Semi-Supervised Learning with Normalizing Flows

A. Expectation Maximization

As an alternative to direct optimization of the likelihood (4),
we consider Expectation-Maximization algorithm (EM).
EM is a popular approach for finding maximum likelihood
estimates in mixture models. Suppose X = {z;}7; is
the observed dataset, ' = {¢;}_, are corresponding un-
observed latent variables (often denoting the component
in mixture model) and @ is a vector of model parameters.
EM algorithm consists of the two alternating steps: on
E-step, we compute posterior probabilities of latent vari-
ables for each data point ¢(¢;|z;) = P(t;|x;,0); and on
M-step, we fix ¢ and maximize the expected log likeli-
hood of the data and latent variables with respect to 6:
E,log P(X,T|0) — maxg . The algorithm can be easily
adapted to the semi-supervised setting where a subset of data
is labeled with {y! 1+ then, on E-step we have hard assign-
ment to the true mixture component q(t;|x;) = I[t; = y!]
for labeled data points.

EM is applicable to fitting the transformed mixture of Gaus-
sians. We can perform the exact E-step for unlabeled data
in the model since

q(t|x)_P($\t,9) - N(f(x)|/‘tvzt)~‘det (%)‘

~ opzl) Zile(f(x)luk,Ek)"det (g%)’
N (f () e, B0)

T N (@)l)

which coincides with the E-step of EM algorithm on Gaus-
sian mixture model. On M-step, the objective has the fol-
lowing form:

|+

Since the exact solution is not tractable due to complexity
of the flow model, we perform a stochastic gradient step to

optimize the expected log likelihood with respect to flow
parameters 6.

o ofs
log [N(fa@cé)u Lz, |2

9fo

oz

i

zn

> Eyt,jzv.0) log {N (folxi) e, 2e,)
=1

Note that unlike regular EM algorithm for mixture models,
we have Gaussian mixture parameters { (15, Xy) }$_, fixed
in our experiments, and on M-step the update of # induces
the change of z; = fy(x;) latent space representations.

Using EM algorithm for optimization in the semi-supervised
setting on MNIST dataset with 1000 labeled images, we
obtain 98.97% accuracy which is comparable to the result
for FlowGMM with regular SGD training. However, in
our experiments, we observed that on E-step, hard label
assignment happens for unlabeled points (q(¢|x) = 1 for

one of the classes) because of the high dimensionality of the
problem (see section 6.1) which affects the M-step objective
and hinders training.

B. Latent Distribution Mean and Covariance
Choices

Initialization In our experiments, we draw the mean vec-
tors p; of Gaussian mixture model randomly from the stan-
dard normal distribution y; ~ N(0, I), and set the covari-
ance matrices to identity 3; = [for all classes; we fixed
GMM parameters throughout training. However, one could
potentially benefit from data-dependent placing of means
in the latent space. We experimented with different initial-
ization methods, in particular, initializing means using the
mean point of latent representations of labeled data in each

class: p; = (1/n}) S f(ai) where 2 represents la-
beled data points from class ¢ and n} is the total number of
labeled points in that class. In addition, we can scale all
means by a scalar value fi; = rpu; to increase or decrease
distances between them. We observed that such initializa-
tion leads to much faster convergence of FlowGMM on
semi-supervised classification on MNIST dataset, however,
the final performance of the model was worse compared to
the one with random mean placing. We hypothesize that it
becomes easier for the flow model to warm up faster with
data-dependent initialization because Gaussian means are
closer to the initial latent representations, but afterwards the
model gets stuck in a suboptimal solution.

GMM training FlowGMM would become even more
flexible and expressive if we could learn Gaussian mixture
parameters in a principled way. In the current setup where
means are sampled from the standard normal distribution,
the distances between mixture components are about V2D
where D is the dimensionality of the data (see Appendix H).
Thus, classes are quite far apart from each other in the latent
space, which, as observed in Section 6.1, leads to model mis-
calibration. Training GMM parameters can further increase
interpretability of the learned latent space representations:
we can imagine a scenario in which some of the classes
are very similar or even intersecting, and it would be useful
to represent it in the latent space. We could train GMM
by directly optimizing likelihood (4), or using expectation
maximization (see Section A), either jointly with the flow
parameters or iteratively switching between training flow
parameters with the fixed GMM and training GMM with
the fixed flow. In our initial experiments on semi-supervised
classification on MNIST, training GMM jointly with the
flow parameters did not improve performance or lead to
substantial change of the latent representations. Further im-
provements require careful hyper-parameter choice which
we leave for future work.

Semi-Supervised Learning with Normalizing Flows

Table 6. Tuned learning rates for 3-Layer NN + Dropout, II-model and method on text and tabular tasks. For kNN we report the number

of neighbours. All hyper-parameters were tuned via cross-validation.

Method AG-News Yahoo Answers Hepmass Miniboone
3-Layer NN + Dropout 3e-4 3e-4 3e-4 3e-4
II-model le-3 le-4 3e-3 le-4
FlowGMM 3e-4 3e-4 3e-3 3e-4
kNN k=5 k=19 k=9 k=3

C. Synthetic Experiments

In Figure 4 we visualize the classification decision bound-
aries of FlowGMM as well as the learned mapping to the
latent space and generated samples for three different syn-
thetic datasets.

In Table 7 we compare FlowGMM and SCNF of Atanov
et al. (2019) on two synthetic datasets. For the experiments
we use 1000 data points with 5 labeled examples per class
which we select randomly. To get the error bars we run the
experiment 5 times with different labeled data.

D. Tabular data preparation and
hyperparameters

The AG-News and Yahoo Answers were constructed by
applying BERT embeddings to the text input, yielding a
768 dimensional vector for each data point. AG-News has
4 classes while Yahoo Answers has 10. The UCI datasets
Hepmass and Miniboone were constructed using the data
preprocessing from Papamakarios et al. (2017), but with the
inclusion of the removed background process class so that
the two problems can be used for binary classification. We
then subsample the fraction of background class examples
so that the dataset is balanced. For each of the datasets,
a separate validation set of size 5k was used to tune hy-
perparameters. All neural network models use the ADAM
optimizer (Kingma & Ba, 2014).

k-Nearest Neighbors: We tested both using L2 distance
and L2 with inputs normalized to unit norm, (Sin2 distance),
and the latter performed the best. The value k£ chosen in
the method was found in the range from 1 to 20, and the
optimal values for each of the datasets are shown in Table 6.

3 Layer NN + Dropout: The 3-Layer NN + Dropout base-
line network has three fully connected hidden layers with
inner dimension k = 512, ReLU nonlinearities, and dropout
with p = 0.5. We use the learning rate 3e—4 for training
the supervised baseline across all datasets.

II-Model: The II-Model uses the same network architec-
ture, and dropout for the perturbations. The first loss term is
the standard cross-entropy for labeled data. The additional

consistency loss per unlabeled data point is computed as
Lecons = ||g(2") — g(2")||?, where g is the the softmax func-
tion, and 2’ and 2" are logit vectors after two evaluations of
dropout neural network. We chose the consistency weight
A = 30 which worked the best across the datasets. The
model was trained for 50 epochs with labeled and unlabeled
batch size n, for AG-News and Yahoo Answers, and la-
beled and unlabeled batch sizes ny and 2000 for Hepmass
and Miniboone.

Label Spreading: We use the local and global consistency
method from Zhou et al. (2004), Y* = (I — aS)"1Y
where in our case Y is the matrix of labels for the la-
beled, unlabeled, and test data but filled with zeros for un-
labeled and test. S = D~'/2WD~1/2 computed from

the affinity matrix W;; = exp (—ysin®(z;,x;)) where
sin®(z;, ;) == 1 — m This is equivalent to L2

distance on the inputs normalized to unit magnitude. Be-
cause the algorithm scales poorly with number of unlabeled
points for dense affinity matrices, O(n2), we subsampled
the number of unlabeled data points to 10k and test data
points to 5% for this graph method. However, we also evalu-
ate the label spreading algorithm with a sparse kNN affinity
matrix on using a larger subset 20k of unlabeled data. The
two hyperparameters for label spreading (7/k and o) were
tuned by separate grid search for each of the datasets. In
both cases, we use the inductive variant of the algorithm
where the test data is not included in the unlabeled data.

FlowGMM: We train our FlowGMM model with a Real-
NVP normalizing flow, similar to the architectures used in
Papamakarios et al. (2017). Specifically, the model uses 7
coupling layers, with 1 hidden layer each and 256 hidden
units for the UCI datasets but 1024 for text classification.
UCI models were trained for 50 epochs of unlabeled data
and the text datasets were trained for 200 epochs of unla-
beled data. The labeled and unlabeled batch sizes are the
same as in the II-Model.

The tuned learning rates for each of the models that we used
for these experiments are shown in Table 6.

Semi-Supervised Learning with Normalizing Flows

X, Data Z, Latent Z, Latent X, Data

Two Circles

8 Gaussians

Pinwheel

() (b) (c) (d)

Figure 4. Illustration of FlowGMM on synthetic datasets: two circles (top row), eight Gaussians (middle row) and pinwheel (bottom row).
(a): Data distribution and classification decision boundaries. Unlabeled data are shown with blue circles and labeled data are shown with
colored triangles, where color represents the class. Background color visualizes the classification decision boundaries of FlowGMM.
(b): Mapping of the data to the latent space. (¢): Gaussian mixture in the latent space. (d): Samples from the learned generative model
corresponding to different classes, as shown by their color.

Semi-Supervised Learning with Normalizing Flows

Table 7. Comparison of FlowGMM and SCNF Glow+Glow of Atanov et al. (2019) on synthetic data. For both datasets we use 1000 data
points with 5 labeled examples per class. We report mean and standard deviation over 5 runs with different labeled data. FlowGMM

achieves similar accuracy and better NLL compared to SCNF.

FlowGMM SCNF Glow+Glow
Data NLL Acc (%) NLL Acc (%)
Moons 0.82 £ 0.68 994 +1.1 1.11£0.02 99.7+£0.2
Circles 0.83+0.04 97.524+0.5 1.68=+0.13 95+1.9
0.0020
MNIST MNIST
0.003
notMNIST notMNIST

0.0015

FashionMNIST

0.002
0.0010

0.001 0.0005

0.000 0.0000

-1000 0 1000 2000 3000 4000 -1000 0 1000 2000
log p(X)FashionmnisT

log p(X)mnisT

FashionMNIST

|
3000 4000

Figure 5. Left: Log likelihoods on in- and out-of-domain data for our model trained on MNIST. Center: Log likelihoods on in- and
out-of-domain data for our model trained on FashionMNIST. Right: MNIST digits get mapped onto the sandal mode of the FashionMNIST
model 75% of the time, often being assigned higher likelihood than elements of the original sandal class. Representative elements are

shown above.

E. Transfer learning

We extracted CIFAR-10 features from EfficientNet (Tan &
Le, 2019) pre-trained on ImageNet dataset, which yields
1792 dimensional representations for each image. We test
the performance of FlowGMM and baseline models in semi-
supervised classification using 250, 1000 and 4000 labeled
examples. The results are presented in Table 2. We report
mean and standard deviation of 3 runs with different splits
on labeled and unlabeled data.

The kNN and logistic regression baselines were trained us-
ing labeled data only. For each number of labeled examples
for all models, hyperparameters were chosen on a validation
data split. In most experiments, we use a setup similar to
the experiments on tabular data (see section D).

k-Nearest Neighbours: We tested kKINN with L2 distance
using unnormalized and normalized features with the value
k ranging from 1 to 20.

II-Model: For the II-Model, we used a fully-connected neu-
ral network with the inner dimension k£ = 512 and dropout
with p = 0.5. The consistency loss was computed for both
labeled and unlabeled data. We perform grid search for the
number of hidden layers, learning rate and consistency term
weight. We train the model for 30 epochs with the batch
size 50 (with 25 labeled and 25 unlabeled examples in each
batch).

FlowGMM: We train our FlowGMM model with ReaINVP

normalizing flow with fully-connected neural networks with
1 hidden layer in coupling layers. We perform the grid
search for the number of coupling layers, the number of
hidden units in fully-connected networks, and learning rate.
The model was trained for 800 epochs of unlabelled data
with batch size 50 (25 labeled and 25 unlabeled examples
in each batch).

F. Image data preparation and
hyperparameters

We use the RealNVP multi-scale architecture with 2 scales,
each containing 3 coupling layers defined by 8 residual
blocks with 64 feature maps. We use Adam optimizer
(Kingma & Ba, 2014) with learning rate 10~2 for CIFAR-10
and SVHN and 10~ for MNIST. We train the supervised
model for 100 epochs, and semi-supervised models for 1000
passes through the labeled data for CIFAR-10 and SVHN
and 3000 passes for MNIST. We use a batch size of 64
and sample 32 labeled and 32 unlabeled data points in each
mini-batch. For the consistency loss term (7), we linearly
increase the weight from 0 to 1 for the first 100 epochs
following Athiwaratkun et al. (2019). For FlowGMM and
FlowGMM-cons, we re-weight the loss on labeled data by
A = 3 (value tuned on validation in Kingma et al. (2014)
on CIFAR-10), as otherwise, we observed that the method
underfits the labeled data.

Semi-Supervised Learning with Normalizing Flows

G. Out-of-domain data detection

Density models have held promise for being able to de-
tect out-of-domain data, an especially important task for
robust machine learning systems (Nalisnick et al., 2019).
Recently, it has been shown that existing flow and autore-
gressive density models are not as apt at this task as previ-
ously thought, yielding high likelihood on images coming
from other (simpler) distributions. The conclusion put for-
ward is that datasets like SVHN are encompassed by, or
have roughly the same mean but lower variance than more
complex datasets like CIFAR-10 (Nalisnick et al., 2018).
We examine this hypothesis in the context of our flow model
which has a multi-modal latent space distribution unlike
methods considered in Nalisnick et al. (2018).

Using a fully supervised model trained on MNIST, we eval-
uate the log likelihood for data points coming from the
NotMNIST dataset, consisting of letters instead of digits,
and the FashionMNIST dataset. We then train a supervised
model on the more complex dataset FashionMNIST and
evaluate on MNIST and NotMNIST. The distribution of the
log likelihood log pxx(-) = log pz(/(-)) + log |det (5)|
on these datasets is shown in Figure 5. For the model trained
on MNIST we see that the data from Fashion MNIST and
NotMNIST is assigned lower likelihood, as expected. How-
ever, the model trained on FashionMNIST predicts higher
likelihoods for MNIST images. The majority (= 75%) of
the MNIST data points get mapped into the mode of the
FashionMNIST model corresponding to sandals, which is
the class with the largest fraction of pixels that are zero.
Similarly, for the model trained on MNIST the image of all
zeros has very high likelihood and gets mapped to the mode
corresponding to the digit 1 which has the largest fraction
of empty space.

H. Expected Distances between Gaussian
Samples

Consider two Gaussians with means sampled indepen-
dently from the standard normal 1, o ~ N(0,1) in D-
dimensional space. If s; ~ N (u1,I) is a sample from the
first Gaussian, then its expected squared distances to both
mixture means are:

E [[ls1 — pall’] = E [E [ls1 — pa [|*[1]]
D
=K ZE [(s1,i — Nl,i)ﬂ#l,i]]
=1
D
=E Z (E[S%z] - 2#?,1‘ + N?z)

i=1

=K

D
Z (1+ Mii - M%z)‘| =D

=1

E [llsy = p2)?] = E [E [lls1 — p2|*|p1, p2]]

D
Z]E [(s1,i — p2,0)? b1 ,U/Q,i]‘|

i=1

=E

D
=k [Z (L4 pf; — 2pip0i + p5 ;) | =3D

i=1

For high-dimensional Gaussians the random variables ||s; —
pi||? and ||s; — p2||* will be concentrated around their
expectations. Since the function exp(—x) decreases rapidly
to zero for positive x, the probability of s; belonging to the
first Gaussian

exp(—|ls1 — pu|*) ~
exp(—[[s1 — p1l?) + exp(—|ls1 — p2l?)
N exp(—D) B 1
- exp(—D) + exp(—3D) 1+ exp(—2D)

saturates at 1 with the growth of dimensionality D.

I. FlowGMM as generative model

[Clolo]g]olololo]o]o]
Hunnnunnnm

4]]

1 S N T Y S

—~
&
=

(b)

Figure 6. Visualizations of the latent space representations learned
by supervised FlowGMM on MNIST. (a): Images corresponding
to means of the Gaussians corresponding to different classes. (b):
Class-conditional samples from the model at a reduced temperature
T =0.25.

In Figure 6a we show the images f~*(p;) corresponding
to the means of the Gaussians representing each class. We
see that the flow correctly learns to map the means to sam-
ples from the corresponding classes. Next, in Figure 6b we
show class-conditional samples from the model. To produce
a sample from class i, we first generate z ~ N (u;, T1),
where T is a temperature parameter that controls trade-off
between sample quality and diversity; we then compute the
samples as f~1(z). We set T = 0.252 to produce sam-
ples in Figure 6b. As we can see, FlowGMM can produce
reasonable class-conditional samples simultaneously with
achieving a high classification accuracy (99.63%) on the
MNIST dataset.

Semi-Supervised Learning with Normalizing Flows

J. Non-Gaussian Latent Distributions

In Section 6.1 we showed that FlowGMM is over-confident:
it assigns class probabilities very close to 0 or 1 for all pre-
dictions. We showed that the model is over-confident due to
the properties of Gaussian distributions in high dimensions
(see Appendix H). In this section, we replace the Gaussian
base distributions in FlowGMM with a more heavy-tailed
Student-¢ distributions.

We train the model on MNIST with 1000 labeled data points
and reuse the hyper-parameters reported in Appendix F. We
use a mixture of Student-¢ distributions with iid components
and set the number of degrees of freedom in each component
to 5 and the scale to 1. The means are sampled randomly in
the same way as in the Gaussian case.

Of the 10000 test images, FlowGMM with Student-¢ based
distributions only assigned confidence less than 0.99 to 24
data points. While the confidences are less extreme com-
pared to FlowGMM with a Gaussian mixture, the model is
still severely over-confident. So, unlike temperature scaling,
replacing the Gaussian mixture with a mixture of heavier-
tailed Student-¢ distributions does not resolve the issue of
over-confidence.

K. FlowGMM under Class Imbalance

In practice, often the classes in the data are not balanced:
some classes contain more examples than others. In semi-
supervised setting, we may have the same number of labeled
examples per class, but the unlabeled data can be unevenly
distributed between classes. In this section we evaluate
FlowGMM in this setting.

We use the MNIST dataset and drop a subset of data from
some of the classes. For the classes 0 — 2 we keep all data,
for classes 3 — 5 we keep 75% of the data, for classes 6 — 8
we keep 50% of the data, and in class 9 we only keep 25% of
the data. For all classes we use 100 labeled data points per
class. We add the class probabilities p; to the FlowGMM
model:

c
pz(2) =Y pr - N (2lpk, Sr)- ()
k=1

We then train FlowGMM as usual, but also op-
timizing for the class probabilities py. The
model learned the following «class probabilities:
[0.12,0.13,0.12,0.1,0.1,0.1,0.9,0.9,0.8,0.7]. These
probabilities do not exactly reflect the proportions of the
data: FlowGMM overestimates the probability of the
class 9 that is least represented in the data. However, the
probabilities learned by FlowGMM are correlated with
the data proportions: the classes that have more unlabeled
datapoints get assigned higher probability.

