
Appendices

A Further Details from the Harmonic Analysis Framework for
Boolean Functions

A.1 Discrete derivative

For a Boolean function f the discrete derivative on the i-th latent dimension with a basis function φi is
defined as

Dφif(z) = σi
f(z1, ..., zi = +1, ..., zn)− f(z1, ..., zi = −1, ..., zn)

2
. (1)

The Fourier expansion of the discrete derivative equals Dφi
f(z) =

∑
S3i f̂

(p)(S)φS\i(z), The i-th discrete
derivative is independent of zi.

B Harmonic Analysis of Existing Gradient Estimates

B.1 Proof of Lemma 1

Proof. We first derive a relation between the true gradient ∂pi Ep(z)[f(z)] and the degree-1 Fourier coefficients

f̂ (p)(i). This is an extension of the Margulis-Russo formula (Margulis, 1974; Russo, 1982; O’Donnell, 2014).
We show that

∂pi Ep(z)[f(z)] =
2

σi
f̂ (p)(i).

We follow O’Donnell (2014, §8.4). We work with two representations of the Boolean function f . The
first is the Fourier expansion of f under the uniform Bernoulli distribution. This is also the representation
obtained by expressing f as a polynomial in zi. Since the domain of the function f is the Boolean cube, the
polynomial representation is multilinear. That is f(z) =

∑
S⊆[n] f̂(S)

∏
j∈S zj . To avoid confusion and to

differentiate the representation from the Boolean function, we use f (u)(z) to denote this representation in the
following. Note that since this representation is a polynomial it is defined over any input in Rn. In particular,

E[f(z)] = E[
∑
S⊆[n]

f̂(S)
∏
j∈S

zj ] =
∑
S⊆[n]

f̂(S)
∏
j∈S

E[zj ] = f (u)(µ1, . . . , µn)

The second representation we use is the Fourier expansion of the Boolean function f under p(x). We
denote this by f (p).

The following relation follows from the fact that when working with the Fourier representation, f(z) is
multilinear, Ep(z)[zi] = µi and the linearity of expectation.

Ep(z)[f (p)(z1, . . . , zn)] = Ep(z)[f(z1, . . . , zn)] = f (u)(µ1, . . . , µn). (2)

As the partial derivative of f (u) w.r.t. µi is equivalent to discrete derivative of f (u) w.r.t. zi, ∂µif
(u)(µ) =

Dzif
(u)(µ), and keeping in mind that φi = (zi − µi)/σi, we have that

Dzif
(u)(µ) = Ep(z)[Dzif

(p)(z1, . . . , zn)] (from (2)) (3)

=
1

σi
Ep(z)[Dφi

f (p)(z1, . . . , zn)] (set φi = (zi − µi)/σi, then chain rule) (4)

=
1

σi
f̂ (p)(i) (5)
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We then note that the discrete derivative of f w.r.t. zi, Dzif
(u)(µ), from the left hand side of (3), is

equivalent to the partial derivative of f w.r.t. µi, ∂µif
(u)(µ).

1

σi
f̂ (p)(i) = Dzif

(u)(µ) = ∂µi
f (u)(µ) (6)

=
1

2
∂pif

(u)(µ) (set µi = 2pi − 1, then chain rule) (7)

=
1

2
∂pi Ep(z)[f (p)(z)] (from (2)) (8)

We then note that the right hand side in (8) is 1
2 times the true gradient.

Rest of the proof of Lemma 1. We derive the Taylor expansions for the true gradient as well as the
Straight-Through gradient estimator. Then, we prove the lemma by comparing the two Taylor expansions.

By expanding the function f in terms of its φS basis and focusing on the i-th dimension, we have that

f̂ (p)(i)φi = f̂ (p)(i)
zi − µi
σi

= f̂ (p)(i)
zi
σi
− f̂ (p)(i)µi

σi
(9)

The first term, f̂ (p)(i) ziσi
, is the term corresponding to {i} in the Fourier expansion of f under pi→1/2(z).

That is

f̂ (p→1/2)(i) =
1

σi
f̂ (p)(i) (10)

This follows from the fact that when moving from p(z) to pi→1/2(z), (i) we have that φi = zi, and (ii) no
other term under the p(z) expansion contributes to the zi term under the pi→1/2(z) expansion.

The true gradient for the i-th dimension is given by

∂pi Ep(z)[f(z)] = 2
f̂ (p)(i)

σi
= 2f̂ (p→1/2)(i) (11)

Next, we will derive the Taylor expansions of the true and the Straight-Through gradients. The Taylor
expansion of f(z) for zi around 0 is

f(z) = c0 + c1zi + c2z
2
i + c3z

3
i + c4z

4
i + c5z

5
i + ..., (12)

where ckk! = ∂kzif(z)|zi=0 are the Taylor coefficients. All ck are a function of zj , j 6= i.
Let’s first focus on the true gradient. Since we work with binary ±1 values, we have that zki = 1 for even

k and zki = zi for odd k. This will influence the even and the odd terms of the Taylor expansions. Specifically,
for the Taylor expansion of the true gradient we have from (11) that

∂pi [Ep(z)[f(z)]] = 2f̂ (p→1/2)(i) = 2Epi→1/2(z)[(c0 + c1zi + c2z
2
i + · · · )zi] (13)

= 2Epi→1/2(z)[c0zi + c1z
2
i + ciz

3
i + · · · ] (14)

= 2Epi→1/2(z)[c0zi + c1 + c2zi + c3 + · · · ] (z2ji = 1, z2j+1
i = zi,Epi→1/2(z)[zi] = 0) (15)

= 2Ep(z\i)[c1 + c3 + c5 + · · · ] (16)

The expression in (16) implies that the true gradient with respect to the pi is the expected sum of the odd
Taylor coefficients. Here we note that the although final expression in (16) can also be derived by a finite
difference method, it does not make explicit, as in (15), the dependence on zi and µi of the term inside the
expectation.

Now, let’s focus on the Straight-Through gradient. Taking the derivative of the Taylor expansion in (12)
w.r.t. to zi, we have

∂zif(z) = c1 + 2c2zi + 3c3z
2
i + 4c4z

3
i + 5c5z

4
i + ... (17)
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The Straight-Through gradient is the expectation of (17) in the i-th dimension, that is

Ep(z)[∂zif(z)] = Ep(z)[c1 + 2c2zi + 3c3z
2
i + 4c4z

3
i + 5c5z

4
i + · · · ] (18)

= Ep(z\i)[c1 + 3c3 + 5c5 + · · · ] + Ep(z\i)[2c2 + 4c4 + · · · ]µi (z2ji = 1, z2j+1
i = zi,Ep(zi)[zi] = µi) (19)

By comparing the expansion of the Straight-Through gradient in (19) and the expansion of the true
gradient in (16),

bias(p)(gi
ST

) = Ep(z)[∂zif(z)]− ∂pi Ep(z)[f(z)] (20)

= Ep(z\i)

 ∑
k=2j+1,j>0

(k − 2)ck

 + Ep(z\i)

 ∑
k=2j,j>0

kck

µi. (21)

Taking the expectation in (18) under pi→1/2 causes the final term in (21) to vanish leaving

bias(p
i→1/2)(gi

ST
) = Ep(z\i)

 ∑
k=2j+1,j>0

(k − 2)ck

 . (22)

C Low-bias Gradient Estimates

C.1 Lowering Bias by Representation Scaling

The Fourier basis does not depend on the particular input representation and any two-valued set, say {−t, t}
can be used as the Boolean representation. The choice of a representation, however, does affect the bias
as we show next. As a concrete example, we let our input representation be zi ∈ {−1/2, 1/2}n, where
pi = p(zi = +1/2). While we can change the input representation like that, in general the Fourier coefficients
will be different than for the {−1,+1} representation. Letting h(zi) = 2zi ∈ {−1, 1}, the functions φi are

now given as φi = h(zi)−µi

σi
.

Next, we write the Taylor series of f in terms of h(zi),

f(z) = c0 + c1zi + c2z
2
i + c3z

3
i + c4z

4
i + c5z

5
i + · · · (23)

= c0 +
c1
2
h(zi) +

c2
22
h(zi)

2 +
c3
23
h(zi)

3 +
c4
24
h(zi)

4 +
c5
25
h(zi)

5 + · · · (24)

Under the pi→1/2 distribution, we still have that Ep→1/2[h(zi)] = 0 and the degree-1 Fourier coefficients are:

f̂ (p→1/2)(i) = Epi→1/2(z)[f(z)h(zi)] = Epi→1/2(z)

[c1
2

+
c3
23

+
c5
25

+ · · ·
]

(25)

In (25) we still get the odd terms c1, c3 albeit decayed by inverse powers of 2. Following the same process as
for the unscaled straight-through gradient, we have that

1

2
Epi→1/2 [∂zif(z)] = Epi→1/2

[c1
2

+
3c3
23

+
5c5
25

+ · · ·
]

(26)
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D Efficiency Comparison

Table 1: Wall clock times for various gradient estimators on MNIST.

Method #Eval. Walltime in sec./Epoch

2 layers 5 layers

REBAR 3 45.3 205.15
ST 1 2.86 4.96
Gumbel 1 3.27 6.14
DARN 1 2.96 5.36

FouST 1 3.1 5.67

E Extra Experiments

E.1 Experiments on MNIST
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Figure 1: Training ELBO for the one (left) and two (right) stochastic layer nonlinear models on MNIST

Table 2: Test set performance with increasing stochastic depth on MNIST.

Method Stochastic Layers Hidden Units per Layer Test ELBO

Rebar 2 200 -94.43
FouST 2 200 -91.95
FouST 3 200 -89.11
FouST 8 500 -87.31
FouST 20 500 -87.86

E.2 Ablation Experiments

To further judge the effect of our proposed modifications to Straight-Through, we performed ablation
experiments where we separately applied scaling and noise to the importance-corrected Straight-Through.
These experiments were performed on the single stochastic layer MNIST and OMNIGLOT models.
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The results of the ablation experiments are shown in figure 2. From the figure it can be seen that scaling
alone improves optimization in both cases and noise alone helps in the case of MNIST. Noise alone results in
a worse ELBO in the case of OMNIGLOT, but gives an improvement when combined with scaling. From
these results we conclude that the proposed modifications are effective.
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Figure 2: Ablations for the one stochastic layer nonlinear model on OMNIGLOT (left) and MNIST (right)

E.3 Experiments on mini-ImageNet

We evaluate FouST on more complex neural networks with deeper and wider stochastic layers. We perform
experiments with convolutional architectures on the larger scale and more realistic mini-ImageNet (Vinyals
et al., 2016). As the scope of this work is not architecture search, we present two architectures inspired from
residual networks (He et al., 2016) of varying stochastic depth and width. The first one is a wide S-ResNet,
S-ResNet-40-2-800, and has 40 deterministic (with encoder and decoder combined), 2 stochastic layers, and
800 channels for the last stochastic layer. The second, S-ResNet-80-11-256, is very deep with 80 deterministic
and 11 stochastic layers, and a last stochastic layer with 256 channels. Architecture details are given in
Appendix F.2. In this setup, training with existing unbiased estimators is intractable.

We present results in Fig. 3. We compare against DARN, since we were unable to train the models with
Gumbel-Softmax.

We observe that FouST is able to achieve better training ELBO’s in both cases. We conclude that FouST
allows for scaling up the complexity of stochastic neural networks in terms of stochastic depth and width.
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Figure 3: Training ELBO on mini-ImageNet
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F Architectures Used in the experiments

F.1 Architectures for MNIST and Omniglot

The encoder and decoder networks in this case are MLP’s with one or more stochastic layers. Each stochastic
layer is preceded by 2 deterministic layers with a tanh activation function.

We chose learning rates from {1 × 10−4, 2 × 10−4, 4 × 10−4, 6 × 10−4}, Gumbel-Softmax temperatures
from {0.1, 0.5}, and noise interval length for FouST from {0.1, 0.2}.

F.2 Architectures for CIFAR-10 and mini-ImageNet

For these dataset we use a stochastic variant or ResNets (He et al., 2016). Each network is composed of
stacks of layers. Each layer has (i) one regular residual block as in He et al. (2016), (ii) each stack has
one stochastic layer at the end. The stacks are followed by a final stochastic layer in the encoder. We do
downsampling at most once per stack. We used two layers per stack. For the decoder the structure of the
encoder is reversed and convolutions are replaced by transposed convolutions.

For CIFAR we downsample twice so that the last stochastic layer has feature maps of size 8x8. We use
between 3 and 5 ResNet blocks per stack. We choose learning rate from {1× 10−4, 2× 10−4, 3× 10−4}, the
FouST scaling parameter from {0.5, 0.8, 0.9}, and the uniform interval is scaled by a factor from {0.01, 0.05, 0.1}
For CIFAR-10, we use the Adam (Kingma & Ba, 2017) optimizer and an discretized logistic mixture output
model (Salimans et al., 2017) with 10 mixture components.

For mini-ImageNet we downsample thrice. We optimize using SGD and choose the learning rate from
{2× 10−7, 3× 10−7, 4× 10−7, 5× 10−7}. We use a Gaussian output for this model with learned mean and
variance.
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