >} _, Z% has distribution x?.
AndEY =3 EZ}=n

A random variable X with mean p = E[X] is called sub-
exponential if there are non—negative parameters (v, a) such
that Efexp(A(X — p))] < exp(%5 ) for all [A|< 1. The
next proposition comes from Proposrtlon 2.21in (Walnwnght
2019).

Proposition 1 (Sub-exponential tail bound). Suppose that
X is sub-exponential with parameters (v, ). Then

2
]P)[X—,uzt}g{e}(p( 2V2) Ucogt%%v
exp( 2(1) =
(64)
and from Example 2.5 in (Wainwright, 2019), the X2
variable Y is sub-exponential with parameters (v,a) =

(24/n,4). So we can derive the one-sided bound

P[Y —n > ne] < exp(—ne?/8), forallec (0,1)
(65)
So Y is (0,1) and 6 =

(€,8)-bounded with € €
exp(—ne’/8).

8. Small learning rate experiment

Theoretically, we find that the gradients of the parameters
near the output layers are very large for the Post-LN Trans-
former and suggest using large learning rates to those pa-
rameters makes the training unstable. To verify whether
using small-step updates mitigates the issue, we use a very
small but fixed learning rate and check whether it can op-
timize the Post-LN Transformer (without the learning rate
warm-up step) to a certain extent. In detail, we use a fixed
learning rate of 1e* at the beginning of the optimization,
which is much smaller than the Ir,,q, = le™2 in the pa-
per. Please note that as the learning rates during training
are small, the training converges slowly, and this setting
is not very practical in real large-scale tasks. We plot the
validation curve together with other baseline approaches in
Figure 6. We can see from the figure, the validation loss
(pink curve) is around 4.3 in 27 epochs. This loss is much
lower than that of the Post-LN Transformer trained using a
large learning rate (blue curve). But it is still worse than the
SOTA performance (green curve).
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Validation Loss
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Figure 1. Performances of the models on the IWSLT14 De-En task.
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