Monte-Carlo tree search as regularized policy optimization

Jean-Bastien Grill 1 Florent Altché 1 Yunhao Tang 1,2 Thomas Hubert 3 Michal Valko 1 Ioannis Antonoglou 3 Rémi Munos 1

Abstract

The combination of Monte-Carlo tree search (MCTS) with deep reinforcement learning has led to significant advances in artificial intelligence. However, AlphaZero, the current state-of-the-art MCTS algorithm, still relies on hand-crafted heuristics that are only partially understood. In this paper, we show that AlphaZero’s search heuristics, along with other common ones such as UCT, are an approximation to the solution of a specific regularized policy optimization problem. With this insight, we propose a variant of AlphaZero which uses the exact solution to this policy optimization problem, and show experimentally that it reliably outperforms the original algorithm in multiple domains.

1. Introduction

Policy gradient is at the core of many state-of-the-art deep reinforcement learning (RL) algorithms. Among many successive improvements to the original algorithm (Sutton et al., 2000), regularized policy optimization encompasses a large family of such techniques. Among them trust region policy optimization is a prominent example (Schulman et al., 2015; 2017; Abdolmaleki et al., 2018; Song et al., 2019). These algorithmic enhancements have led to significant performance gains in various benchmark domains (Song et al., 2019).

As another successful RL framework, the AlphaZero family of algorithms (Silver et al., 2016; 2017b;a; Schrittwieser et al., 2019) have obtained groundbreaking results on challenging domains by combining classical deep learning (He et al., 2016) and RL (Williams, 1992) techniques with Monte-Carlo tree search (Kocsis and Szepesvári, 2006). To search efficiently, the MCTS action selection criteria takes inspiration from bandits (Auer, 2002). Interestingly, AlphaZero employs an alternative handcrafted heuristic to achieve super-human performance on board games (Silver et al., 2016). Recent MCTS-based MuZero (Schrittwieser et al., 2019) has also led to state-of-the-art results in the Atari benchmarks (Bellemare et al., 2013).

Our main contribution is connecting MCTS algorithms, in particular the highly-successful AlphaZero, with MPO, a state-of-the-art model-free policy-optimization algorithm (Abdolmaleki et al., 2018). Specifically, we show that the empirical visit distribution of actions in AlphaZero’s search procedure approximates the solution of a regularized policy-optimization objective. With this insight, our second contribution a modified version of AlphaZero that comes significant performance gains over the original algorithm, especially in cases where AlphaZero has been observed to fail, e.g., when per-search simulation budgets are low (Hamrick et al., 2020).

In Section 2, we briefly present MCTS with a focus on AlphaZero and provide a short summary of the model-free policy-optimization. In Section 3, we show that AlphaZero (and many other MCTS algorithms) computes approximate solutions to a family of regularized policy optimization problems. With this insight, Section 4 introduces a modified version of AlphaZero which leverages the benefits of the policy optimization formalism to improve upon the original algorithm. Finally, Section 5 shows that this modified algorithm outperforms AlphaZero on Atari games and continuous control tasks.

2. Background

Consider a standard RL setting tied to a Markov decision process (MDP) with state space $\mathcal{X}$ and action space $\mathcal{A}$. At a discrete round $t \geq 0$, the agent in state $x_t \in \mathcal{X}$ takes action $a_t \in \mathcal{A}$ given a policy $\pi \sim \pi(\cdot|s_t)$, receives reward $r_t$, and transitions to a next state $x_{t+1} \sim p(\cdot|x_t, a_t)$. The RL problem consists in finding a policy which maximizes the discounted cumulative return $\mathbb{E}_\pi \left[ \sum_{i=0}^{\infty} \gamma^i r_i \right]$ for a discount factor $\gamma \in (0, 1)$. To scale the method to large environments, we assume that the policy $\pi_\theta(a|x)$ is parameterized by a neural network $\theta$. 

\begin{equation}
\mathbb{E}_\pi \left[ \sum_{i=0}^{\infty} \gamma^i r_i \right]
\end{equation}

\begin{equation}
\pi_\theta(a|x)
\end{equation}

\begin{equation}
\text{parameterized by a neural network } \theta.
\end{equation}

\begin{equation}
\text{parameterized by a neural network } \theta.
\end{equation}

\begin{equation}
\text{parameterized by a neural network } \theta.
\end{equation}

\begin{equation}
\text{parameterized by a neural network } \theta.
\end{equation}

\begin{equation}
\text{parameterized by a neural network } \theta.
\end{equation}
2.1. AlphaZero

We focus on the AlphaZero family, comprised of AlphaGo (Silver et al., 2016), AlphaGo Zero (Silver et al., 2017b), AlphaZero (Silver et al., 2017a), and MuZero (Schrittwieser et al., 2019), which are among the most successful algorithms in combining model-free and model-based RL. Although they make different assumptions, all of these methods share the same underlying search algorithm, which we refer to as AlphaZero for simplicity.

From a state $x$, AlphaZero uses MCTS (Browne et al., 2012) to compute an improved policy $\hat{\pi}(\cdot|x)$ at the root of the search tree from the prior distribution predicted by a policy network $\pi_{\theta}(\cdot|x)$; see Eq. 3 for the definition. This improved policy is then distilled back into $\pi_{\theta}$ by updating $\theta$ as $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathbb{E}_{x}[D(\hat{\pi}(\cdot|x), \pi_{\theta}(\cdot|x))]$ for a certain divergence $D$. In turn, the distilled parameterized policy $\pi_{\theta}$ informs the next local search by predicting priors, further improving the local policy over successive iterations. Therefore, such an algorithmic procedure is a special case of generalized policy improvement (Sutton and Barto, 1998).

One of the main differences between AlphaZero and previous MCTS algorithms such as UCT (Kocsis and Szepesvári, 2006) is the introduction of a learned prior $\pi_{\theta}$ and value function $v_{\theta}$. Additionally, AlphaZero’s search procedure applies the following action selection heuristic.

$$\arg \max_{a} \left[ Q(x, a) + c \cdot \pi_{\theta}(a|x) \cdot \sqrt{\frac{\sum_{b} n(x, b)}{1 + n(x, a)}} \right], \tag{1}$$

where $c$ is a numerical constant, $n(x, a)$ is the number of times that action $a$ has been selected from state $x$ during search, and $Q(x, a)$ is an estimate of the Q-function for state-action pair $(x, a)$ computed from search statistics and using $v_{\theta}$ for bootstrapping.

Intuitively, this selection criteria balances exploration and exploitation, by selecting the most promising actions (high Q-value $Q(x, a)$ and prior policy $\pi_{\theta}(a|x)$) or actions that have rarely been explored (small visit count $n(x, a)$). We denote by $N_{\text{sim}}$ the simulation budget, i.e., the search is run with $N_{\text{sim}}$ simulations. A more detailed presentation of AlphaZero is in Appendix A; for a full description of the algorithm, refer to Silver et al. (2017a).

2.2. Policy optimization

Policy optimization aims at finding a globally optimal policy $\pi_{\theta}$, generally using iterative updates. Each iteration updates the current policy $\pi_{\theta}$ by solving a local maximization problem of the form

$$\pi_{\theta}' \triangleq \arg \max_{\pi \in \mathcal{S}} Q_{\pi_{\theta}}^{T} y - R(y, \pi_{\theta}), \tag{2}$$

where $Q_{\pi_{\theta}}$ is an estimate of the Q-function, $\mathcal{S}$ is the $|\mathcal{A}|$-dimensional simplex and $R : \mathbb{S}^{2} \rightarrow \mathbb{R}$ a convex regularization term (Neu et al., 2017; Grill et al., 2019; Geist et al., 2019). Intuitively, Eq. 2 updates $\pi_{\theta}$ to maximize the value $Q_{\pi_{\theta}}^{T} y$ while constraining the update with a regularization term $R(y, \pi_{\theta})$.

Without regularizations, i.e., $R = 0$, Eq. 2 reduces to policy iteration (Sutton and Barto, 1998). When $\pi_{\theta}$ is updated using a single gradient ascent step towards the solution of Eq. 2, instead of using the solution directly, the above formulation reduces to (regularized) policy gradient (Sutton et al., 2000; Levine, 2018).

Interestingly, the regularization term has been found to stabilize, and possibly to speed up the convergence of $\pi_{\theta}$. For instance, trust region policy search algorithms (TRPO, Schulman et al., 2015; MPO Abdolmaleki et al., 2018; V-MPO, Song et al., 2019), set $R$ to be the KL-divergence between consecutive policies $KL[y, \pi_{\theta}]$; maximum entropy RL (Ziebart, 2010; Fox et al., 2015; O’Donoghue et al., 2016; Haarnoja et al., 2017) sets $R$ to be the negative entropy of $y$ to avoid collapsing to a deterministic policy.

3. MCTS as regularized policy optimization

In Section 2, we presented AlphaZero that relies on model-based planning. We also presented policy optimization, a framework that has achieved good performance in model-free RL. In this section, we establish our main claim namely that AlphaZero’s action selection criteria can be interpreted as approximating the solution to a regularized policy-optimization objective.

3.1. Notation

First, let us define the empirical visit distribution $\hat{\pi}$ as

$$\hat{\pi}(a|x) \triangleq \frac{1 + n(x, a)}{|\mathcal{A}| + \sum_{b} n(x, b)}. \tag{3}$$

Note that in Eq. 3, we consider an extra visit per action compared to the acting policy and distillation target in the original definition (Silver et al., 2016). This extra visit is introduced for convenience in the upcoming analysis (to avoid divisions by zero) and does not change the generality of our results.

We also define the multiplier $\lambda_{N}$ as

$$\lambda_{N}(x) \triangleq c \cdot \sqrt{\frac{\sum_{b} n_{b}}{|\mathcal{A}| + \sum_{b} n_{b}}}. \tag{4}$$

1. We note here that terminologies such as prior follow Silver et al. (2017a) and do not relate to concepts in Bayesian statistics.

2. Schrittwieser et al. (2019) uses a $c$ that has a slow-varying dependency on $\sum_{b} n(x, b)$, which we omit here for simplicity, as it was the case of Silver et al. (2017a).
where the shorthand notation \( n_a \) is used for \( n(x, a) \), and \( N(x) \triangleq \sum_b n_b \) denotes the number of visits to \( x \) during search. With this notation, the action selection formula of Eq. 1 can be written as selecting the action \( a^* \) such that

\[
a^*(x) \triangleq \arg\max_a \left[ Q(x, a) + \lambda_N \cdot \frac{\pi_\theta(a|x)}{\bar{\pi}(a|x)} \right],
\]

Remark The factor \( \lambda_N \) is a decreasing function of \( N \). Asymptotically, \( \lambda_N = \Theta(1/\sqrt{N}) \). Therefore, the influence of the regularization term decreases as the number of simulation increases, which makes \( \bar{\pi} \) rely increasingly more on search Q-values \( q \) and less on the policy prior \( \pi_\theta \). As we explain next, \( \lambda_N \) follows the design choice of AlphaZero, and may be justified by a similar choice done in bandits (Bubeck et al., 2012).

3.3. AlphaZero as policy optimization

We now analyze the action selection formula of AlphaZero (Eq. 1). Interestingly, we show that this formula, which was handcrafted\(^5\) independently of the policy optimization research, turns out to result in a distribution \( \bar{\pi} \) that closely relates to the policy optimization solution \( \hat{\pi} \).

The main formal claim of this section that AlphaZero’s search policy \( \bar{\pi} \) tracks the exact solution \( \hat{\pi} \) of the regularized policy optimization problem of Definition 1. We show that Proposition 1 and Proposition 2 support this claim from two complementary perspectives.

First, with Proposition 1, we show that \( \bar{\pi} \) approximately follows the gradient of the concave objective for which \( \hat{\pi} \) is the optimum.

**Proposition 1.** For any action \( a \in \mathcal{A} \), visit count \( n \in \mathbb{R}^A \), policy prior \( \pi_\theta > 0 \) and Q-values \( q \),

\[
a^* = \arg\max_a \left[ \frac{\partial}{\partial n_a} \left( q^T \hat{\pi} - \lambda_N KL[\pi_\theta, \hat{\pi}] \right) \right],
\]

with \( a^* \) being the action realizing Eq. 1 as defined in Eq. 5 and \( \hat{\pi} = (1 + n)/(|\mathcal{A}| + \sum_b n_b) \) as defined in Eq. 3, is a function of the count vector extended to real values.

The only thing that the search algorithm eventually influences through the tree search is the visit count distribution. If we could do an infinitesimally small update, then the greedy update maximizing Eq. 8 would be in the direction of the partial derivative of Eq. 9. However, as we are restricted by a discrete update, then increasing the visit count as in Proposition 1 makes \( \bar{\pi} \) track \( \hat{\pi} \). Below, we further characterize the selected action \( a^* \) and assume \( \pi_\theta > 0 \).

**Proposition 2.** The action \( a^* \) realizing Eq. 1 is such that

\[
\bar{\pi}(a^*|x) \leq \hat{\pi}(a^*|x).
\]

To acquire intuition from Proposition 2, note that once \( a^* \) is selected, its count \( n_{a^*} \) increases and so does the total count \( N \). As a result, \( \hat{\pi}(a^*) \) increases (in the order of \( O(1/N) \)) and further approximates \( \bar{\pi}(a^*) \). As such, Proposition 2 shows that the action selection formula encourages

\(^5\)Nonetheless, this heuristic could be interpreted as loosely inspired by bandits (Rosin, 2011), but was adapted to accommodate a prior term \( \pi_\theta \).
the shape of \( \hat{\pi} \) to be close to that of \( \bar{\pi} \), until in the limit the two distributions coincide.

Note that Proposition 1 and Proposition 2 are a special case of a more general result that we formally prove in Appendix D.1. In this particular case, the proof relies on noticing that

\[
\arg\max_a \left[ q_a + c \cdot \pi_\theta(a) \cdot \frac{\sqrt{\sum_b n_b}}{1 + n_a} \right] \quad (1)
\]

\[
= \arg\max_a \left[ \pi_\theta(a) \cdot \left( \frac{1}{\bar{\pi}(a)} - \frac{1}{\hat{\pi}(a)} \right) \right] \quad (11)
\]

Then, since \( \sum_a \bar{\pi}(a) = \sum_a \hat{\pi}(a) \) and \( \bar{\pi} > 0 \) and \( \hat{\pi} > 0 \), there exists at least one action for which \( 0 < \bar{\pi}(a) \leq \hat{\pi}(a) \), i.e., \( 1/\bar{\pi}(a) - 1/\hat{\pi}(a) \geq 0 \).

To state a formal statement on \( \hat{\pi} \) approximating \( \bar{\pi} \), in Appendix D.3 we expand the conclusion under the assumption that \( \bar{\pi} \) is a constant. In this case we can derive a bound for the convergence rate of these two distributions as \( N \) increases over the search,

\[
||\bar{\pi} - \hat{\pi}||_\infty \leq |A| - 1 \frac{1}{|A| + N}, \quad (12)
\]

with \( O(1/N) \) matching the lowest possible approximation error (see Appendix D.3) among discrete distributions of the form \( (k_i/N)_i \) for \( k_i \in \mathbb{N} \).

### 3.4. Generalization to common MCTS algorithms

Besides AlphaZero, UCT (Kocsis and Szepesvári, 2006) is another heuristic with a selection criteria inspired by UCB, defined as

\[
\arg\max_a \left[ q_a + c \cdot \sqrt{\frac{\log(\sum_b n_b)}{1 + n_a}} \right] \quad (13)
\]

Contrary to AlphaZero, the standard UCT formula does not involve a prior policy. In this section, we consider a slightly modified version of UCT with a (learned) prior \( \pi_\theta \), as defined in Eq. 14. By setting the prior \( \pi_\theta \) to the uniform distribution, we recover the original UCT formula,

\[
\arg\max_a \left[ q_a + c \cdot \sqrt{\frac{\log(\sum_b n_b)}{1 + n_a}} \right] \quad (14)
\]

Using the same reasoning as in Section 3.3, we now show that this modified UCT formula also tracks the solution to a regularized policy optimization problem, thus generalizing our result to commonly used MCTS algorithms.

First, we introduce \( \bar{\pi}_{\text{UCT}} \), which is tracked by the UCT visit distribution, as:

\[
\bar{\pi}_{\text{UCT}} \triangleq \arg\max_y q^T y - \lambda_N^{\text{UCT}} D(y, \pi_\theta), \quad (15)
\]

where \( D(x, y) \triangleq 2 - 2 \sum_i \sqrt{x_i \cdot y_i} \) is an \( f \)-divergence

\[\lambda_N^{\text{UCT}}(x) \triangleq c \cdot \sqrt{\log \sum_b n_b \frac{1}{|A| + \sum_b n_b}}.\]

Similar to AlphaZero, \( \lambda_N^{\text{UCT}} \) behaves\(^7\) as \( O(1/\sqrt{N}) \) and therefore the regularization gets weaker as \( N \) increases.

We can also derive tracking properties between \( \bar{\pi}_{\text{UCT}} \) and the UCT empirical visit distribution \( \hat{\pi}_{\text{UCT}} \) as we did for AlphaZero in the previous section, with Proposition 3; as in the previous section, this is a special case of the general result with any \( f \)-divergence in Appendix D.1.

**Proposition 3.** We have that

\[
\arg\max_a \left[ q_a + c \cdot \sqrt{\frac{\log(\sum_b n_b)}{1 + n_a}} \right] \quad (16)
\]

\[
= \arg\max_a \left[ \sqrt{\pi_\theta(a)} \cdot \left( \frac{1}{\hat{\pi}(a)} - \frac{1}{\bar{\pi}_{\text{UCT}}(a)} \right) \right]
\]

\[
\text{and} \quad a^*_{\text{UCT}} = \arg\max_a \left[ \frac{\partial}{\partial n_a} (q^T \bar{\pi} - \lambda_N^{\text{UCT}} D(\pi_\theta, \bar{\pi})) \right].
\]

To sum up, similar to the previous section, we show that UCT’s search policy \( \bar{\pi}_{\text{UCT}} \) tracks the exact solution \( \bar{\pi}_{\text{UCT}} \) of the regularized policy optimization problem of Eq. 15.

### 4. Algorithmic benefits

In Section 3, we introduced a distribution \( \bar{\pi} \) as the solution to a regularized policy optimization problem. We then showed that AlphaZero, along with general MCTS algorithms, select actions such that the empirical visit distribution \( \hat{\pi} \) actively approximates \( \bar{\pi} \). Building on this insight, below we argue that \( \bar{\pi} \) is preferable to \( \hat{\pi} \), and we propose three complementary algorithmic changes to AlphaZero.

#### 4.1. Advantages of using \( \bar{\pi} \) over \( \hat{\pi} \)

MCTS algorithms produce Q-values as a by-product of the search procedure. However, MCTS does not directly use search Q-values to compute the policy, but instead uses the visit distribution \( \hat{\pi} \) (search Q-values implicitly influence \( \bar{\pi} \) by guiding the search). We postulate that this degrades the performance especially at low simulation budgets \( N_{\text{sim}} \) for several reasons:

\(^6\)In particular \( D(x, y) \geq 0, D(x, y) = 0 \iff x = y \) and \( D(x, y) \) is jointly convex in \( x \) and \( y \) (Csiszár, 1964; Liese and Vajda, 2006).

\(^7\)We ignore logarithmic terms.
1. When a promising new (high-value) leaf is discovered, many additional simulations might be needed before this information is reflected in $\hat{\pi}$; since $\hat{\pi}$ is directly computed from Q-values, this information is updated instantly.

2. By definition (Eq. 3), $\hat{\pi}$ is the ratio of two integers and has limited expressiveness when $N_{\text{sim}}$ is low, which might lead to a sub-optimal policy; $\bar{\pi}$ does not have this constraint.

3. The prior $\pi_\theta$ is trained against the target $\hat{\pi}$, but the latter is only improved for actions that have been sampled at least once during search. Due to the deterministic action selection (Eq. 1), this may be problematic for certain actions that would require a large simulation budget to be sampled even once.

The above downsides cause MCTS to be highly sensitive to simulation budgets $N_{\text{sim}}$. When $N_{\text{sim}}$ is high relative to the branching factor of the tree search, i.e., number of actions, MCTS algorithms such as AlphaZero perform well. However, this performance drops significantly when $N_{\text{sim}}$ is low as showed by Hamrick et al. (2020); see also e.g., Figure 3.D by Schrittwieser et al. (2019).

We illustrate the effect of simulation budgets in Figure 1, where $x$-axis shows the budgets $N_{\text{sim}}$ and $y$-axis shows the episodic performance of algorithms applying $\hat{\pi}$ vs. $\bar{\pi}$; see the details of these algorithms in the following sections. We see that $\bar{\pi}$ is highly sensitive to simulation budgets while $\hat{\pi}$ performs consistently well across all budget values.

4.2. Proposed improvements to AlphaZero

We have pointed out potential issues due to $\hat{\pi}$. We now detail how to use $\bar{\pi}$ as a replacement to resolve such issues. Appendix B.3 shows how to compute $\bar{\pi}$ in practice.

**ACT:** acting with $\bar{\pi}$  
AlphaZero acts in the real environment by sampling actions according to $a \sim \bar{\pi}(\cdot|x_{\text{root}})$. Instead, we propose to sample actions according to $a \sim \bar{\pi}(\cdot|x_{\text{root}})$. We label this variant as **ACT**.

**SEARCH:** searching with $\bar{\pi}$  
During search, we propose to stochastically sample actions according to $\bar{\pi}$ instead of the deterministic action selection rule of Eq. 1. At each node $x$ in the tree, $\bar{\pi}(\cdot)$ is computed with Q-values and total visit counts at the node based on Definition 1. We label this variant as **SEARCH**.

**LEARN:** learning with $\bar{\pi}$  
AlphaZero computes locally improved policy with tree search and distills such improved policy into $\pi_\theta$. We propose to use $\bar{\pi}$ as the target policy in place of $\hat{\pi}$ to train our prior policy. As a result, the parameters are updated as

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathbb{E}_{x_{\text{root}}} \left[ \text{KL}[\bar{\pi}(\cdot|x_{\text{root}}), \pi_\theta(\cdot|x_{\text{root}})] \right],$$

where $x_{\text{root}}$ is sampled from a prioritized replay buffer as in AlphaZero. We label this variant as **LEARN**.

**ALL:** combining them all  
We refer to the combination of these three independent variants as **ALL**. Appendix B provides additional implementation details.

Remark  
Note that AlphaZero entangles search and learning, which is not desirable. For example, when the action selection formula changes, this impacts not only intermediate search results but also the root visit distribution $\bar{\pi}(\cdot|x_{\text{root}})$, which is also the learning target for $\pi_\theta$. However, the **LEARN** variant partially disentangles these components. Indeed, the new learning target is $\bar{\pi}(\cdot|x_{\text{root}})$ which is computed from search Q-values, rendering it less sensitive to e.g., the action selection formula.

4.3. Connections between AlphaZero and model-free policy optimization.

Next, we make the explicit link between proposed algorithmic variants and existing policy optimization algorithms. First, we provide two complementary interpretations.

**LEARN as policy optimization**  
For this interpretation, we treat **SEARCH** as a blackbox, i.e., a subroutine that takes a root node $x$ and returns statistics such as search Q-values.

Recall that policy optimization (Eq. 2) maximizes the objective $\approx Q_{\pi_\theta}^y$ with the local policy $y$. There are many model-free methods for the estimation of $Q_{\pi_\theta}$, ranging from Monte-Carlo estimates of cumulative returns $Q_{\pi_\theta} \approx \sum_{t \geq 0} \gamma^t r_t$.
(Schulman et al., 2015; 2017) to using predictions from a Q-value critic $Q_{\pi_{Q}} \approx q_{\theta}$ trained with off-policy samples (Abdolmaleki et al., 2018; Song et al., 2019). When solving $\pi$ for the update (Eq. 17), we can interpret LEARN as a policy optimization algorithm using tree search to estimate $Q_{\pi_{Q}}$. Indeed, LEARN could be interpreted as building a Q-function critic $q_{\theta}$ with a tree-structured inductive bias. However, this inductive bias is not built-in a network architecture (Silver et al., 2017c; Farquhar et al., 2017; Oh et al., 2017; Guez et al., 2018), but constructed online by an algorithm, i.e., MCTS. Next, LEARN computes the locally optimal policy $\pi$ to the regularized policy optimization objective and distills $\pi$ into $\pi_{\theta}$. This is exactly the approach taken by MPO (Abdolmaleki et al., 2018).

**SEARCH as policy optimization** We now unpack the algorithmic procedure of the tree search, and show that it can also be interpreted as policy optimization.

During the forward simulation phase of SEARCH, the action at each node $x$ is selected by sampling $a \sim \pi(\cdot|x)$. As a result, the full imaginary trajectory is generated consistently according to policy $\pi$. During backward updates, each encountered node $x$ receives a backup value from its child node, which is an exact estimate of $Q_{\pi}(x, a)$. Finally, the local policy $\pi(\cdot|x)$ is updated by solving the constrained optimization problem of Definition 1, leading to an improved policy over previous $\pi(\cdot|x)$. Overall, with $N_{\text{sim}}$ simulated trajectories, SEARCH optimizes the root policy $\pi(\cdot|x_{\text{root}})$ and root search Q-values, by carrying out $N_{\text{sim}}$ sequences of MPO-style updates across the entire tree. A highly related approach is to update local policies via policy gradients (Anthony et al., 2019).

By combining the above two interpretations, we see that the ALL variant is very similar to a full policy optimization algorithm. Specifically, on a high level, ALL carries out MPO updates with search Q-values. These search Q-values are also themselves obtained via MPO-style updates within the tree search. This paves the way to our major revelation stated next.

**Observation 1.** ALL can be interpreted as regularized policy optimization. Further, since $\hat{\pi}$ approximates $\pi$, AlphaZero and other MCTS algorithms can be interpreted as approximate regularized policy optimization.

5. Experiments

In this section, we aim to address several questions: (1) How sensitive are state-of-the-art hybrid algorithms such as AlphaZero to low simulation budgets and can the ALL variant provide a more robust alternative? (2) What changes among ACT, SEARCH, and LEARN are most critical in this variant performance? (3) How does the performance of the ALL variant compare with AlphaZero in environments with large branching factors?

**Baseline algorithm** Throughout the experiments, we take MuZero (Schrittwieser et al., 2019) as the baseline algorithm. As a variant of AlphaZero, MuZero applies tree search in learned models instead of real environments, which makes it applicable to a wider range of problems. Since MuZero shares the same search procedure as AlphaGo, AlphaGo Zero, and AlphaZero, we expect the performance gains to be transferable to these algorithms. Note that the results below were obtained with a scaled-down version of MuZero, which is described in Appendix B.1.

**Hyper-parameters** The hyper-parameters of the algorithms are tuned to achieve the maximum possible performance for baseline MuZero on the Ms Pacman level of the Atari suite (Bellemare et al., 2013), and are identical in all experiments with the exception of the number of simulations per step $N_{\text{sim}}$.

10Note that there are several differences from typical model-free implementations of policy optimization: most notably, unlike a fully-parameterized policy, the tree search policy is tabular at each node. This also entails that the MPO-style distillation is exact.
MCTS as regularized policy optimization

5.1. Search with low simulation budgets

Since AlphaZero solely relies on the $\hat{\pi}$ for training targets, it may misbehave when simulation budgets $N_{\text{sim}}$ are low. On the other hand, our new algorithmic variants might perform better in this regime. To confirm these hypotheses, we compare the performance of MuZero and the ALL variant on the Ms Pacman level of the Atari suite at different levels of simulation budgets.

**Result**  In Figure 2, we compare the episodic return of ALL vs. MuZero averaged over 8 seeds, with a simulation budget $N_{\text{sim}} = 5$ and $N_{\text{sim}} = 50$ for an action set of size $|A| \leq 18$; thus, we consider that $N_{\text{sim}} = 5$ and $N_{\text{sim}} = 50$ respectively correspond to a low and high simulation budgets relative to the number of actions. We make several observations: (1) At a relatively high simulation budget, $N_{\text{sim}} = 50$, same as Schrittwieser et al. (2019), both MuZero and ALL exhibit reasonably close levels of performance; though ALL obtains marginally better performance than MuZero; (2) At low simulation budget, $N_{\text{sim}} = 5$, though both algorithms suffer in performance relative to high budgets, ALL significantly outperforms MuZero both in terms of learning speed and asymptotic performance; (3) Figure 6 in Appendix C.1 shows that this behavior is consistently observed at intermediate simulation budgets, with the two algorithms starting to reach comparable levels of performance when $N_{\text{sim}} \geq 24$ simulations. These observations confirm the intuitions from Section 3. (4) We provide results on a subset of Atari games in Figure 3, which show that the performance gains due to $\bar{\pi}$ over $\hat{\pi}$ are also observed in other levels than Ms Pacman; see Appendix C.2 for results on additional levels. This subset of levels are selected based on the experiment setup in Figure S1 of Schrittwieser et al. (2019). Importantly, note that the performance gains of ALL are consistently significant across selected levels, even at a higher simulation budget of $N_{\text{sim}} = 50$.

5.2. Ablation study

To better understand which component of the ALL contributes the most to the performance gains, Figure 4 presents the results of an ablation study where we compare individual component LEARN, SEARCH, or ACT.

**Result**  The comparison is shown in Figure 4, we make several observations: (1) At $N_{\text{sim}} = 5$ (Figure 4a), the main improvement comes from using the policy optimization solution $\bar{\pi}$ as the learning target (LEARN variant); using $\bar{\pi}$ during search or acting leads to an additional marginal improvement; (2) Interestingly, we observe a different behavior at $N_{\text{sim}} = 50$ (Figure 4b). In this case, using $\bar{\pi}$ for learning or acting does not lead to a noticeable improvement. However,
the superior performance of ALL is mostly due to sampling according to $\bar{\pi}$ during search (SEARCH).

The improved performance when using $\bar{\pi}$ as the learning target (LEARN) illustrates the theoretical considerations of Section 3: at low simulation budgets, the discretization noise in $\hat{\pi}$ makes it a worse training target than $\bar{\pi}$, but this advantage vanishes when the number of simulations per step increases. As predicted by the theoretical results of Section 3, learning and acting using $\bar{\pi}$ and $\hat{\pi}$ becomes equivalent when the simulation budget increases.

On the other hand, we see a slight but significant improvement when sampling the next node according to $\bar{\pi}$ during search (SEARCH) regardless of the simulation budget. This could be explained by the fact that even at high simulations budget, the SEARCH modification also affect deeper node that have less simulations.

5.3. Search with large action space – continuous control

The previous results confirm the intuitions presented in Sections 3 and 4; namely, the ALL variation greatly improves performance at low simulation budgets, and obtain marginally higher performance at high simulation budgets. Since simulation budgets are relative to the number of action, these improvements are critical in tasks with a high number of actions, where MuZero might require a prohibitively high simulation budgets; prior work (Dulac-Arnold et al., 2015; Metz et al., 2017; Van de Wiele et al., 2020) has already identified continuous control tasks as an interesting testbed.

Benchmarks We select high-dimensional environments from DeepMind Control Suite (Tassa et al., 2018). The observations are images and action space $A = [-1, 1]^m$ with $m$ dimensions. We apply an action discretization method similar to that of Tang and Agrawal (2019). In short, for a continuous action space $m$ dimensions, each dimension is discretized into $K$ evenly spaced atomic actions. With proper parameterization of the policy network (see, e.g., Appendix B.2), we can reduce the effective branching factor to $K^m \ll K^m$, though this still results in a much larger action space than Atari benchmarks. In Appendix C.2, we provide additional descriptions of the tasks.

Result In Figure 5, we compare MuZero with the ALL variant on the CheetahRun environment of the DeepMind Control Suite (Tassa et al., 2018). We evaluate the performance at low ($N_{\text{sim}} = 4$), medium ($N_{\text{sim}} = 12$) and “high” ($N_{\text{sim}} = 50$) simulation budgets, for an effective action space of size $30$ ($m = 6, K = 5$). The horizontal line corresponds to the performance of model-free D4PG also trained on pixel observations (Barth-Maron et al., 2018), as reported in (Tassa et al., 2018). Appendix C.2 provides experimental results on additional tasks. We again observe that ALL outperforms the original MuZero at low simulation budgets and still achieves faster convergence to the same asymptotic performance with more simulations. Figure 1 compares the asymptotic performance of MuZero and ALL as a function of the simulation budget at 100k learner steps.

6. Conclusion

In this paper, we showed that the action selection formula used in MCTS algorithms, most notably AlphaZero, approximates the solution to a regularized policy optimization problem formulated with search Q-values. From this theoretical insight, we proposed variations of the original AlphaZero algorithm by explicitly using the exact policy optimization solution instead of the approximation. We show experimentally that these variants achieve much higher performance at low simulation budget, while also providing statistically significant improvements when this budget increases.

Our analysis on the behavior of model-based algorithms (i.e., MCTS) has made explicit connections to model-free algorithms. We hope that this sheds light on new ways of combining both paradigms and opens doors to future ideas and improvements.

Acknowledgements The authors would like to thank Alaa Saade, Bernardo Avila Pires, Bilal Piot, Corentin Tallec, Daniel Guo, David Silver, Eugene Tarassov, Florian Strub, Jessica Hamrick, Julian Schrittwieser, Katrina McKinney, Mohammad Gheishlaghi Azar, Nathalie Beauguerlange, Pierre Ménard, Shantanu Thakoor, Théophane Weber, Thomas Mesnard, Toby Pohlen and the rest of the DeepMind team.


MCTS as regularized policy optimization


