First of all, we have the following observations: In algorithm RPDC, the indices \(i(k) \), \(k = 0, 1, 2, \ldots \) are random variables. After \(k \) iterations, RPDC method generates a random output \((u^{k+1}, p^{k+1})\). Recall the definition of filtration \(\mathcal{F}_k \) which is generated by the random variable \(i(0), i(1), \ldots, i(k) \), i.e.,

\[
\mathcal{F}_k = \{i(0), i(1), \ldots, i(k)\}, \mathcal{F}_k \subset \mathcal{F}_{k+1}.
\]

Additionally, \(\mathcal{F} = (\mathcal{F}_k)_{k\in \mathbb{N}}, \mathbb{E} = \mathbb{E}(|\mathcal{F}_k|) \) is the conditional expectation w.r.t. \(\mathcal{F}_k \) and the conditional expectation in term of \(i(k) \) given \(i(0), i(1), \ldots, i(k-1) \) as \(\mathbb{E}_{i(k)} \).

Knowing \(\mathcal{F}_{k-1} = \{i(0), i(1), \ldots, i(k-1)\} \), we have:

\[
\mathbb{E}_{i(k)}[\langle \nabla_i G(u^k), (u^k - u)_{i(k)} \rangle] = \frac{1}{N} \langle \nabla G(u^k), u^k - u \rangle \\
\geq \frac{1}{N} \langle G(u^k) - G(u) \rangle,
\]

\[
A.1
\]

\[
\mathbb{E}_{i(k)}[J_i(k)(u_{i(k)}^k) - J_i(k)(u_{i(k)})] = \frac{1}{N} [J(u^k) - J(u)],
\]

\[
A.2
\]

and

\[
\mathbb{E}_{i(k)}[\langle q^k, A_i(k)(u^k - u)_{i(k)} \rangle] = \frac{1}{N} \langle q^k, A(u^k - u) \rangle.
\]

\[
A.3
\]

Secondly, reconsidering the point \(T(w^k) = (T_u(w^k), T_p(w^k)) \) generated by one deterministic iteration of APP-AL (Cohen & Zhu, 1984) for given \(w^k \),

\[
\begin{align*}
T_u(w^k) &= \arg\min_{u \in \mathcal{U}} \langle \nabla G(u^k), u \rangle + J(u) + \langle q^k, Au \rangle \\
T_p(w^k) &= p^k + \gamma [AT_u(w^k) - b],
\end{align*}
\]

with \(q^k = p^k + \gamma (A u^k - b) \), we have the following observations. The convex combination of \(u^k \) and \(T_u(w^k) \) provides the expected value of \(u^{k+1} \) as following.

\[
\mathbb{E}_{i(k)} u^{k+1} = \frac{1}{N} T_u(w^k) + (1 - \frac{1}{N}) u^k,
\]

\[
A.4
\]

Moreover, the point \(T(w^k) \) satisfies that: for any \((u, p) \in \mathcal{U} \times \mathbb{R}^m \),

\[
\begin{align*}
\langle \nabla G(w^k), u - T_u(w^k) \rangle + J(u) - J(T_u(w^k)) \\
+ \langle q^k, A(u - T_u(w^k)) \rangle \\
+ \frac{1}{2} \langle \nabla K(T_u(w^k)) - \nabla K(u^k), u - T_u(w^k) \rangle \geq 0,
\end{align*}
\]

\[
A.6
\]
1. Proof of Lemma 1

Proof. Take \(w' = w^* \) in (9), we have that
\[
\Lambda(w, w^*) = D(u^*, u) + \frac{\epsilon}{2N\rho} \| p - p^* \|^2 \\
+ \frac{\epsilon(N-1)}{N} [L(u, p) - L(u^*, p^*)] \\
+ \frac{\epsilon(N-2)\gamma}{2N} \| Au - b \|^2
\]
\[
= D(u^*, u) + \frac{\epsilon}{2N\rho} \| p - p^* \|^2 \\
+ \frac{\epsilon(N-1)}{N} [L(u, p^*) - L(u^*, p^*)] \\
+ \frac{\epsilon(N-1)\beta}{2N\gamma} \| p - p^* \|^2 + \frac{\gamma}{2} \| Au - b \|^2 \\
+ \frac{\epsilon(N-2)\gamma}{2N} \| Au - b \|^2.
\] (A.7)

(i) Since \(L(u, p^*) - L(u^*, p^*) \geq 0 \) and \(\frac{1}{2\gamma} \| p - p^* \|^2 + \frac{\gamma}{2} \| Au - b \|^2 + \langle p - p^*, Au - b \rangle \geq 0 \), (A.7) follows that
\[
\Lambda(w, w^*) \geq D(u^*, u) + \frac{\epsilon}{2N\rho} \| p - p^* \|^2 \\
- \frac{\epsilon(N-1)}{2N\gamma} \| p - p^* \|^2 - \frac{\epsilon\gamma}{2N} \| Au - b \|^2.
\]

From Assumption 2, we have \(D(u^*, u) \geq \frac{\beta}{2} \| u - u^* \|^2 \). Together with the fact \(Au^* = b \) and \(\rho < \frac{2N\gamma}{2N-1} \), above inequality follows that
\[
\Lambda(w, w^*) \geq d_1 \| w - w^* \|^2,
\]
with \(d_1 = \min \left\{ \frac{1}{2N\gamma} [N\beta - \epsilon\gamma \lambda_{\max}(A^TA)], \frac{\epsilon}{4N\gamma} \right\} \).

(ii) By Young's inequality, (A.7) follows that
\[
\Lambda(w, w^*) \\
\leq D(u^*, u) + \frac{\epsilon}{2N\rho} \| p - p^* \|^2 \\
+ \frac{\epsilon(N-1)}{N} [L(u, p^*) - L(u^*, p^*)] \\
+ \frac{\epsilon(N-1)}{N} \left[\frac{1}{2\gamma} \| p - p^* \|^2 + \frac{\gamma}{2} \| Au - b \|^2 \right] \\
+ \frac{\epsilon(N-2)\gamma}{2N} \| Au - b \|^2.
\]

From Assumption 2, we have \(D(u^*, u) \leq \frac{\beta}{2} \| u - u^* \|^2 \). Together with the fact \(Au^* = b \) and \(2\gamma > (2N-1)\rho \), above inequality follows that
\[
\Lambda(w, w^*) \leq d_2 \| w - w^* \|^2 \\
+ \frac{\epsilon(N-1)}{N} [L(u, p^*) - L(u^*, p^*)],
\]
with \(d_2 = \max \left\{ \frac{(4N-3)\epsilon}{(4N-2)N\rho}, \frac{NB + \epsilon(2N-3)\gamma \lambda_{\max}(A^TA)}{2N} \right\} \).

(iii) By the definition of \(\Lambda(w, w') \), we have
\[
\Lambda(w, w') \geq \frac{\epsilon(N-1)}{N} [L(u, p) - L(u^*, p^*)] \\
+ \frac{\epsilon(N-2)\gamma}{2N} \| Au - b \|^2 \\
= \frac{\epsilon(N-1)}{N} [L(u, p) - L(u^*, p^*)] \\
+ \frac{\epsilon(N-2)\gamma}{2N} \| Au - b \|^2 \\
\geq \frac{\epsilon(N-1)}{N} [L(u, p) - L(u^*, p^*)] \\
+ \frac{\epsilon(N-2)\gamma}{2N} \| Au - b \|^2 \\
\geq -d_3 \| p - p^* \|^2,
\] (A.8)

with \(d_3 = \frac{\epsilon(N-1)^2}{2\gamma N(N-2)} \).

\qed
2. Proof of Lemma 2

Proof. Step 1: Estimate $\frac{1}{N} \mathbb{E}_{\tilde{i}(k)} \left[L(u^{k+1}, q^k) - L(u, q^k) \right]$;
For all $u \in U$, the unique solution u^{k+1} of the primal problem of RPDC is characterized by the following variational inequality:

$$
\langle \nabla_i(u^k) G(u^k), (u^{k+1} - u, u_{i(k)}) \rangle + J_i(u^k) - J_i(u_{i(k)})
+ (q^k, A_i(u^{k+1} - u_{i(k)}))
+ \frac{1}{\epsilon} \langle \nabla K(u^{k+1}) - \nabla K(u^k), u^{k+1} - u \rangle \leq 0,
$$

which follows that

$$
\langle \nabla_i(u^k) G(u^k), (u^k - u - (u^k - u^{k+1})), u_{i(k)} \rangle
+ J_i(u^k) - J_i(u_{i(k)})
+ (q^k, A_i(u^k - u^{k+1})), u_{i(k)}
+ \frac{1}{\epsilon} \langle \nabla K(u^{k+1}) - \nabla K(u^k), u^{k+1} - u \rangle \leq 0. \tag{A.9}
$$

Observing that for any separable mapping $\psi(u) = \sum_{i=1}^{N} \psi_i(u_i)$, we have $\psi_i(u^k) - \psi_i(u^{k+1}) = \psi(u^k) - \psi(u^{k+1})$. Therefore, (A.9) follows that

$$
\langle \nabla_i(u^k) G(u^k), (u^k - u - (u^k - u^{k+1})), u_{i(k)} \rangle
+ J_i(u^k) - J_i(u_{i(k)})
+ (q^k, A_i(u^k - u^{k+1})), u_{i(k)}
+ \frac{1}{\epsilon} \langle \nabla K(u^{k+1}) - \nabla K(u^k), u^{k+1} - u \rangle \leq 0. \tag{A.10}
$$

Taking expectation with respect to $i(k)$ on both sides of (A.10), together the condition expectation (A.1)-(A.3), we get

$$
\frac{1}{N} \mathbb{E}_{\tilde{i}(k)} \left[L(u^k, q^k) - L(u, q^k) \right]
\leq \mathbb{E}_{\tilde{i}(k)} \left\{ \langle \nabla G(u^k), u^k - u^{k+1} \rangle + J(u^k) - J(u^{k+1})
+ (q^k, A(u^k - u^{k+1})),
+ \frac{1}{\epsilon} \langle \nabla K(u^{k+1}) - \nabla K(u^k), u^{k+1} - u \rangle \right\}. \tag{A.11}
$$

or

$$
\frac{1}{N} \mathbb{E}_{\tilde{i}(k)} \left[L(u^{k+1}, q^k) - L(u, q^k) \right]
\leq \mathbb{E}_{\tilde{i}(k)} \left\{ \langle \nabla G(u^k), u^k - u^{k+1} \rangle + J(u^k) - J(u^{k+1})
+ (q^k, A(u^k - u^{k+1})),
+ \frac{1}{\epsilon} \langle \nabla K(u^{k+1}) - \nabla K(u^k), u - u^{k+1} \rangle \right\}. \tag{A.12}
$$

By the gradient Lipschitz of G, term a_1 in (A.12) is bounded by

$$
a_1 = \langle \nabla G(u^k), u^k - u^{k+1} \rangle
\leq G(u^k) - G(u^{k+1}) + \frac{B_G}{2} \| u^k - u^{k+1} \|^2. \tag{A.13}
$$

The simple algebraic operation and Assumption 2 follows that

$$
a_2 = \frac{1}{\epsilon} \langle \nabla K(u^{k+1}) - \nabla K(u^k), u - u^{k+1} \rangle
= \frac{1}{\epsilon} \left[D(u, u^k) - D(u, u^{k+1}) - D(u^{k+1}, u^k) \right]
\leq \frac{1}{\epsilon} \left[D(u, u^k) - D(u, u^{k+1}) - \frac{\beta}{2\epsilon} \| u^k - u^{k+1} \|^2 \right]. \tag{A.14}
$$

Combining (A.12)-(A.14), we obtain that

$$
\frac{\epsilon}{N} \mathbb{E}_{\tilde{i}(k)} \left[L(u^{k+1}, q^k) - L(u, q^k) \right]
\leq \left[D(u, u^k) - \mathbb{E}_{\tilde{i}(k)} D(u, u^{k+1}) \right]
+ \frac{\epsilon(N-1)}{N} \left[L(u^k, q^k) - L(u^{k+1}, q^k) \right]
\leq \frac{\beta - \epsilon B_G}{2} \| u^k - u^{k+1} \|^2 \right\}. \tag{A.15}
$$
Since $p^{k+1} = p^k + \rho (Au^{k+1} - b)$ and $q^k = p^k + \gamma (Au^k - b)$, term α_3 in (A.15) follows that

$$
\alpha_3 = L(u^k, q^k) - L(u^{k+1}, q^{k+1})
= L(u^k, p^k) - L(u^{k+1}, p^{k+1}) + \langle q^k - p^k, Au^k - b \rangle
+ \rho\|Au^{k+1} - b\|^2 - \gamma\|Au^k - b, Au^{k+1} - b\|
= L(u^k, p^k) - L(u^{k+1}, p^{k+1}) + \frac{\gamma}{2}\|Au^k - b\|^2
+ (\rho - \frac{\gamma}{2})\|Au^{k+1} - b\|^2
+ \gamma\lambda_{\text{max}}(A^TA)\|u^k - u^{k+1}\|^2. \tag{A.16}
$$

Combining (A.15)-(A.16), we have that

$$
\leq \frac{\epsilon}{N}E_{i(k)}[L(u^{k+1}, q^{k}) - L(u, q^k)]
+ \frac{\epsilon(N-1)}{2N}\|[L(u^k, p^k) - L(u^{k+1}, p^{k+1})]
- \beta - \epsilon B\epsilon + \frac{\epsilon}{2}\|u^k - u^{k+1}\|^2
+ \frac{\epsilon(\rho - \gamma)(N-1)}{2N}\|Au^{k+1} - b\|^2
+ \frac{\epsilon(\rho - \gamma)(N-1)}{2N}\|Au^{k+1} - b\|^2 \tag{A.17}
$$

Step 2: Estimate $\frac{\epsilon}{N}E_{i(k)}[L(u^{k+1}, p) - L(u^{k+1}, q^k)]$

$$
L(u^{k+1}, p) - L(u^{k+1}, q^k)
= \langle p - q^k, Au^{k+1} - b \rangle
= \frac{1}{\rho^2}[\|p - p^k\|^2 - \|p - p^{k+1}\|^2 + \|p^k - p^{k+1}\|^2]
- \gamma\|Au^k - b, Au^{k+1} - b\|
= \frac{1}{2\rho^2}[\|p - p^k\|^2 - \|p - p^{k+1}\|^2 + \|p^k - p^{k+1}\|^2]
+ \frac{\gamma}{2}\|A(u^k - u^{k+1})\|^2
- \frac{\gamma}{2}\|Au^k - b\|^2
- \frac{\gamma}{2}\|Au^{k+1} - b\|^2
= \frac{1}{2\rho^2}[\|p - p^k\|^2 - \|p - p^{k+1}\|^2 + \|p^k - p^{k+1}\|^2]
+ \frac{\gamma}{2}\|A(u^k - u^{k+1})\|^2
- \frac{\gamma}{2}\|Au^k - b\|^2
+ \frac{\gamma}{2}\|Au^{k+1} - b\|^2. \tag{A.18}
$$

Multiply $\frac{\epsilon}{N}$ on both side of above inequality, we obtain that:

$$
\leq \frac{\epsilon}{2N\rho^2}[\|p - p^k\|^2 - \|p - p^{k+1}\|^2]
+ \frac{\epsilon\gamma}{2N}\lambda_{\text{max}}(A^TA)\|u^k - u^{k+1}\|^2
- \frac{\epsilon\gamma}{2N}\|Au^k - b\|^2
+ \frac{\epsilon(\rho - \gamma)}{2N}\|Au^{k+1} - b\|^2. \tag{A.19}
$$

Taking expectation with respect to $i(k)$ on both side of inequality (A.19), we have

$$
\leq \frac{\epsilon}{2N\rho^2}[\|p - p^k\|^2 - E_{i(k)}\|p - p^{k+1}\|^2]
+ \frac{\epsilon\gamma}{2N}\lambda_{\text{max}}(A^TA)\|u^k - u^{k+1}\|^2
- \frac{\epsilon\gamma}{2N}\|Au^k - b\|^2
+ \frac{\epsilon(\rho - \gamma)}{2N}E_{i(k)}\|Au^{k+1} - b\|^2. \tag{A.20}
$$
Step 3: Estimate the variance of $\Lambda(u^k, w)$.
Summing inequalities (A.17) and (A.20), with $d_4 = \max\left\{\frac{\beta - \epsilon[B_G + \gamma \lambda_{max}(A^T A)]}{\epsilon(2\gamma - \epsilon)N}, \frac{1}{\epsilon[2\gamma - (2N - 1)\mu]}\right\}$, we have that

$$
\Lambda(u^k, w) - \mathbb{E}_{i(k)} \Lambda(u^{k+1}, w)
\geq \mathbb{E}_{i(k)} \left\{ \frac{\epsilon}{N} \left[L(u^{k+1}, p) - L(u, q^k) \right] + \frac{\beta - \epsilon[B_G + \gamma \lambda_{max}(A^T A)]}{2} \|u^k - u^{k+1}\|^2
+ \frac{\epsilon(2\gamma - (2N - 1)\mu)}{2N} \|Au^{k+1} - b\|^2 \right\}
$$

Then we have the result of Lemma 2. \(\square\)

By Jensen’s inequality, (A.21) follows that

$$
\Lambda(u^k, w) - \mathbb{E}_{i(k)} \Lambda(u^{k+1}, w)
\geq \frac{\epsilon}{N} \mathbb{E}_{i(k)} \left[L(u^{k+1}, p) - L(u, q^k) \right] + d_4 \left\{ \frac{1 + 2\gamma^2 \lambda_{max}(A^T A)}{N^2} \|u^k - u^{k+1}\|^2
+ \frac{2\gamma^2 \|Au^k - b\|^2}{2N} \right\}. \tag{A.22}
$$

Since $\lambda_{max}(A^T A) \|u^k - T_u(w^k)\|^2 \geq \|A[u^k - T_u(w^k)]\|^2$ and $\mathbb{E}_{i(k)} \Lambda(u^{k+1}, w)$, \(\epsilon \mathbb{E}_{i(k)} [L(u^{k+1}, p) - L(u, q^k)] \]

$$
\geq \frac{\epsilon}{N} \mathbb{E}_{i(k)} \left[L(u^{k+1}, p) - L(u, q^k) \right]
+ d_4 \left\{ \frac{1 + 2\gamma^2 \lambda_{max}(A^T A)}{N^2} \|u^k - u^{k+1}\|^2
+ \frac{2\gamma^2 \|Au^k - b\|^2}{2N} \right\} \geq \frac{\epsilon}{N} \mathbb{E}_{i(k)} \left[L(u^{k+1}, p) - L(u, q^k) \right]
+ d_4 \|u^k - T_w(w^k)\|^2. \tag{A.23}
$$

\[\text{Since } \mathbb{E}_{i(k)} u^{k+1} - u^k = \frac{1}{N} [T_u(w^k) - w] \text{ in (A.4)}, \text{ (A.22) yields that} \]

$$
\Lambda(u^k, w) - \mathbb{E}_{i(k)} \Lambda(u^{k+1}, w)
\geq \frac{\epsilon}{N} \mathbb{E}_{i(k)} \left[L(u^{k+1}, p) - L(u, q^k) \right]
+ d_4 \left\{ \frac{1 + 2\gamma^2 \lambda_{max}(A^T A)}{N^2} \|u^k - T_u(w^k)\|^2
+ \frac{2\gamma^2 \|Au^k - b\|^2}{2N} \right\}. \tag{A.23}
$$

Supplementary material for the paper: “Linear Convergence of RPDC Method for Large-scale LCCP”
3. Proof of Theorem 1 (Almost surely convergence)

Proof.

(i) Take \(w = w^* \) in Lemma 2, we have
\[
\Lambda(w^k, w^*) \geq \frac{\epsilon}{N} \mathbb{E}_i(k) L(u^{k+1}, u^*) + d_4 \| w^k - T(w^k) \|^2.
\]
(A.24)

Observe that \(L(u^{k+1}, u^*) - L(u^*, q^k) \geq 0 \). From statement (i) of Lemma 1, we have that \(\Lambda(w^k, w^*) \) is non-negative. By the Robbins-Siegmund Lemma (Robbins & Siegmund, 1971), we obtain that \(\lim_{k \to +\infty} \Lambda(w^k, w^*) \) almost surely exists, \(\sum_{k=0}^{+\infty} \| w^k - T(w^k) \|^2 < +\infty \) a.s.

(ii) Since \(\lim_{k \to +\infty} \Lambda(w^k, w^*) \) almost surely exists, thus \(\Lambda(w^k, w^*) \) is almost surely bounded. Thanks statement (i) of Lemma 1, it implies the sequences \(\{ w^k \} \) is almost surely bounded.

(iii) From statement (i) we have that
\[
\lim_{k \to +\infty} \| w^k - T(w^k) \| = 0 \quad \text{a.s.}
\]
By variational inequality system (A.6), we have that any cluster point of a realization sequence generated by RPDC almost surely is a saddle point of Lagrangian for (P).

\[\square \]

4. Proof of Theorem 2 (Expected primal suboptimality and expected feasibility)

Proof.

(i) Let \(h(w, w') = \Lambda(w, w') + \frac{d_4}{N} \Lambda(w, w^*) \). By statement (i) and (iii) in Lemma 1, we have \(h(w, w') \geq 0 \). From Lemma 2, we obtain that
\[
\mathbb{E}_i(k) \frac{\epsilon}{N} [L(u^{k+1}, p) - L(u, q^k)] \leq \Lambda(w^k, w) - \mathbb{E}_i(k) \Lambda(u^{k+1}, w)
\]
Taking expectation with respect to \(\mathcal{F}_t, t > k \) for above inequality, we obtain that
\[
\mathbb{E}_{\mathcal{F}_t} [L(u^{k+1}, p) - L(u, q^k)] \leq \mathbb{E}_{\mathcal{F}_t} [\Lambda(w^k, w) - \Lambda(u^{k+1}, w)]. \quad (A.25)
\]
Take \(w = w^* \) in (A.25), we obtain
\[
0 \leq \mathbb{E}_{\mathcal{F}_t} [\Lambda(w^k, w^*) - \Lambda(u^{k+1}, w^*)]. \quad (A.26)
\]
By the combination of (A.25) and (A.26), it follows
\[
\mathbb{E}_{\mathcal{F}_t} [L(u^{k+1}, p) - L(u, q^k)] \leq \mathbb{E}_{\mathcal{F}_t} [h(w^k, w) - h(u^{k+1}, w)] \quad (A.27)
\]
From the definition of \(\bar{u}_t \) and \(\bar{p}_t \), we have \(\bar{u}_t \in \mathbb{U} \) and \(\bar{p}_t \in \mathbb{R}^m \). From the convexity of set \(\mathbb{U}, \mathbb{R}^m \) and the function \(L(u', p) - L(u, p') \) is convex in \(u' \) and linear in \(p' \), for all \(u \in \mathbb{U} \) and \(p \in \mathbb{R}^m \), we have that
\[
\mathbb{E}_{\mathcal{F}_t} [L(\bar{u}_t, p) - L(u, \bar{p}_t)] \leq \mathbb{E}_{\mathcal{F}_t} \frac{1}{t+1} \sum_{k=0}^{t} [L(u^{k+1}, p) - L(u, q^k)] \leq \frac{N h(w^0, w)}{\epsilon(t+1)}. \quad (A.28)
\]

(ii) If \(\mathbb{E}_{\mathcal{F}_t} \| A\bar{u}_t - b \| = 0 \), statement (ii) is obviously. Otherwise, \(\mathbb{E}_{\mathcal{F}_t} \| A\bar{u}_t - b \| \neq 0 \) i.e., there is set \(\mathbb{W} \) such that \(P\{ \omega \in \mathbb{W} | \| A\bar{u}_t - b \| \neq 0 \} > 0 \). Let \(\hat{p} \) be a random vector:
\[
\hat{p} (\omega) = \begin{cases}
0 & \omega \notin \mathbb{W} \\
\frac{M(A\bar{u}_t - b)}{\| A\bar{u}_t - b \|} & \omega \in \mathbb{W}
\end{cases} \quad (A.29)
\]
Noted that for \(\omega \notin \mathbb{W} \), we have \(\hat{p}(\omega) = 0 \) and \(\| A\bar{u}_t - b \| = 0 \). Thus
\[
\langle \hat{p}(\omega), A\bar{u}_t - b \rangle = M \| A\bar{u}_t - b \| = 0. \quad (A.30)
\]
Otherwise, for \(\omega \in \mathbb{W} \), we have that
\[
\langle \hat{p}(\omega), A\bar{u}_t - b \rangle = M \| A\bar{u}_t - b \|. \quad (A.31)
\]
Together (A.30) and (A.31), we have
\[\langle \hat{p}, A \bar{u}_t - b \rangle = M \| A \bar{u}_t - b \| \] (A.32)

Moreover, since \(Au^* = b \), we have
\[
\begin{align*}
L(\bar{u}_t, \hat{p}) - L(u^*, \bar{p}_t) &= F(\bar{u}_t) + \langle \hat{p}, A \bar{u}_t - b \rangle - F(u^*) \\
&= F(\bar{u}_t) - F(u^*) + M \| A \bar{u}_t - b \|. \tag{A.33}
\end{align*}
\]

Moreover, by taking \(u = \bar{u}_t \) in the right hand side of saddle point inequality, we have
\[
F(\bar{u}_t) - F(u^*) \geq - \| p^* \| \| A \bar{u}_t - b \|. \tag{A.34}
\]

Combine (A.33) and (A.34), we have that
\[
\| A \bar{u}_t - b \| \leq \frac{L(\bar{u}_t, \hat{p}) - L(u^*, \bar{p}_t)}{(M - \| p^* \|)}. \tag{A.35}
\]

Take expectation on both side of above inequality, we have that
\[
\mathbb{E}_{\mathcal{F}_t} \| A \bar{u}_t - b \| \leq \mathbb{E}_{\mathcal{F}_t} \frac{L(\bar{u}_t, \hat{p}) - L(u^*, \bar{p}_t)}{(M - \| p^* \|)} \leq \mathbb{E}_{\mathcal{F}_t} \frac{N h(w^0, (u^*, \hat{p}))}{(M - \| p^* \|)} \epsilon(t + 1) \leq \mathbb{E}_{\mathcal{F}_t} \frac{N d_5}{(M - \| p^* \|)} \epsilon(t + 1) \tag{A.35}
\]

where \(d_5 = \sup_{\| p \| < M} h(u^0, (u^*, p)) \).

(iii) Again from (A.33), (A.34) and statement (ii), statement (iii) is coming.
6. Proof of Theorem 3 (Global strong metric subregularity of $H(w)$ implies linear convergence of RPDC)

Proof. Considering the reference point $T(w^k)$ associated with given point w^k, we have that
\[
\begin{align*}
0 & \in \nabla G(w^k) + \partial J(T_u(w^k)) + A^T q^k + \frac{1}{2} \left[\nabla K(T_u(w^k)) - \nabla K(w^k) \right] + \mathcal{N}_U(T_u(w^k)) \\
0 & = b - AT_u(w^k) + \frac{1}{2} \begin{bmatrix} T_p(w^k) - p^k \end{bmatrix} \end{align*}
\]
(A.36)

Thus
\[
v(T(w^k)) = \left(\nabla G(T_u(w^k)) - \nabla G(w^k) + A^T(T_p(w^k) - q^k) \right) + \frac{1}{2} \left[p^k - T_p(w^k) \right] \in H(T(w^k)).
\]

From Assumption 1 and 2, there is $\delta > 0$ such that
\[
\|v(T(w^k))\|^2 \leq \delta\|w^k - T(w^k)\|^2. \tag{A.37}
\]

Since $H(w)$ is global strong metric subregular at w^* for 0, then
\[
\|T(w^k) - w^*\| \leq \epsilon\text{dist}(0, H(T(w^k)))
\leq \epsilon\|v(T(w^k))\|
\leq \epsilon\sqrt{\delta\|w^k - T(w^k)\|}. \tag{A.38}
\]

Since $\|w^k - w^*\| \leq \|T(w^k) - w^*\| + \|w^k - T(w^k)\|$, we have
\[
\|w^k - w^*\| \leq (\epsilon\sqrt{\delta} + 1)\|w^k - T(w^k)\|. \tag{A.39}
\]

From statement (iii) of Lemma 3, we have that
\[
\phi(w^k, w^*) = E_{i(k)}(w^{k+1}, w^*) \geq d_4\|w^k - T(w^k)\|^2 + \frac{\epsilon}{N} [L(u^k, p^*) - L(u^*, p^*)]
\geq d_4 \left(\epsilon\sqrt{\delta} + 1 \right)^2 \|w^k - w^*\|^2
+ \frac{\epsilon}{N} [L(u^k, p^*) - L(u^*, p^*)] \quad \text{(by (A.39))}
\geq \delta' \{d_2\|w^k - w^*\|^2 + \epsilon[L(u^k, p^*) - L(u^*, p^*)]\}
\geq \delta' \phi(w^k, w^*). \quad \text{(by (i) of Lemma 3)} \tag{A.40}
\]

where
\[
\delta' = \min\left\{ \frac{d_4}{\max\{d_2(\epsilon\sqrt{\delta} + 1)^2, d_4 + 1\}}, \frac{1}{N+1} \right\} < 1.
\]

It follows that
\[
E_{i(k)}(w^{k+1}, w^*) \leq \alpha \phi(w^k, w^*). \tag{A.41}
\]

where $\alpha = 1 - \delta' \in (0, 1)$. Taking expectation with respect to \mathcal{F}_{k+1} for above inequality, we obtain that
\[
E_{\mathcal{F}_{k+1}}(w^{k+1}, w^*) \leq \alpha^{k+1} \phi(w^0, w^*). \tag{A.42}
\]

\[\square \]
8. Proof of Proposition 1

Proof. By the piecewise linear of \(H(w) \) and Zheng and Ng (Zheng & Ng, 2014), we have that \(H(w) \) is global metric subregular at \(w^* \) for 0. Since \(Q \) is positive-definite, then problem (SVM) has unique solution \(u^* \). Hence, to show \(H(w) \) is global strongly metric subregular, we need to prove uniqueness of the Lagrangian multiplier for (SVM).

Suppose there are two multipliers \(p \) and \(p' \), thus we have

\[
\begin{align*}
0 & \in Qu^* - 1_n + py + N_{[0,c]^n}(u^*) \\
0 & \in Qu^* - 1_n + p'y + N_{[0,c]^n}(u^*)
\end{align*}
\]

Since there exists at least one component \(u_i^* \) of optimal solution \(u^* \) satisfies \(0 < u_i^* < c \), then \(\xi_i = N_{[0,c]}(u_i^*) = 0 \).

Thus, we have that

\[
\begin{align*}
Q_j u^* - 1 + y_j p &= 0 \\
Q_j u^* - 1 + y_j p' &= 0 \quad (A.43)
\end{align*}
\]

We conclude that \(p = p' \). Therefore \(H(w) \) is globally strongly metric subregular. \(\square \)

9. Proof of Proposition 2

Proof. By the piecewise linear of \(H(w) \) and Zheng and Ng (Zheng & Ng, 2014), we have that \(H(w) \) is global metric subregular at \(w^* \) for 0. Since \(\Sigma \) is positive-definite, then problem (MLP) has unique solution \(u^* \). Hence, to show \(H(w) \) is global strongly metric subregular, we need to prove uniqueness of the Lagrangian multiplier for (MLP). Suppose there are two pair of multipliers \((p_1, p_2)\) and \((p'_1, p'_2)\), thus we have

\[
\begin{align*}
0 & \in \Sigma u^* + \lambda \partial ||u^*|| + p_1 \mu + p_2 1_n \\
0 & \in \Sigma u^* + \lambda \partial ||u^*|| + p'_1 \mu + p'_2 1_n
\end{align*}
\]

Since \(u_i^* \neq 0, u_j^* \neq 0 \), thus \(\xi_i = \partial ||u_i^*|| \) and \(\xi_j = \partial ||u_j^*|| \) are single valued and we have

\[
\begin{align*}
\Sigma_i u^* + \lambda \xi_i + \mu_i p_1 + p_2 &= 0 \\
\Sigma_i u^* + \lambda \xi_i + \mu_i p'_1 + p'_2 &= 0 \quad (A.44)
\end{align*}
\]

\[
\begin{align*}
\Sigma_j u^* + \lambda \xi_j + \mu_j p_1 + p_2 &= 0 \\
\Sigma_j u^* + \lambda \xi_j + \mu_j p'_1 + p'_2 &= 0 \quad (A.45)
\end{align*}
\]

It follows that

\[
\begin{align*}
\mu_i (p_1 - p'_1) + p_2 - p'_2 &= 0 \\
\mu_j (p_1 - p'_1) + p_2 - p'_2 &= 0 \quad (A.46)
\end{align*}
\]

Since \(\mu_i \neq \mu_j \), we conclude that \(p_1 = p'_1 \) and \(p_2 = p'_2 \). Therefore \(H(w) \) is globally strongly metric subregular. \(\square \)

References

