Batch Reinforcement Learning with Hyperparameter Gradients

Byung-Jun Lee *1 Jongmin Lee *1 Peter Vrancx2 Dongho Kim2 Kee-Eung Kim2 3

Abstract

We consider the batch reinforcement learning problem where the agent needs to learn only from a fixed batch of data, without further interaction with the environment. In such a scenario, we want to prevent the optimized policy from deviating too much from the data collection policy since the estimation becomes highly unstable otherwise due to the off-policy nature of the problem. However, imposing this requirement too strongly will result in a policy that merely follows the data collection policy. Unlike prior work where this trade-off is controlled by hand-tuned hyperparameters, we propose a novel batch reinforcement learning approach, batch optimization of policy and hyperparameter (BOPAH), that uses a gradient-based optimization of the hyperparameter using held-out data. We show that BOPAH outperforms other batch reinforcement learning algorithms in tabular and continuous control tasks, by finding a good balance to the trade-off between adhering to the data collection policy and pursuing the possible policy improvement.

1. Introduction

In many real-world applications of reinforcement learning (RL), exploratory behavior can be very costly when the agent interacts with the environment. For example, it would be unreasonable to deploy an ϵ-greedy policy for autonomous vehicles, industrial plants, and clinical treatments, let alone many others. One of the common and straightforward practices in these scenarios is to build a simulator from collected data, train the agent with the simulated environment by allowing to make as much exploration as needed, and then deploy a fully optimized policy into the real environment. However, this approach requires a lot of human effort including domain expertise in building a faithful simulator that warrants a successful performance in the real environment. This paper concerns with such a scenario, often referred to as batch RL: optimize policy only from a fixed batch of data, without further interaction with the environment or a high-fidelity simulator.

Since the policy being optimized would be different from the policy used for data collection, batch RL algorithms are mostly founded on techniques in off-policy RL algorithms. They are designed to learn when the behavior policy (policy used to collect experience) differs from the estimation policy (policy we aim to learn). Recent off-policy policy optimization algorithms, e.g., (Lillicrap et al., 2016; Munos et al., 2016; Haarnoja et al., 2018), have shown to achieve remarkable sample efficiency in standard benchmark tasks. However, they still assume continuous interaction with the environment with the behavior policy being improved closely together with the estimation policy. On the other hand, the batch RL setting assumes the behavior policy being fixed throughout the policy optimization. This difference is considered a fundamental challenge for batch RL: as we optimize the estimation policy, it would differ more from the behavior policy, leading to severe covariate shift in the batch data. As the policy optimization frequently relies on function approximators trained on the data distributed by the behavior policy, the optimization could actually get worse due to the inevitable generalization error of the function approximators. Thus the challenge is about estimating how much we can trust the policy evaluation and safely optimize the policy, rather than about improving the sample efficiency as in standard off-policy RL scenarios, as exemplified by recent work on batch RL (Laroche et al., 2019; Fujimoto et al., 2019).

In this paper, we introduce a novel batch RL framework that uses the validation data to estimate the reliability of policy updates. Model selection and hyperparameter tuning with a held-out dataset is a standard practice in supervised learning, but has not been adapted to RL, to the best of our knowledge. The contribution of this paper is two-fold: first, we present a generalized KL-regularized RL framework that effectively constrains the distance of the estimation policy from the behavior policy differently per state and stabilizes the training process. Second, we present BOPAH (batch optimization of

*Equal contribution 1School of Computing, KAIST, Daejeon, South Korea 2PROWLER.io 3Graduate School of AI, KAIST, Daejeon, South Korea. Correspondence to: Byung-Jun Lee <bjlee@ai.kaist.ac.kr>, Jongmin Lee <jmlee@ai.kaist.ac.kr>, Kee-Eung Kim <kekim@kaist.ac.kr>.

Batch Reinforcement Learning with Hyperparameter Gradients

The key concept in recent batch RL algorithms is to improve upon the baseline policy used for data collection. Petrik et al. (2016) consider the robust policy improvement over the baseline policy in the worst-case scenario. Laroche et al. (2019) presents SPIBB that bootstraps the estimation policy with the behavior policy in the state-action pairs that are not observed enough. While both algorithms are proven to be safe with their finite sample bounds, the hyperparameter values that guarantee a safe improvement with high probability can be too conservative to be used in practice.

In the case of continuous state and action spaces, Fujimoto et al. (2019) propose BCQ where the actor can only perturb the behavior policy by a limited amount. Kumar et al. (2019) provide a bound on suboptimality of an estimation policy concerning its support, and present BEAR, which imposes an MMD constraint between the estimation policy and the behavior policy. Siegel et al. (2020) use KL constraint and propose ABM that imposes advantage-weighting when training the baseline policy in the worst-case scenario. Laroche et al. (2016) consider the robust policy improvement over the baseline policy used for data collection. Petrik et al. (2015) is able to efficiently optimize a large number of hyperparameters, outperforming Bayesian optimization models (Pedregosa, 2016). We will show how hypergradient computations can be formulated in terms of policy evaluation in the RL context.

3. Preliminaries

We consider the environment modeled as a Markov decision process (MDP), $M = (S, A, P, R, d_0, \gamma)$, where S is the state space, A is the action space, $P(s' | s, a)$ is the transition probability, $r_t = R(s_t, a_t) \in \mathbb{R}$ is the immediate reward function, $d_0(s) = p(s_0 = s)$ is the initial state distribution, and $\gamma \in (0, 1)$ is the discount factor. We denote $d_\pi^M(s) = (1 - \gamma) \sum_{i=0}^{\infty} \gamma^i p(s_t = s | \pi, M)$ the discounted state marginal of policy π in the MDP M.

The state and the action value functions of policy π on MDP M are denoted by $V_\pi^M(s)$ and $Q_\pi^M(s, a)$ respectively. We adopt the discounted return objective, i.e. $V_\pi^M(s) = \mathbb{E}_{\pi, M[s]}[\sum_{t=0}^{\infty} \gamma^t r_t]$ and $Q_\pi^M(s, a) = \mathbb{E}_{\pi, M[s, a]}[\sum_{t=0}^{\infty} \gamma^t r_t]$. We measure the performance of a policy π on MDP M by the expectation of the value function under the initial state distribution, $\rho_M(\pi) = \mathbb{E}_{s_0 \sim d_0}[V_\pi^M(s_0)]$. The objective of policy optimization is to find the optimal policy π^* that maximizes the expected discounted return, $\pi^* = \arg \max_{\pi} \rho_M(\pi)$.

When the model M is available, the value of policy π can be computed by iteratively applying the Bellman backup operator T_π^M:

$$T_\pi^M Q(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)}[V(s')],$$

where $V(s) = \mathbb{E}_{a \sim \pi(\cdot | s)}[Q(s, a)]$, which is a contraction mapping and has a unique fixed point solution Q^*_M.

In batch RL, the agent learns from the fixed dataset of experiences $D = \{(s_i, a_i, s'_i, r_i)\}_{i=0}^{N}$ without direct interaction with the environment. We will refer to the policy μ used for the data collection as the behavior policy and the policy π being optimized as the estimation policy, borrowing the terminology in off-policy RL. If we only use samples in D to compute the expectation of the Bellman backup operator T_μ^M, the resulting approximate operator T_μ^M has a unique fixed point solution Q^*_M, which is a state-action value function on a Maximum Likelihood Estimation (MLE) MDP.
$\hat{M} = (S, A, \hat{P}, R, d_0, \gamma)$, where \hat{P} is the maximum likelihood estimate of P by D. We also use the notation $d^{2}_{\hat{M}}$ to denote the discounted state marginal of a policy π under the MLE MDP.

4. Generalized KL-Regularization for Batch Reinforcement Learning

In a naive approach to batch RL, we could build an MDP model \hat{M} from the batch data and optimize the policy using the model. However, the resulting policy may fail to produce any improvement over the behavior policy or even perform severely worse (Petrik et al., 2016; Laroche et al., 2019).

For safe RL with batch data, we will first derive a policy improvement bound for model-based RL, which naturally yields a regularization function for batch RL.

Our derivation starts with bounding the policy evaluation error incurred by the model error and the distribution shift of the shift.

Theorem 4.1. Let

\[
\epsilon^{p}_{M} = \mathbb{E}_{s \sim d^{+}_{M}} \left[TV_{s}^{\pi, \mu} \right], \quad \epsilon^{M}_{M} = \mathbb{E}_{s \sim d^{+}_{M}} \left[TV_{s}^{\pi, \mu} \right], \\
\epsilon^{P}_{M} = \mathbb{E}_{s \sim d^{+}_{M}} \left[TV_{p, \alpha}^{\pi, \mu} \right]
\]

where $TV_{\pi, \mu}$ denotes the total variation distance between $p(\cdot|x)$ and $q(\cdot|x)$. Suppose the reward function is bounded $|R(s, a)| \leq R_{\text{max}}$ for all s, a and known to the agent for simplicity. For any policies π, μ, and an estimated MLE MDP \hat{M}, the difference of policy evaluation is bounded by:

\[
|\rho_{M}(\pi) - \rho_{\hat{M}}(\pi)| \leq c_1 (\epsilon^{p}_{M} + \epsilon^{M}_{M}) + c_2 \epsilon^{P}_{M}
\]

where $c_1 = 2R_{\text{max}}/(1-\gamma)$ and $c_2 = 2/R_{\text{max}}$.

Since the error ϵ^{p}_{M} only depends on the dataset and is not directly controllable during batch RL policy optimization, we can gather only relevant terms and formulate the following constrained optimization similar to (Schulman et al., 2015; Achiam et al., 2017):

\[
\pi^{*}_{\delta} = \arg \max_{\pi} \rho_{\hat{M}}(\pi)
\]

s.t. $\mathbb{E}_{s \sim d^{+}_{M}} \left[KL_{s}^{\pi, \mu} \right] \leq \delta$, $\mathbb{E}_{s \sim d^{+}_{M}} \left[KL_{s}^{\pi, \mu} \right] \leq \delta$,

where $KL_{\pi, \mu}$ denotes the KL-divergence between $p(\cdot|x)$ and $q(\cdot|x)$. This way, we can provide a policy improvement bound for π^{*}_{δ} in Eq. (2), which can be derived from Theorem 4.1:

Corollary 4.1. The negative baseline regret (Petrik et al., 2016) of π^{*}_{δ}, which is the performance improvement by adopting π^{*}_{δ} instead of the baseline policy μ on the true environment M, is lower bounded by:

\[
\rho_{M}(\pi^{*}_{\delta}) - \rho_{M}(\mu) \geq \rho_{\hat{M}}(\pi^{*}_{\delta}) - \rho_{\hat{M}}(\mu) - c_1 \sqrt{2\delta} - 2c_2 \epsilon^{P}_{M}
\]

with c_1 and c_2 defined in Theorem 4.1. This lower bound has two competing factors with respect to δ: increasing δ would enlarge the feasibility region and thus increase the objective $\rho_{\hat{M}}(\pi)$, but this will also make the estimation of expected return under \hat{M} unreliable since the estimation error will increase. Most of the off-policy RL and batch RL algorithms have this trade-off captured by hyperparameters (Schulman et al., 2015; Petrik et al., 2016; Laroche et al., 2019).

Now, instead of using KL-divergence as constraints in the policy optimization, we reformulate the problem as an unconstrained optimization where the KL-divergence acts as a regularization:

\[
\bar{\rho}_{\hat{M}}(\pi) = \rho_{\hat{M}}(\pi) - \alpha \left(\mathbb{E}_{s \sim d^{+}_{M}} [KL_{s}^{\pi, \mu}] + \mathbb{E}_{s \sim d^{+}_{M}} [KL_{s}^{\pi, \mu}] \right)
\]

\[
= \mathbb{E}_{\pi, \hat{M}} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(r_{t} - \alpha (d_{\hat{M}}(s_{t}) + 1) KL_{s_{t}}^{\pi, \mu} \right) \right]
\]

This objective is essentially a variation of KL-regularized RL (Todorov, 2007; Kappen et al., 2012; Schulman et al., 2017; Fox et al., 2016; Galashov et al., 2019), which considers the expected KL-divergence both in the true MDP and the estimated MDP. Note that the term $(d^{+}_{\hat{M}}(s_{t}) + 1)$ is very hard to estimate without access to the true model M. We thus work with the objective

\[
\max_{\pi} \mathbb{E}_{\pi, \hat{M}} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(r_{t} - \alpha (s_{t}) KL_{s_{t}}^{\pi, \mu} \right) \right]
\]

where α is the state-independent hyperparameter and $\beta(s)$’s are the state-dependent hyperparameters. We will denote $\alpha(s) = \alpha \beta(s)$ for brevity. In the later part of the paper, we will automatically tune $\alpha(s)$ using held-out validation set.

4.1. KL-Regularized Policy Iteration

In this section, we derive batch policy iteration with the generalized KL-regularization that alternates between policy evaluation and policy improvement, a planning algorithm for Eq. (3) with fixed yet arbitrary hyperparameters $\alpha(s)$.

We first present the iterative policy evaluation method by defining KL-regularized Bellman operator T_{KL}^{s}. For fixed policy π,

\[
T_{KL}^{s} Q(s, a) = R(s, a) + \mathbb{E}_{s' \sim p} \left[\tilde{V}(s') \right]
\]

where \(V(s) = -\alpha(s) KL_{s}^{\pi, \mu} + \mathbb{E}_{\alpha \sim \pi} [\tilde{Q}(s, a)] \)

Lemma 4.1. (KL-Regularized Policy Evaluation) For a fixed π with $KL_{\pi, \mu} < \infty \forall s$, the backup operator T_{KL}^{s} is a contraction mapping and has an unique fixed point solution $T_{KL}^{s} Q^{\pi} = Q^{\pi}$. In other words, for any $Q^{0} : S \times A \rightarrow \mathbb{R}$, define $Q^{k+1} = T_{KL}^{s} Q^{k}$. Then the sequence Q^{k} converges to KL-regularized Q-value function of π as $k \rightarrow \infty$.

\[
\frac{d}{dt} \sum_{s \in \mathcal{S}} \left(Q^{k}(s) - Q^{\pi}(s) \right)^{2} \leq C \frac{d}{dt} \sum_{s \in \mathcal{S}} \left(Q^{k+1}(s) - Q^{\pi}(s) \right)^{2}
\]

where C is a constant,
KL-regularized value functions have the following interpretations:

\[
\tilde{V}^\pi(s) = \mathbb{E}_\pi[s] \left[\sum_{t=0}^{\infty} \gamma^t (r_t - \alpha(s_t) K L^{\pi,\mu}_{s_t}) \right] \\
\tilde{Q}^\pi(s, a) = \mathbb{E}_{\pi|s,a} \left[r_o + \sum_{t=1}^{\infty} \gamma^t (r_t - \alpha(s_t) K L^{\pi,\mu}_{s_t}) \right].
\]

In the policy improvement step, we can compute a improved policy by weighting exponential \(\tilde{Q}^{\pi}\) and \(\mu\). However, when dealing with continuous state and action encountered in the later section, we may want to optimize our policy only within a set of tractable distributions \(\Pi\) (e.g. a set of Gaussian distributions), which requires a projection of the updated policy distribution onto \(\Pi\). One of the simple ways is to adopt the information projection that minimizes the KL-divergence to the target distribution as in (Haarnoja et al., 2018):

\[
\pi^{\text{new}}(\cdot|s) = \arg \min_{\pi' \in \Pi} \left\{ \mathbb{E}_{\pi'}[\gamma(\tilde{Q}^{\pi'}(s,a)) \mu(|s|) / Z^{\pi}(s)] \right\}
\]

where \(Z^{\pi}(s)\) is the normalization constant. The following lemma shows that \(\pi^{\text{new}}\) computed by Eq. (5) always improves the value over \(\pi\).

Lemma 4.2. (KL-Regularized Policy Improvement) Given a policy \(\pi \in \Pi\) and its value function \(\tilde{Q}^{\pi}\), if we update the new policy \(\pi^{\text{new}}\) by Eq. (5), then \(\tilde{Q}^{\text{new}}(s, a) \geq \tilde{Q}^{\pi}(s, a) \quad \forall s, a\).

Lemma 4.1 and 4.2 suggest a full algorithm: the KL-regularized policy iteration alternates between the KL-regularized policy evaluation of Eq. (4) and the KL-regularized policy improvement of Eq. (5), and it is guaranteed to converge to the optimal policy \(\pi^{\ast}\) within the set of \(\Pi\).

Theorem 4.2. (KL-Regularized Policy Iteration) Suppose that \(|R(s, a)| \leq R_{\max}\) and \(K L^{\pi,\mu}_{s} < \infty\). Starting from any \(\pi_0 \in \Pi\), the sequence of the value functions \(\tilde{Q}^{\pi_0}\) and the improved policies \(\pi_{k+1}\) converge to the optimal value function and the optimal policy \(\pi^{\ast} \in \Pi\), i.e. \(\lim_{k \to \infty} \tilde{Q}^{\pi_k}(s, a) \geq \tilde{Q}^{\ast}(s, a)\) for any \(\pi \in \Pi\), \(s \in \mathcal{S}\), and \(a \in \mathcal{A}\).

Our theoretical result can be seen as an extension of those in entropy-regualrized RL. (Haarnoja et al., 2018) to KL-regularized RL, where the regularization parameter is arbitrarily given per state.

5. Batch Optimization of Policy and Hyperparameter (BOPAH)

In supervised learning, we commonly adopt regularization to select a model that generalizes well to unseen data. This is typically captured by a set of hyperparameters that balances between approximation and generalization (i.e. overfitting vs. underfitting). Commonly, the model parameters \(\theta\) are optimized using the following objective function with training data \(D_{\text{train}}\):

\[
\theta^{\ast}_{\alpha} = \arg \max_{\theta} \mathcal{L}(\theta, D_{\text{train}}) - E_{\alpha}(\theta)
\]

where \(\mathcal{L}\) measures how well the model performs on \(D_{\text{train}}\) (e.g. log-likelihood \(\mathcal{L}(\theta, D_{\text{train}}) = \log p(D_{\text{train}}|\theta)\) if probabilistic model), and \(E_{\alpha}\) is a regularization term that penalizes complex models to prevent overfitting (e.g. L2 regularization \(E_{\alpha}(\theta) = \alpha \parallel \theta^{2}\)) where \(\alpha\) is the regularization parameter that balances between approximation and generalization. Then, the regularization parameter \(\alpha\) is treated as a hyperparameter and optimized using the held-out validation dataset \(D_{\text{valid}}\) which is mutually exclusive to \(D_{\text{train}}\):

\[
\alpha^{\ast} = \arg \max_{\alpha} \mathcal{L}(\theta^{\ast}_{\alpha}, D_{\text{valid}})
\]

Optimizing the hyperparameter is often done using simple grid or random search (Bergstra & Bengio, 2012), but these simple methods scale poorly with the number of hyperparameters. Instead, our approach adopts the gradient-based hyperparameter optimization method (Bengio, 2000; Maclaurin et al., 2015; Pedregosa, 2016), known to be capable of many hyperparameters by using local information about the objective function, assuming that Eq. (7) is differentiable.

In this section, we introduce Batch Optimization of Policy and Hyperparameter (BOPAH), a method for batch reinforcement learning that aims to achieve the best possible performance improvement on the (not fully known) true environment. BOPAH adopts KL-regularization in policy optimization.

5.1. Model-based BOPAH

BOPAH starts by dividing the entire batch data \(D = \{(s_i, a_i, r_i)\}_{i=1}^{N}\) into two mutually exclusive sets \(D_{\text{train}}\) and \(D_{\text{valid}}\). Each of the split datasets constructs the train (MLE) MDP \(\hat{M}_{\text{train}}\) and the valid (MLE) MDP \(\hat{M}_{\text{valid}}\) respectively. The policy is then optimized on the train MDP \(\hat{M}_{\text{train}}\) with the state-dependent KL-regularization whose introduction was justified in Section 4:

\[
\pi^{\ast}_{\alpha} = \arg \max_{\pi} \mathbb{E}_{\pi, \hat{M}_{\text{train}}} \left[\sum_{t=0}^{\infty} \gamma^t (r_t - \alpha(s_t) K L^{\pi,\mu}_{s_t}) \right]
\]

(8)
Batch Reinforcement Learning with Hyperparameter Gradients

which can be solved by KL-regularized policy iteration. In Eq. (8), if the hyperparameters \(\alpha(s) \)'s are close to zero, the resulting policy becomes the optimal policy of the unregularized train MDP \(\hat{M}_{\text{train}} \), which would be overfitting to \(D_{\text{train}} \). In contrast, if \(\alpha(s) \)'s become too large, the policy is reduced to the behavior policy \(\mu \), which corresponds to underfitting. Our goal is to find the optimal hyperparameters of \(\alpha(s) \) that balances between two extremes.

To this end, we optimize the hyperparameters on the valid MDP \(\hat{M}_{\text{valid}} \):

\[
\alpha^* = \arg \max_{\alpha} E_{\pi_{\alpha, \hat{M}_{\text{valid}}}} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]
\]

(9)

and deploy \(\pi_{\alpha^*} \) to the real environment. Note the similarity between our framework for batch RL Eq. (8–9), and the hyperparameter optimization in supervised learning Eq. (6–7).

Illustrative Example Figure 1 highlights our approach for batch RL using a synthetic example. We constructed a single instance of random MDP \(M \) with \(|S| = 20 \) and \(|A| = 4 \). We collected batch data \(D \) consisting of 100 episodes with maximum time step 50 using the behavior policy \(\mu = 0.7\pi^* + 0.3\pi_{\text{uniform}} \), where \(\pi^* \) is the optimal policy of \(M \) and \(\pi_{\text{uniform}} \) is the uniform random policy. As a baseline, \(\pi_{\text{BasicRL}} \) is obtained by computing the optimal policy of the MLE MDP using the entire data in \(D \). We divide \(D \) into two mutually exclusive sets \(D_{\text{train}} \) and \(D_{\text{valid}} \) of same number of trajectories, and \(\pi_{\alpha} \) is computed via Eq. (8) on the \(\hat{M}_{\text{train}} \), the MLE MDP using the data in \(D_{\text{train}} \). Finally, \(\rho_M(\pi) \) denotes the (reward) performance of policy \(\pi \) on MDP \(M \in \{ M, \hat{M}_{\text{train}}, \hat{M}_{\text{valid}} \} \), i.e. \(\rho_M(\pi) = \sum_{s, a, r} [\sum_{t=0}^{\infty} \gamma^t r_t] \).

Figure 1a visualizes the result when we used a global scalar hyperparameter, i.e. \(\alpha(s) = \alpha \forall s \). As \(\alpha \) increases, the performance of \(\pi_{\alpha}^* \) in \(\hat{M}_{\text{train}} \) monotonically decreases (cyan) since \(\alpha = 0 \) yields the optimal policy for the \(\hat{M}_{\text{train}} \). In contrast, the performance of \(\pi_{\alpha}^* \) in \(\hat{M}_{\text{valid}} \) (green) shows an expected trend, where too large or too small value of \(\alpha \) deteriorates the performance. Note that the performance trend in \(\hat{M}_{\text{valid}} \) is strongly correlated with the trend in the true model \(M \). This justifies the use of \(\hat{M}_{\text{valid}} \) for selecting \(\alpha \) in order to perform well on (unknown) true model \(M \).

On the other hand, note that \(\pi_{\alpha}^* \) underperforms \(\pi_{\text{BasicRL}} \) in the true model when \(\alpha = 0 \). This is expected, since \(\pi_{\alpha}^* \) is obtained from \(\hat{M}_{\text{train}} \) using less amount of data. However, when \(\alpha^* = \arg \max_{\alpha} \rho_{\hat{M}_{\text{valid}}}^*(\pi_{\alpha}^*) \) is used, \(\pi_{\alpha^*}^* \) significantly outperforms \(\pi_{\text{BasicRL}} \). This result supports that batch RL can benefit from hyperparameter tuning approach, a common practice in supervised learning.

We further extended the experiment setting by allowing state-dependent hyperparameters \(\alpha(s) \). Figure 1b demonstrates the result when using two hyperparameters instead of one. We set \(\alpha(s_{\text{odd}}) = \alpha_1 \) to the states of odd index and \(\alpha(s_{\text{even}}) = \alpha_2 \) to the states of even index. Note that there is a strong overall correlation between \(\rho_{\hat{M}_{\text{valid}}}^*(\pi_{\alpha}^*) \) and \(\rho_M(\pi_{\alpha}^*) \), and the optimal hyperparameter does not lie on the dotted yellow line that corresponds to the case of the global scalar hyperparameter. This result supports that the state-dependent hyperparameters can be advantageous over the global scalar hyperparameter.

5.2. Gradient-based Hyperparameter Optimization

Tuning the state-dependent hyperparameter \(\alpha(s) \) via black-box optimization (e.g. grid search or random search) is intractable due to the curse of dimensionality even for a handful of states. Thus, BOPAH adopts gradient-based hyperparameter optimization, whose analytical form is provided as follows:

Theorem 5.1. Suppose that the state-dependent function \(\alpha_{\xi}(s) \) for Eq. (8) is parameterized by \(\xi^1 \). Then, the hy-
Batch Reinforcement Learning with Hyperparameter Gradients

\[\nabla \xi \rho_{\xi \text{valid}} \left(\pi^*_\xi \right) = \nabla \xi \mathbb{E}_{\pi^*_\xi, M_{\text{valid}}} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right] \]

is given by:

\[\nabla \xi \rho_{\xi \text{valid}} \left(\pi^*_\xi \right) = \mathbb{E}_{\pi^*_\xi, M_{\text{valid}}} \left[\sum_{t=0}^{\infty} \gamma^t \chi_\xi \left(s_t \right) \right] \quad (10) \]

s.t.

\[\pi^*_\xi \triangleq \arg \max \pi \mathbb{E}_{\pi, M_{\text{train}}} \left[\sum_{t=0}^{\infty} \gamma^t \left(r_t - \alpha_\xi \left(\eta_t \right) \kappa \right) \right] \]

\[\nabla Q_{M_{\text{train}}} \left(s, a, \pi^*_\xi \right) \triangleq \mathbb{E}_{\pi^*_\xi, M_{\text{train}}} \left[\sum_{t=0}^{\infty} \gamma^t \left(r_t - \alpha_\xi \left(\eta_t \right) \kappa \right) \right] \]

\[Q^{\pi^*_\xi}_{M_{\text{train}}} \left(s, a \right) \triangleq \mathbb{E}_{\pi^*_\xi, M_{\text{valid}}} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right] \]

\[\chi_{\xi} \left(s \right) \triangleq \frac{1}{\alpha_\xi \left(s \right)^2} \text{cov}_{a \sim \pi^*_\xi} \left[\alpha_\xi \left(s \right) \nabla Q^{\pi^*_\xi}_{M_{\text{train}}} \left(s, a \right) - \nabla \alpha_\xi \left(s \right) Q^{\pi^*_\xi}_{M_{\text{train}}} \left(s, a \right), Q^{\pi^*_\xi}_{M_{\text{valid}}} \left(s, a \right) \right] \]

where \(\text{cov}_{a \sim \pi^*_\xi} \) denotes element-wise covariance between the vectors \(\nabla \cdot \) and the scalar \(g(\cdot) \).

In the above, \(\pi^*_\xi \) can be obtained by KL-regularized policy iteration, and \(\nabla Q^{\pi^*_\xi}_{M_{\text{train}}} \) and \(\nabla \rho_{\xi \text{valid}} \left(\pi^*_\xi \right) \) can be computed by a standard policy evaluation technique with auxiliary reward functions \(R_1 \left(s, a, \pi^*_\xi \right) \triangleq -\nabla \alpha_\xi \left(s \right) \kappa \) and \(R_2 \left(s, a, \pi^*_\xi \right) \triangleq \chi_{\xi} \left(s \right) \), respectively. Finally, we can optimize the hyperparameters via the hypergradient by iterating the following until convergence: \(\xi \leftarrow \xi + \eta \nabla \alpha_\xi \left(s \right) \kappa \)

where \(\xi \) is a parameter for the state-dependent function \(\alpha_\xi \left(s \right) \), and \(\eta \) is a learning rate.

This completes the description of BOPAH, which iteratively alternates between policy optimization and gradient-based hyperparameter optimization.

\section{Actor-Critic BOPAH}

In this section, we extend BOPAH to control tasks with continuous state and action spaces via practical approximations to KL-regularized policy iteration and hypergradient computation. We achieve this goal by adopting the Actor-Critic framework, where we train the parametric models of policies (i.e., actor), KL-regularized value functions (i.e., critic), and state-dependent hyperparameters. The resulting algorithm, Actor-Critic BOPAH (AC-BOPAH), thus performs alternating updates of the three parametric models.

\subsection{Parametric Model of State-dependent Hyperparameters}

Although in principle, we could use any parametric model to represent state-dependent hyperparameters, we focus on analyzing the linear model for \(\alpha_\xi \left(s \right) \), which particularly allows for stable training of KL-regularized value functions.

\[\alpha_\xi \left(s \right) \triangleq \sum_{i=1}^{d_\xi} \xi_i \phi_i \left(s \right) = \xi^\top \phi \left(s \right) \quad (13) \]

where \(\xi = \left[\xi_1, \ldots, \xi_{d_\xi} \right]^\top \), and \(\phi : S \to \mathbb{R}^{d_\xi} \) is a feature function of states such that \(\xi^\top \phi \left(s \right) \geq 0 \) for all \(s \) (e.g., \(\xi \geq 0 \) and \(\phi_i \left(s \right) \)'s are RBFs). The feature function \(\phi \left(s \right) \) is predefined and fixed, and only \(\xi \) is optimized during training.

This linear parameterization leads to the following decomposition of the KL-regularized value function:

\[Q^{\pi^*_\xi}_{M_{\text{train}}} \left(s, a \right) = \mathbb{E} \left[r_0 + \sum_{i=1}^{\infty} \gamma^i \left(r_i - \alpha_\xi \left(s_i \right) \kappa \right) \right] \]
We now present the objective functions to train each parameter.

where \(\psi_{\text{train}}^\pi \) is an exponential moving average of \(\psi^\pi_{\text{train}} \).

Note in Eq. (14) that both \(Q^\pi_{\theta_{\text{train}}} (s, a) \) and \(Q^\pi_{\phi_{\text{train}}} (s, a) \) are not dependent on \(\xi \) but only on \(\pi \). Thus, we could train the separate models for \(Q^\pi_{\theta_{\text{train}}} (s, a) \) and \(Q^\pi_{\phi_{\text{train}}} (s, a) \) instead of the single model for \(Q^\pi_{\text{Mtrain}} (s, a) \), making the training more stable since they are not affected by the change in the hyperparameters \(\xi \).

Furthermore, the auxiliary value function \(\nabla \xi \tilde{Q}^\pi_{\text{Mtrain}} (s, a) \) in Theorem 5.1 is also directly derived using \(\tilde{Q}^\pi_{\phi_{\text{train}}} (s, a) \) without any further introduction of parameterized functions since \(\nabla \xi \alpha \xi (s) = \phi (s) \):

\[
\nabla \xi \tilde{Q}^\pi_{\text{Mtrain}} (s, a) = Q^\pi_{\phi_{\text{train}}} (s, a) \tag{15}
\]

We also train the action-value critic for the validation-set MDP, defined in the standard way:

\[
Q^\pi_{\text{valid}} (s, a) \triangleq \mathbb{E}_{\pi, \tilde{\mathcal{M}}_{\text{valid}}} \left[\sum_{t=0}^\infty \gamma^t r_t \right] \tag{16}
\]

Finally, we define state-value critics \(V^\pi_{\psi_{\text{data}}} (s) \), \(V^\pi_{\phi_{\text{train}}} (s) \), and \(V^\pi_{\psi_{\text{valid}}} (s) \) similarly to Eq. (14) and Eq. (16), which completes our parameterization of the value functions and the hyperparameters for AC-BOPAH. As for the actor \(\pi \), we use the Gaussian policy with its mean and covariance parameterized by neural networks.

6.2. Objective Functions

We now present the objective functions to train each parameter model for the actor and the critic with fixed hyperparameters. First, the parameters for the reward value functions, \(\{ \psi_{\text{data}}, \theta_{\text{data}}, \psi_{\text{valid}}, \theta_{\text{valid}} \} \), are trained by minimizing the squared residual errors: for each data \(\in \{ \text{train, valid} \} \),

\[
J(\psi_{\text{data}}) = \mathbb{E}_{s \sim D_{\text{data}}, a \sim \psi_{\text{data}}} \left[(V^\pi_{\psi_{\text{data}}} (s) - Q^\pi_{\theta_{\text{data}}} (s, a))^2 \right]
\]

We could train the separate models for \(Q^\pi_{\theta_{\text{train}}} (s, a) \) and \(Q^\pi_{\phi_{\text{train}}} (s, a) \) instead of the single model for \(Q^\pi_{\text{Mtrain}} (s, a) \), making the training more stable since they are not affected by the change in the hyperparameters \(\xi \).

Note in Eq. (14) that both \(Q^\pi_{\theta_{\text{train}}} (s, a) \) and \(Q^\pi_{\phi_{\text{train}}} (s, a) \) are not dependent on \(\xi \) but only on \(\pi \). Thus, we could train the separate models for \(Q^\pi_{\theta_{\text{train}}} (s, a) \) and \(Q^\pi_{\phi_{\text{train}}} (s, a) \) instead of the single model for \(Q^\pi_{\text{Mtrain}} (s, a) \), making the training more stable since they are not affected by the change in the hyperparameters \(\xi \).

Finally, we define state-value critics \(V^\pi_{\psi_{\text{data}}} (s) \), \(V^\pi_{\phi_{\text{train}}} (s) \), and \(V^\pi_{\psi_{\text{valid}}} (s) \) similarly to Eq. (14) and Eq. (16), which completes our parameterization of the value functions and the hyperparameters for AC-BOPAH. As for the actor \(\pi \), we use the Gaussian policy with its mean and covariance parameterized by neural networks.

6.3. Clipped Importance Sampling for Hypergradients

Finally, we compute the approximate hypergradients by exploiting the current actor and critics as the approximate solutions of the KL-regularized MDP with respect to the current hyperparameter \(\xi \). From Eq. (10) and Eq. (14-15),

\[\nabla \xi \psi_{\text{valid}} \triangleq \mathbb{E}_{\pi, \tilde{\mathcal{M}}_{\text{valid}}} \left[\sum_{t=0}^\infty \gamma^t \chi^\xi (s_t) \right] \tag{17}\]

s.t. \(\chi^\xi (s) = \frac{1}{(\xi \psi (s))} \mathbb{C}^{\chi^\xi - \xi \psi (s)} \chi^\xi (s) \),

\[\nabla \xi \psi_{\text{valid}} \triangleq \mathbb{E}_{\pi, \tilde{\mathcal{M}}_{\text{valid}}} \left[\sum_{t=0}^\infty \gamma^t \chi^\xi (s_t) \right] \tag{17}\]

s.t. \(\chi^\xi (s) = \frac{1}{(\xi \psi (s))} \mathbb{C}^{\chi^\xi - \xi \psi (s)} \chi^\xi (s) \),

where \(\psi_{\text{valid}} \) is an exponential moving average of \(\psi_{\text{data}} \) (i.e. soft target update). Similarly, the parameters for the KL value functions \(\psi^\pi_{\text{train}}, \phi^\pi_{\text{train}} \) are trained by minimizing:

\[\nabla \xi \psi_{\text{valid}} \triangleq \mathbb{E}_{\pi, \tilde{\mathcal{M}}_{\text{valid}}} \left[\sum_{t=0}^\infty \gamma^t \chi^\xi (s_t) \right] + \frac{1}{\mu(\pi, \psi_{\text{valid}}, \phi_{\text{valid}})} \chi^\xi (s_t) \tag{18}\]

s.t. \(w_{\text{max}} \triangleq \text{clip} \left(\prod_{k=0}^T \frac{\mu (\pi, \psi_{\text{valid}}, \phi_{\text{valid}})}{\mu (\pi, \psi_{\text{valid}}, \phi_{\text{valid}})} \right), w_{\text{min}}, w_{\text{max}} \),
and update the hyperparameter via hypergradient ascent. In practice, we alternate between \(H_f \) steps of optimizing the actor-critic (inner-problem) and one step of optimizing the hyperparameter (outer-problem). We refer this algorithm as AC-BOPAH.

Illustrative Example Figure 2 visualizes \(\alpha_\xi(\cdot) \) optimized by AC-BOPAH in Pendulum-v0. We sampled trajectories of \(10^3 \) episodes using a suboptimal behavior policy which was partially trained for only \(10^4 \) steps by soft actor-critic (SAC) (Haarnoja et al., 2018). We selected 10 representative states within the batch data via the cover tree algorithm (Beygelzimer et al., 2006) and used them for the basis of each RBF \(\phi_i(s) \) in \(\alpha(s) \). Finally, we run AC-BOPAH for \(10^6 \) steps.

As we can inspect from the left heatmap in Figure 2, the optimized \(\alpha_\xi(\cdot) \) has lower values in the densely collected state region while it has higher values in the sparsely collected state region. This is a desirable result: we can be safely deviate from the behavior policy for optimization in experience-rich areas but should be conservative and fall back to the behavior policy in experience-sparse areas of the state space.

7. Experiments

7.1. Model-based BOPHA on Random MDPs

In order to probe how safely and efficiently BOPAH can improve performance over the behavior policy with respect to the varying number of trajectories and optimality of the behavior policy, we conducted repeated experiments using randomly generated MDPs. The experimental protocol follows that of (Laroche et al., 2019), and details can be found in the Appendix F. In essence, we repeated 10k runs, where each random MDP \(M \) was created with |\(S \)| = 50, |\(A \)| = 4, \(\gamma = 0.95 \), where the maximum episode length was set to 50. The \(\zeta \)-optimal behavior policy \(\mu \) denotes \(\rho_M(\mu) = \zeta \rho_M(\pi^*) + (1 - \zeta) \rho_M(\pi_{unif}) \).

We compare the model-based BOPAH with four algorithms: (1) BasicRL (simple baseline appeared in 5.1), (2) Reward-adjusted MDP (RaMDP) (Petrik et al., 2016), (3) Robust MDP (Nilim & El Ghaoui, 2005; Iyengar, 2005), (4) SPIBB (Laroche et al., 2019), using various sizes of trajectories and two optimalities of behavior policy (near-optimal and near-random policies). For each run, we measure the normalized performance of \(\pi: \bar{\rho}_M(\pi) = (\rho_M(\pi) - \rho_M(\mu)) / (\rho_M(\pi^*) - \rho_M(\mu)) \in (-\infty, 1] \), which measures how much the algorithm improves its performance over the behavior policy. Finally, we report the mean (normalized) performance and the conditional value at risk performance (CVaR). The \(x\% \)-CVaR denotes the mean (normalized) performance of the worst \(x\% \) runs.

Figure 3a-3b presents the result when the behavior policy is near-optimal (\(\zeta = 0.9 \)), where the behavior policy is nearly deterministic, thus the collected trajectories could cover only part of the entire state-action space. On the other hand, Figure 3c-3d represents the results when the behavior policy is more randomized (\(\zeta = 0.5 \)), thus the collected trajectories could cover the entire state-action space fairly well. In both settings, BOPAH with state-dependent hyperparameters consistently matched or exceeded other algorithms, which highlights effectiveness and robustness of our algorithm.

7.2. AC-BOPAH on Continuous Control Tasks

In this experiment, we evaluate the effectiveness of AC-BOPAH on continuous control tasks, using the MuJoCo environments in the OpenAI gym (Todorov et al., 2012; Brockman et al., 2016). We first obtained the behavior policy by running SAC (Haarnoja et al., 2018) for half-million steps and then prepared the dataset consisting of \(10^3 \) trajectories shared by all algorithms. For AC-BOPAH, we held out 20\% of trajectories as the validation set. We compare our AC-BOPAH with two behavior cloning baselines, one with the Gaussian policy (BC) and the other one with the variational autoencoder (VAE-BC). We also compare with two state-of-the-art batch deep RL algorithms for continuous control problems, BCQ (Fujimoto et al., 2019) and BEAR-QL (Kumar et al., 2019). We used their published code and hyperparameters (\(\Phi = 0.05 \) for BCQ and \(\epsilon = 0.05 \) for BEAR-QL) therein for obtaining experimental results.\(^2\) We report two versions of our algorithm, AC-BOPAH (single \(\alpha \)) that uses a global hyperparameter \(\alpha \) and AC-BOPAH that uses state-dependent hyperparameter \(\alpha_\xi(s) \) with |\(\xi \)| = 21.

\(^2\)For more thorough comparison, we also conducted additional experiments with hyperparameter grid-search for BCQ and BEAR as in (Wu et al., 2019), i.e. \(\Phi \in \{0.005, 0.015, 0.05, 0.15, 0.5\} \) for BCQ and \(\epsilon \in \{0.015, 0.05, 0.15, 0.5, 1.5\} \) for BEAR-QL. We observed improvement only for BCQ in Halfcheetah (with \(\Phi = 0.5 \)), which managed to perform better than AC-BOPAH. However, such tuning requires access to the true environment, which is not feasible in the batch RL setting.
Both versions are initialized to start from $\alpha_\xi(s) = 10^2 \forall s$. KLAC is the KL-regularized actor-critic with $\alpha = 10^2$ held constant for all tasks.

As presented in Figure 4, AC-BOPAH consistently outperformed the state-of-the-art algorithms by large margins. While the KLAC was on a par with other algorithms, AC-BOPAH made further improvement by optimizing the hyper-parameters using the held-out validation set. AC-BOPAH (with state-dependent KL-regularization) shows clear improvement over the constant α version, except for the HalfCheetah-v2 domain where the latter already achieved near-optimal performance.

8. Conclusion

In this work, we presented the generalized KL-regularization and the BOPAH framework for batch RL, which propose the optimization of state-dependent regularization via the hypergradient ascent. We provided a formal analysis that motivates the objective used in BOPAH, and presented two concrete versions, (1) model-based BOPAH that assumes tabular environment and computes exact hypergradients, and (2) AC-BOPAH that uses actor-critic architecture to compute approximate hypergradients in more challenging continuous tasks. We empirically demonstrated that both model-based BOPAH and AC-BOPAH outperform the state-of-the-art algorithms, supporting the hypothesis that batch RL can significantly benefit from hyperparameter optimization. While we introduced BOPAH with the KL-regularization for batch RL in this work, we believe that our BOPAH framework can be extended to other related problems in RL with limited experience data, which shall be interesting direction for future work.

Acknowledgments

This work was supported by the National Research Foundation (NRF) of Korea (NRF-2019R1A2C1087634 and NRF-2019M3F2A1072238), the Ministry of Science and Information communication Technology (MSIT) of Korea (IITP No. 2020-0-00940, IITP 2019-0-00075 and IITP No. 2017-0-01779 XAI), and POSCO.
References

Batch Reinforcement Learning with Hyperparameter Gradients

