Semi-Supervised Learning with Normalizing Flows

Pavel Izmailov, Polina Kirichenko, Marc Finzi, Andrew Gordon Wilson

Abstract
Normalizing flows transform a latent distribution through an invertible neural network for a flexible and pleasingly simple approach to generative modelling, while preserving an exact likelihood. We propose FlowGMM, an end-to-end approach to generative semi-supervised learning with normalizing flows, using a latent Gaussian mixture model. FlowGMM is distinct in its simplicity, unified treatment of labeled and unlabeled data with an exact likelihood, interpretability, and broad applicability beyond image data. We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data, tabular data, and semi-supervised image classification. We also show that FlowGMM can discover interpretable structure, provide real-time optimization-free feature visualizations, and specify well calibrated predictive distributions.

1. Introduction
The discriminative approach to classification models the probability of a class label given an input \(p(y|x) \) directly. The generative approach, by contrast, models the class conditional density for the data \(p(x|y) \), and then uses Bayes rule to find \(p(y|x) \). In principle, generative modelling has long been more alluring, for the effort is focused on creating an interpretable object of interest, and “what I cannot create, I do not understand”. In practice, discriminative approaches typically outperform generative methods, and thus are far more widely used.

The challenge in generative modelling is that standard approaches to density estimation are often poor descriptions of high-dimensional natural signals. For example, a Gaussian mixture directly over images, while highly flexible for estimating densities, would specify similarities between images as related to Euclidean distances of pixel intensities, which would be a poor inductive bias for handling translations or representing other salient statistical properties. Recently, generative adversarial networks (Goodfellow et al., 2014), variational autoencoders (Kingma & Welling, 2013), and normalizing flows (Dinh et al., 2014), have led to great advances in unsupervised generative modelling, by leveraging the inductive biases of deep convolutional neural networks.

Normalizing flows are a pleasingly simple approach to generative modelling, which work by transforming a distribution through an invertible neural network. Since the transformation is invertible, it is possible to exactly express the likelihood over the observed data, to train the neural network mapping. The network provides both useful inductive biases, and a flexible approach to density estimation. Normalizing flows also admit controllable latent representations and can be sampled efficiently, unlike auto-regressive models (Papamakarios et al., 2017; Oord et al., 2016). Moreover, recent work (Dinh et al., 2016; Kingma & Dhariwal, 2018; Behrmann et al., 2018; Chen et al., 2019; Song et al., 2019) demonstrated that normalizing flows can produce high-fidelity samples for natural image datasets.

Advances in unsupervised generative modelling, such as normalizing flows, are particularly compelling for semi-supervised learning, where we wish to share structure over labeled and unlabeled data, to make better predictions of class labels on unseen data. In this paper, we introduce an approach to semi-supervised learning with normalizing flows, by modelling the density in the latent space as a Gaussian mixture, with each mixture component corresponding to a class represented in the labeled data. This Flow Gaussian Mixture Model (FlowGMM) is to the best of our knowledge the first approach to semi-supervised learning with normalizing flows that provides an exact joint likelihood over both labeled and unlabeled data, for end-to-end training. A short version of this work first appeared at the ICML 2019 Normalizing Flows Workshop (Izmailov et al., 2019). At the same workshop, Atanov et al. (2019) proposed a different approach that uses a class-conditional normalizing flow as the latent distribution.

* Equal contribution 1 New York University. Correspondence to: Pavel Izmailov <pi390@nyu.edu>.
Semi-Supervised Learning with Normalizing Flows

Figure 1. Illustration of semi-supervised learning with FlowGMM on a binary classification problem. Colors represent the two classes or the corresponding Gaussian mixture components. Labeled data are shown with triangles, colored by the corresponding class label, and blue dots represent unlabeled data. (a): Data distribution and the classifier decision boundary. (b): The learned mapping of the data to the latent space. (c): Samples from the Gaussian mixture in the latent space. (d): Samples from the model in the data space.

We propose FlowGMM, a new probabilistic classification model based on normalizing flows that can be naturally applied to semi-supervised learning.

- We show that FlowGMM has good performance on a broad range of semi-supervised tasks, including image, text and tabular data classification.
- We propose a new type of probabilistic consistency regularization that significantly improves FlowGMM on image classification problems.
- To demonstrate the interpretability of FlowGMM, we visualize the learned latent space representations for the proposed semi-supervised model and show that interpolations between data points from different classes pass through low-density regions. We also show how FlowGMM can be used for feature visualization in real-time, without requiring gradients.
- We show that the predictive uncertainties of FlowGMM can be naturally calibrated by scaling the variances of mixture components.

We also provide code at https://github.com/izmailovpavel/flowgmm.

2. Related Work

Kingma et al. (2014) represents one of the earliest works on semi-supervised deep generative modelling, demonstrating how the likelihood model of a variational autoencoder (Kingma & Welling, 2013) could be used for semi-supervised image classification. Xu et al. (2017) later extended this framework to semi-supervised text classification.

Many generative models for classification (Salimans et al., 2016; Nalisnick et al., 2019; Chen et al., 2019) have relied upon multitask learning, where a shared latent representation is learned for the generative model and the classifier. With the method of Chen et al. (2019), hybrid modeling is observed to reduce performance for both tasks in the
supervised case. While GANs have achieved promising performance on semi-supervised tasks, Dai et al. (2017) showed that classification performance and generative performance are in direct conflict: a perfect generator provides no benefit to classification performance.

Some works on normalizing flows, such as RealNVP (Dinh et al., 2016), have used class-conditional sampling, where the transformation is conditioned on the class label. These approaches pass the class label as an input to coupling layers, conditioning the output of the flow on the class.

Deep Invertible Generalized Linear Model (DIGLM, Nalisnick et al., 2019), most closely related to our work, trains a classifier on the latent representation of a normalizing flow to perform supervised or semi-supervised image classification based on class-conditional likelihoods (see (5)), rather than training a separate classifier. One of the key advantages of our approach is the explicit encoding distribution of the data. We can model the data distribution as a transformation of variables:

$$p_x(x) = p_z(f(x)) \cdot \left| \det \left(\frac{\partial f}{\partial x} \right) \right|. \tag{1}$$

The mapping f is implemented as a sequence of invertible functions, parametrized by a neural network with architecture that is designed to ensure invertibility and efficient computation of log-determinants, and a set of parameters θ that can be optimized. The model can be trained by maximizing the likelihood in Equation (1) of the training data with respect to the parameters θ.

4. Flow Gaussian Mixture Model

We introduce the Flow Gaussian Mixture Model (FlowGMM), a probabilistic generative model for semi-supervised learning with normalizing flows. In FlowGMM, we introduce a discrete latent variable y for the class label, $y \in \{1 \ldots C\}$. Our latent space distribution, conditioned on a label k, is Gaussian with mean μ_k and covariance Σ_k:

$$p_z(z|y=k) = \mathcal{N}(z|\mu_k, \Sigma_k). \tag{2}$$

The marginal distribution of z is then a Gaussian mixture. When the classes are balanced, this distribution is

$$p_z(z) = \frac{1}{C} \sum_{k=1}^{C} \mathcal{N}(z|\mu_k, \Sigma_k). \tag{3}$$

Combining equations (2) and (1), the likelihood for labeled data is

$$p_X(x|y=k) = \mathcal{N}(f(x)|\mu_k, \Sigma_k) \cdot \left| \det \left(\frac{\partial f}{\partial x} \right) \right|,$$

and the likelihood for data with unknown label is $p_X(x) = \sum_k p_X(x|y=k)p(y=k)$. If we have access to both a labeled dataset D_l and an unlabeled dataset D_u, then we can train our model in a semi-supervised way to maximize the joint likelihood of the labeled and unlabeled data

$$p_X(D_l, D_u|\theta) = \prod_{(x_i,y_i) \in D_l} p_X(x_i, y_i) \prod_{x_j \in D_u} p_X(x_j), \tag{4}$$

over the parameters θ of the bijective function f, which learns a density model for a Bayes classifier. In particular, given a test point x, the model predictive distribution is given by

$$p_X(y|x) = \frac{p_X(x|y)p(y)}{p(x)} = \frac{\mathcal{N}(f(x)|\mu_y, \Sigma_y)}{\sum_{k=1}^{C} \mathcal{N}(f(x)|\mu_k, \Sigma_k)}. \tag{5}$$

We can then make predictions for a test point x with the Bayes decision rule

$$y = \arg \max_{i \in \{1, \ldots, C\}} p_X(y = i|x).$$

As an alternative to direct likelihood maximization, we can adapt the Expectation Maximization algorithm for model training as discussed in Appendix A.
Semi-Supervised Learning with Normalizing Flows

Figure 2. Illustration of FlowGMM performance on synthetic datasets. Labeled data are shown with colored triangles, and unlabeled data are shown with blue circles. Colors represent different classes. We compare the classifier decision boundaries when only using labeled data (panels b, d) and when using both labeled and unlabeled data (panels a, c) on two circles (panels a, b) and pinwheel (panels c, d) datasets. FlowGMM leverages unlabeled data to push the decision boundary to low-density regions of the space.

4.1. Consistency Regularization

Most of the existing state-of-the-art approaches to semi-supervised learning on image data are based on consistency regularization (Laine & Aila, 2016; Miyato et al., 2018; Tarvainen & Valpola, 2017; Athiwaratkun et al., 2019; Verma et al., 2019; Xie et al., 2020; Berthelot et al., 2020). These methods penalize changes in network predictions with respect to input perturbations, such as random translations and horizontal flips, with an additional loss term that can be computed on unlabeled data,

\[\ell_{cons}(x) = \| g(x') - g(x'') \|^2, \]

where \(x', x'' \) are random perturbations of \(x \), and \(g \) is the vector of probabilities over the classes.

Motivated by these methods, we introduce a new consistency regularization term for FlowGMM. Let \(y'' \) be the label predicted on image \(x'' \) by FlowGMM according to (5). We then define our consistency loss as the negative log likelihood of the input \(x' \) given the label \(y'' \):

\[
L_{cons}(x', x'') = -\log p(x' | y'') = \\
- \log \mathcal{N}(f(x') | \mu_{y''}, \Sigma_{y''}) - \log \left| \det \left(\frac{\partial f}{\partial x'} \right) \right|.
\]

This loss term encourages the model to map small perturbations of the same unlabeled inputs to the same components of the Gaussian mixture distribution in the latent space. Unlike the standard consistency loss of (6), the proposed loss in (7) takes values on the same scale as the data log likelihood (4), and indeed we find it to work better in practice. We refer to FlowGMM with the consistency term as FlowGMM-cons. The final loss for FlowGMM-cons is then the weighted sum of the consistency loss (7) and the negative log likelihood of both labeled and unlabeled data (4).

5. Experiments

We evaluate FlowGMM on a wide range of datasets across different application domains including low-dimensional synthetic data (Section 5.1), text and tabular data (Section 5.2), and image data (Sections 5.3, 5.4). In Appendix K we evaluate FlowGMM under class imbalance. We show that FlowGMM outperforms the baselines on tabular and text data. FlowGMM is also state-of-the-art as an end-to-end generative approach to semi-supervised image classification, conditioned on architecture. However, FlowGMM is constrained by the RealNVP architecture, and thus does not outperform the most powerful approaches in this setting, which involve discriminative classifiers.

In all experiments, we use the RealNVP normalizing flow architecture. Throughout training, Gaussian mixture parameters are fixed: the means are initialized randomly from the standard normal distribution and the covariances are set to \(I \). See Appendix B for further discussion on GMM initialization and training.

5.1. Synthetic Data

We first apply FlowGMM to a range of two-dimensional synthetic datasets, in order to gain a better visual intuition for the method. We use the RealNVP architecture with 5 coupling layers, defined by fully-connected shift and scale networks, each with 1 hidden layer of size 512. In addition to the semi-supervised setting, we also trained the method only using the labeled data. In Figure 2 we visualize the decision boundaries of the classifier corresponding to FlowGMM for both of these settings on the two circles and pinwheel datasets. On both datasets, FlowGMM is able to benefit from the unlabeled data to push the decision boundary to a low-density region, as expected. On the two circles problem the method is unable to fit the data perfectly as flows are homeomorphisms, and the disk is topologically distinct from an annulus. However, FlowGMM still pro-
produces a reasonable decision boundary and improves over the case when only labeled data are available. We provide additional visualizations in Appendix C, Figure 4.

5.2. Text and Tabular Data

FlowGMM can be especially useful for semi-supervised learning on tabular data. Consistency-based semi-supervised methods have mostly been developed for image classification, where the predictions of the method are regularized to be invariant to random flips and translations of the image. On tabular data, desirable invariances are less obvious, finding suitable transformations to apply for consistency-based methods is not trivial. Similarly, approaches based on GANs have mostly been developed for images. We evaluate FlowGMM on the Hepmass and Miniboone UCI classification datasets (previously used in Papa-makarios et al. (2017) for density estimation).

Along with standard tabular UCI datasets, we also consider text classification on AG-News and Yahoo Answers datasets. Using the recent advances in transfer learning for NLP, we construct embeddings for input texts using the BERT transformer model (Devin et al., 2018) trained on a corpus of Wikipedia articles, and then train FlowGMM and other baselines on the embeddings.

We compare FlowGMM to the graph based label spreading method from Zhou et al. (2004), a II-Model (Laine & Aila, 2016) that uses dropout perturbations, as well as supervised logistic regression, k-nearest neighbors, and a neural network trained on the labeled data only. We report the results in Table 1, where FlowGMM outperforms the alternative semi-supervised learning methods on each of the considered datasets. Implementation details for FlowGMM, the baselines, and data preprocessing details are in Appendix D.

5.3. Transfer Learning on Image Data.

Transfer learning makes use of models pre-trained on large datasets to improve performance on downstream tasks with limited annotated datasets. In practice, models pre-trained on ImageNet (Russakovsky et al., 2015) are often used as feature extractors for computer vision problems. We evaluate FlowGMM in transfer learning setting on CIFAR-10 semi-supervised image classification. We extract image representations for CIFAR-10 using an EfficientNet model (Tan & Le, 2019) pre-trained on ImageNet, and train FlowGMM and baseline models on these features. We report the results in Table 2. In this setting, FlowGMM outperforms II-Model for 250 and 1k labeled examples, and achieves similar performance with 4k labels. The implementation details are presented in Appendix E.

Table 1. Accuracy on BERT embedded text classification datasets and UCI datasets with a small number of labeled examples. The kNN baseline, logistic regression, and the 3-Layer NN + Dropout were trained on the labeled data only. Numbers reported for each method are the median of 4 runs ± the median average deviation. n_l and n_u are the number of labeled and unlabeled data points.

<table>
<thead>
<tr>
<th>Method</th>
<th>AG-News (200 / 200k, 4)</th>
<th>Yahoo Answers (800 / 50k, 10)</th>
<th>Hepmass (20 / 140k, 2)</th>
<th>Miniboone (20 / 65k, 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kNN</td>
<td>41.6</td>
<td>19.8</td>
<td>81.2</td>
<td>75.3</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>77.5</td>
<td>54.9</td>
<td>81.2</td>
<td>79.0</td>
</tr>
<tr>
<td>3-Layer NN + Dropout</td>
<td>77.5 ± 0.3</td>
<td>55.7 ± 0.3</td>
<td>82.2 ± 0.1</td>
<td>80.4 ± 0.4</td>
</tr>
<tr>
<td>RBF Label Spreading</td>
<td>36.1</td>
<td>36.4</td>
<td>84.9</td>
<td>79.3</td>
</tr>
<tr>
<td>II-model</td>
<td>80.2 ± 0.3</td>
<td>56.3 ± 0.04</td>
<td>87.9 ± 0.2</td>
<td>80.8 ± 0.01</td>
</tr>
<tr>
<td>FlowGMM</td>
<td>82.1 ± 1.0</td>
<td>57.9 ± 0.2</td>
<td>88.5 ± 0.2</td>
<td>81.9 ± 0.7</td>
</tr>
</tbody>
</table>

Table 2. Accuracy on semi-supervised classification on CIFAR-10 dataset with features extracted from EfficientNet model pre-trained on ImageNet. We report mean and standard deviation over 3 runs with different labeled data. The kNN baseline and logistic regression were trained on the labeled data only. We report the results in Table 1, where FlowGMM outperforms the alternative semi-supervised learning methods on each of the considered datasets. Implementation details for FlowGMM, the baselines, and data preprocessing details are in Appendix D.

<table>
<thead>
<tr>
<th>Method</th>
<th>$n_l = 250$</th>
<th>$n_l = 1000$</th>
<th>$n_l = 4000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>kNN</td>
<td>84.81 ± 0.17</td>
<td>87.99 ± 0.15</td>
<td>90.41 ± 0.29</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>88.13 ± 0.41</td>
<td>90.40 ± 0.1</td>
<td>92.42 ± 0.17</td>
</tr>
<tr>
<td>RBF Label Spreading</td>
<td>88.64 ± 0.67</td>
<td>90.24 ± 0.19</td>
<td>90.99 ± 0.15</td>
</tr>
<tr>
<td>kNN Label Spreading</td>
<td>87.20 ± 1.10</td>
<td>89.13 ± 0.15</td>
<td>90.45 ± 0.38</td>
</tr>
<tr>
<td>II-model</td>
<td>89.84 ± 0.25</td>
<td>91.54 ± 0.05</td>
<td>92.75 ± 0.12</td>
</tr>
<tr>
<td>FlowGMM</td>
<td>90.26 ± 0.45</td>
<td>91.82 ± 0.09</td>
<td>92.78 ± 0.03</td>
</tr>
</tbody>
</table>
Table 3. Accuracy of the FlowGMM, VAE model (M1+M2 VAE, Kingma et al., 2014), DIGLM (Nalisnick et al., 2019) in supervised and semi-supervised settings on MNIST, SVHN, and CIFAR-10. FlowGMM Sup (All labels) as well as DIGLM Sup (All labels) were trained on full train datasets with all labels to demonstrate general capacity of these models. FlowGMM Sup (n_l labels) was trained on n_l labeled examples (and no unlabeled data). For reference, at the bottom we list the performance of the Π-Model (Laine & Aila, 2016) and BadGAN (Dai et al., 2017) as representative consistency-based and GAN-based state-of-the-art methods. Both of these methods use non-invertible architectures with substantially higher base performance and, thus, are not directly comparable.

<table>
<thead>
<tr>
<th>Method</th>
<th>MNIST (1k/59k)</th>
<th>SVHN (1k/72k)</th>
<th>CIFAR-10 (4k/46k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGLM Sup (All labels)</td>
<td>99.27</td>
<td>95.74</td>
<td>-</td>
</tr>
<tr>
<td>FlowGMM Sup (All labels)</td>
<td>99.63</td>
<td>95.81</td>
<td>88.44</td>
</tr>
<tr>
<td>M1+M2 VAE SSL</td>
<td>97.60</td>
<td>63.98</td>
<td>-</td>
</tr>
<tr>
<td>DIGLM SSL</td>
<td>99.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FlowGMM Sup (n_l labels)</td>
<td>97.36</td>
<td>78.26</td>
<td>73.13</td>
</tr>
<tr>
<td>FlowGMM</td>
<td>98.94</td>
<td>82.42</td>
<td>78.24</td>
</tr>
<tr>
<td>FlowGMM-cons</td>
<td>99.0</td>
<td>86.44</td>
<td>80.9</td>
</tr>
<tr>
<td>BadGAN</td>
<td>-</td>
<td>95.75</td>
<td>85.59</td>
</tr>
<tr>
<td>Π-Model</td>
<td>-</td>
<td>94.57</td>
<td>87.64</td>
</tr>
</tbody>
</table>

Table 4. Semi-supervised classification accuracy for FlowGMM-cons and VAE M1 + M2 model (Kingma et al., 2014) on MNIST for different number of labeled data points n_l.

<table>
<thead>
<tr>
<th>Method</th>
<th>n_l = 100</th>
<th>n_l = 600</th>
<th>n_l = 1000</th>
<th>n_l = 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1+M2 VAE SSL (n_l labels)</td>
<td>96.67</td>
<td>97.41 ± 0.05</td>
<td>97.60 ± 0.02</td>
<td>97.82 ± 0.04</td>
</tr>
<tr>
<td>FlowGMM-cons (n_l labels)</td>
<td>98.2</td>
<td>98.7</td>
<td>99</td>
<td>99.2</td>
</tr>
</tbody>
</table>

5.4. Image Classification

We next evaluate the proposed method on semi-supervised image classification benchmarks on CIFAR-10, MNIST and SVHN datasets. For all the datasets, we use the RealNVP (Dinh et al., 2016) architecture. Exact implementation details are listed in the Appendix F. The supervised model is trained using the same loss (4), where all the data points are labeled ($n_u = 0$).

We present the results for FlowGMM and FlowGMM-cons in Table 3. We also report results from DIGLM (Nalisnick et al., 2019), supervised only performance on MNIST and SVHN, and the M1+M2 VAE model (Kingma et al., 2014). FlowGMM outperforms the M1+M2 model and performs better or on par with DIGLM. Furthermore, FlowGMM-cons improves over FlowGMM on all three datasets, suggesting that our proposed consistency regularization is helpful for performance.

Following Oliver et al. (2018), we evaluate FlowGMM-cons varying the number of labeled data points. Specifically, we follow the setup of Kingma et al. (2014) and train FlowGMM-cons on MNIST with 100, 600, 1000 and 3000 labeled data points. We present the results in Table 4. FlowGMM-cons outperforms the M1+M2 model of Kingma et al. (2014) in all the considered settings.†

We note that the results presented in this Section are not directly comparable with the state-of-the-art methods using GANs or consistency regularization (see e.g. Laine & Aila, 2016; Dai et al., 2017; Athiwaratkun et al., 2019; Berthelot et al., 2019), as the architecture we employ is much less powerful for classification than the ConvNet and ResNet architectures that have been designed for classification without the constraint of invertibility. We believe that invertible architectures with better inductive biases for classification may help bridge this gap; invertible residual networks (Behrmann et al., 2018; Chen et al., 2019) and invertible CNNs (Finzi et al., 2019) are some of the early examples of this class of architectures.

In general, it is difficult to directly compare FlowGMM with most existing approaches, because the types of architectures available for fully generative normalizing flows are very different than what is available to (partially) discriminative approaches or even other generative methods like VAEs. This difference is due to the invertibility requirement for normalizing flows.

†The M1+M2 model has been improved in subsequent work. E.g., ADGM (Maaløe et al., 2016) achieves 99.04% accuracy on MNIST with 100 labels, outperforming FlowGMM-cons.
6. Model Analysis

We empirically analyze different aspects of FlowGMM and highlight some useful features of this model. In Section 6.1 we discuss the calibration of predictive uncertainties produced by the model. In Section 6.2, we study the latent representations learned by FlowGMM. Finally, in Section 6.3, we discuss a feature visualization technique that can be used to interpret the features learned by FlowGMM.

6.1. Uncertainty and Calibration

In many applications, particularly where decision making is involved, it is crucial to have reliable confidences associated with predictions. In classification problems, well-calibrated models are expected to output accurate probabilities of belonging to a particular class. Reliable uncertainty estimation is especially relevant in semi-supervised learning since label information is limited during training. Guo et al. (2017), showed that modern deep learning models are highly overconfident, but could be easily recalibrated with temperature scaling. In this Section, we analyze the predictive uncertainties produced by FlowGMM. In Appendix Section G, we also consider out-of-domain data detection.

When using FlowGMM for classification, the class predictive probabilities are

\[p(y|x) = \frac{\mathcal{N}(f(x)|\mu_y, \Sigma_y)}{\sum_{k=1}^c \mathcal{N}(f(x)|\mu_k, \Sigma_k)} \]

Since we initialize Gaussian mixture means randomly from the standard normal distribution and do not train them along with the flow parameters (see Appendix B), FlowGMM predictions become inherently overconfident due to the curse of dimensionality. For example, consider two Gaussians with means sampled independently from the standard normal \(\mu_1, \mu_2 \sim \mathcal{N}(0, I) \) in \(D \)-dimensional space. If \(\mu_1 \sim \mathcal{N}(\mu_1, I) \) is a sample from the first Gaussian, then its expected squared distances to both mixture means are \(\mathbb{E} [||s_1 - \mu_1||^2] = D \) and \(\mathbb{E} [||s_1 - \mu_2||^2] = 3D \) (for a detailed derivation see Appendix Section H). In high dimensional spaces, such logits would lead to hard label assignment in FlowGMM (\(p(y|x) \approx 1 \) for exactly one class). In fact, in the experiments we observe that FlowGMM is overconfident and performs hard label assignment: predicted class probabilities are all close to either 1 or 0.

We address this problem by learning a single scalar parameter \(\sigma^2 \) for all components in the Gaussian mixture (the component \(k \) will be \(\mathcal{N}(\mu_k, \sigma^2 I) \)) by minimizing the negative log likelihood on a validation set. This way we can naturally re-calibrate the variance of the latent GMM. This procedure is also equivalent to applying temperature scaling (Guo et al., 2017) to logits \(\log \mathcal{N}(f(x)|\mu_k, \Sigma_k) \). We test FlowGMM calibration on MNIST and CIFAR datasets in the supervised setting. On MNIST we restricted the training set size to 1000 objects, since on the full dataset the model makes too few mistakes which makes evaluating calibration harder. In Table 5, we report negative log likelihood and expected calibration error (ECE, see Guo et al. (2017) for a description of this metric). We can see that re-calibrating variances of the Gaussians in the mixture significantly improves both metrics and mitigates overconfidence. The effectiveness of this simple rescaling procedure suggests that the latent space distances learned by the flow model are correlated with the probabilities of belonging to a particular class: the closer a datapoint is to the mean of a Gaussian in the latent space, the more likely it belongs to the corresponding class.

In Appendix J we discuss using mixtures of non-Gaussian latent distributions with heavy tails to address the overconfidence of FlowGMM.

6.2. Learned Latent Representations

We next analyze the latent representation space learned by FlowGMM. We examine latent interpolations between members of the same class in Figure 3(a) and between different classes in Figure 3(b) for our MNIST FlowGMM-cons model trained with \(n_t = 1k \) labels. As expected, inter-class interpolations pass through regions of low-density, leading to low quality samples but intra-class interpolations do not. These observations suggest that, as expected, the model learns to put the decision boundary in the low-density region of the data space.

In Appendix section I, we present images corresponding to the means of the Gaussian mixture and class-conditional samples from FlowGMM.
Figure 3. Visualizations of the latent space representations learned by supervised FlowGMM on MNIST. (a): Latent space interpolations between test images from the same class and (b): from different classes. Observe that interpolations between objects from different classes pass through low-density regions. (c): Histogram of distances from unlabeled data to the decision boundary for FlowGMM-cons trained on 1k labeled and 59k unlabeled data and FlowGMM Sup trained on 1k labeled data only. FlowGMM-cons is able to push the decision boundary away from the data distribution using unlabeled data. (d): Feature visualization for CIFAR-10: four test reconstructions are shown as an intermediate feature is perturbed. The value of the perturbation \(\alpha \) is shown in red vs the distribution of the channel activations. Observe that the channel visualized activates on zeroed out pixels to the left of the image mimicking the random translations applied to the training data.

Distance to Decision Boundary To explicitly test this conclusion, we compute the distribution of distances from unlabeled data to the decision boundary for FlowGMM-cons and FlowGMM Sup trained on labeled data only. In order to compute this distance exactly for an image \(x \), we find the two closest means \(\mu', \mu'' \) to the corresponding latent variable \(z = f(x) \), and evaluate the expression

\[
d(x) = \frac{\|\mu' - f(x)\|^2 - \|\mu'' - f(x)\|^2}{2\|\mu' - \mu''\|}.
\]

We visualize the distributions of the distances for the supervised and semi-supervised method in Figure 3(c). While most of the unlabeled data are far from the decision boundary for both methods, the supervised method puts a substantially larger fraction of data close to the decision boundary. For example, the distance to the decision boundary is smaller than 5 for 1089 unlabeled data points with supervised model, but only 143 data points with FlowGMM-cons. This increased separation suggests that FlowGMM-cons indeed pushes the decision boundary away from the data distribution as would be desired from the clustering principle.

6.3. Feature Visualization

Feature visualization has become an important tool for increasing the interpretability of neural networks in supervised learning. The majority of methods rely on maximizing the activations of a given neuron, channel, or layer over a parametrization of an input image with different kinds of image regularization (Szegedy et al., 2013; Olah et al., 2017; Mahendran & Vedaldi, 2015). These methods, while effective, require iterative optimization too costly for real time interactive exploration. In this Section we discuss a simple and efficient feature visualization technique that leverages the invertibility of FlowGMM. This technique can be used with any invertible model but is especially relevant for FlowGMM, where we can use feature visualization to gain insights into the classification decisions made by the model.

Since our classification model uses a flow which is a sequence of invertible transformations

\[
f(x) = f_{L}(x) := f_{L} \circ f_{L-1} \circ \cdots \circ f_{1}(x),
\]

intermediate activations can be inverted directly. This means that we can combine the methods of feature inversion and feature maximization directly by feeding in a set of input images, modifying intermediate activations arbitrarily, and inverting the representation. Given a set of activations in the \(\ell^{th} \) layer \(a_{\ell} \) for channels \(c \) and spatial extent \(i, j \), we may perturb a single neuron with

\[
x(\alpha) = f_{\ell}^{-1}(f_{\ell}(x) + \alpha \sigma_{c} \delta_{c}),
\]

where \(\delta_{c} \) is a one hot vector at channel \(c \); and \(\sigma_{c} \) is the standard deviation of the activations in channel \(c \) over the the training set and spatial locations. This procedure can be performed at real-time rates to explore the activation parametrized by \(\alpha \) and the location \((c, i, j) \) without any optimization or hyper-parameters. We show the feature visualization for intermediate layers on CIFAR-10 test images in Figure 3(d). The channel being visualized appears to activate on the zeroed pixels from random translations as well as the green channel. Analyzing the features learned by FlowGMM we can gain insight into the workings of the model.
7. Discussion

We proposed a simple and interpretable approach for end-to-end generative semi-supervised prediction with normalizing flows. While FlowGMM does not yet outperform the most powerful discriminative approaches for semi-supervised image classification (Athiwaratkun et al., 2019; Verma et al., 2019), we believe it is a promising step towards making fully generative approaches more practical for semi-supervised tasks. As we develop improved invertible architectures, the performance of FlowGMM will also continue to improve.

Moreover, FlowGMM does outperform graph-based and consistency-based baselines on tabular data including semi-supervised text classification with BERT embeddings. We believe that the results show promise for generative semi-supervised learning based on normalizing flows, especially for tabular tasks where consistency-based methods struggle.

We view interpretability and broad applicability as a strong advantage of FlowGMM. The access to latent space representations and the feature visualization technique discussed in Section 6 as well as the ability to sample from the model can be used to obtain insights into the performance of the model in practical applications.

Acknowledgements

This research is supported by an Amazon Research Award, Facebook Research, Amazon Machine Learning Research Award, NSF I-DISRE 193471, NIH RO1 DA048764-01A1, NSF IIS-1910266, and NSF 1922658 NRT-HDR: FUTURE Foundations, Translation, and Responsibility for Data Science.

References

