Appendix: A Free-Energy Principle for Representation Learning

A. Details of the experimental setup

Datasets. We use the MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009) datasets for these experiments. The former consists of 28×28-sized gray-scale images of handwritten digits (60,000 training and 10,000 validation). The latter consists of 32×32-sized RGB images (50,000 training and 10,000 for validation) spread across 10 classes; 4 of these classes (airplane, automobile, ship, truck) are transportation-based while the others are images of animals and birds.

Architecture and training. All models in our experiments consist of an encoder-decoder pair along with a classifier that takes in the latent representation as input. For experiments on MNIST, both encoder and decoder are multi-layer perceptrons with 2 fully-connected layers, the decoder uses a mean-square error loss, i.e., a Gaussian reconstruction likelihood and the classifier consists of a single fully-connected layer. For experiments on CIFAR-10, we use a residual network (He et al., 2016) with 18 layers as an encoder and a decoder with one fully-connected layer and 4 deconvolutional layers (Noh et al., 2015). The classifier network for CIFAR-10 is a single fully-connected layer. All models use ReLU non-linearities and batch-normalization (Ioffe & Szegedy, 2015). Further details of the architecture are given in Appendix A. We use Adam (Kingma & Ba, 2014) to train all models with cosine learning rate annealing.

The encoder and decoder for MNIST has 784–256–16 neurons on each layer; the encoding z is thus 16-dimensional which is the input to the decoder. The classifier has one hidden layer with 12 neurons and 10 outputs. The encoder for CIFAR-10 is a 18-layer residual neural network (ResNet-18) and the decoder has 4 deconvolutional layers. We used a slightly larger network for the geodesic transfer learning experiment on MNIST. The encoder and decoder have 784–400–64 neurons in each layer with a dropout of probability 0.1 after the hidden layer. The classifier has a single layer that takes the 64-dimensional encoding and predicts 10 classes.

B. Proof of Lemma 3

The second statement directly follows by observing that F is a minimum of affine functions in (λ, γ). To see the first, evaluate the Hessian of R and F

$$\text{Hess}(R) \cdot \text{Hess}(F) = \begin{pmatrix} \frac{\partial^2 R}{\partial \lambda^2} & \frac{\partial^2 R}{\partial \lambda \partial \gamma} \\ \frac{\partial^2 R}{\partial \gamma \partial \lambda} & \frac{\partial^2 R}{\partial \gamma^2} \end{pmatrix} \begin{pmatrix} \frac{\partial^2 F}{\partial \lambda^2} & \frac{\partial^2 F}{\partial \lambda \partial \gamma} \\ \frac{\partial^2 F}{\partial \gamma \partial \lambda} & \frac{\partial^2 F}{\partial \gamma^2} \end{pmatrix}$$

Since we have $F = \min_{\theta}(z|x), d_{\theta}(x|z), m_{\theta}(z) \frac{R + \lambda D + \gamma C}{\partial C} = \frac{\partial R}{\partial D}$, we obtain

$$\lambda = -\frac{\partial R}{\partial D}, \quad \gamma = -\frac{\partial R}{\partial C}, \quad D = \frac{\partial F}{\partial \lambda}, \quad C = \frac{\partial F}{\partial \gamma}.$$

We then have

$$d\lambda = -d\left(\frac{\partial R}{\partial D}\right) = -\frac{\partial^2 R}{\partial D^2} dD - \frac{\partial^2 R}{\partial D \partial C} dC$$

$$= -\frac{\partial^2 R}{\partial D^2} \left(\frac{\partial D}{\partial \lambda} d\lambda + \frac{\partial D}{\partial \gamma} d\gamma\right) - \frac{\partial^2 R}{\partial D \partial C} \left(\frac{\partial C}{\partial \lambda} d\lambda + \frac{\partial C}{\partial \gamma} d\gamma\right)$$

$$= -\left(\frac{\partial^2 R}{\partial D^2} \frac{\partial^2 F}{\partial \lambda^2} + \frac{\partial^2 R}{\partial D \partial C} \frac{\partial^2 F}{\partial \gamma \partial \lambda}\right) d\lambda - \left(\frac{\partial^2 R}{\partial D \partial C} \frac{\partial^2 F}{\partial \lambda \partial \gamma} + \frac{\partial^2 R}{\partial D^2} \frac{\partial^2 F}{\partial \gamma^2}\right) d\gamma;$$
Then with some effort of computation, we get
\[
\begin{align*}
\frac{\partial^2 R}{\partial \xi^2} \frac{\partial^2 F}{\partial \gamma^2} + \frac{\partial^2 R}{\partial \gamma^2} \frac{\partial^2 F}{\partial \xi^2} &= \frac{\partial^2 R}{\partial \xi \partial \gamma} \frac{\partial^2 F}{\partial \gamma \partial \xi} + \frac{\partial^2 R}{\partial \gamma \partial \xi} \frac{\partial^2 F}{\partial \xi \partial \gamma} = 0; \\
\frac{\partial^2 R}{\partial \xi^2} \frac{\partial^2 F}{\partial \gamma^2} + \frac{\partial^2 R}{\partial \gamma^2} \frac{\partial^2 F}{\partial \xi^2} &= \frac{\partial^2 R}{\partial \xi \partial \gamma} \frac{\partial^2 F}{\partial \gamma \partial \xi} + \frac{\partial^2 R}{\partial \gamma \partial \xi} \frac{\partial^2 F}{\partial \xi \partial \gamma} = -1;
\end{align*}
\]
therefore
\[
\text{Hess}(R) \text{ Hess}(F) = -I.
\]

Since \(\triangleright \) Hess(\(F \)), we have that Hess(\(R \)) \(\triangleright \) 0, then the constraint surface \(f(R, D, C) = 0 \) is convex.

C. Proof of Lemma 5

Recall the definition of the objective function (14), first we compute the gradient of the objective function as following:

\[
\begin{align*}
\nabla_\theta J(\theta, \lambda, \gamma) &= -\mathbb{E}_{x \sim p(x)} \nabla_\theta \log Z_{\theta, x} \\
&= -\mathbb{E}_{x \sim p(x)} \frac{1}{Z_{\theta, x}} \nabla_\theta Z_{\theta, x} \\
&= -\mathbb{E}_{x \sim p(x)} \frac{1}{Z_{\theta, x}} \int (-\nabla_\theta H) \exp(-H) \, dz \\
&= -\mathbb{E}_{x \sim p(x)} \langle \nabla_\theta H \rangle
\end{align*}
\]

Then with some effort of computation, we get

\[
A = \nabla_\theta^2 J(\theta, \lambda, \gamma) = \nabla_\theta \mathbb{E}_{x \sim p(x)} \left[\frac{1}{Z_{\theta, x}} \int \nabla_\theta H \exp(-H) \, dz \right]
\]

\[
= \mathbb{E}_{x \sim p(x)} \left[\frac{1}{Z_{\theta, x}} \int \nabla_\theta H \exp(-H) \, dz \right]
\]

\[
= \mathbb{E}_{x \sim p(x)} \left[\left\langle \nabla_\theta^2 H \right\rangle + \left\langle \nabla_\theta H \right\rangle \left\langle \nabla_\theta H \right\rangle^\top - \left\langle \nabla_\theta H \nabla_\theta H \right\rangle \right]
\]

\[
b_\lambda = -\frac{\partial}{\partial \lambda} \nabla_\theta J = -\frac{\partial}{\partial \lambda} \mathbb{E}_{x \sim p(x)} \left[\frac{1}{Z_{\theta, x}} \int \nabla_\theta H \exp(-H) \, dz \right]
\]

\[
= \mathbb{E}_{x \sim p(x)} \left[\left\langle \frac{\partial \nabla_\theta H}{\partial \lambda} \right\rangle - \left\langle \frac{\partial H}{\partial \lambda} \nabla_\theta H \right\rangle + \left\langle \frac{\partial H}{\partial \lambda} \right\rangle \langle \nabla_\theta H \rangle \right]
\]

\[
b_\gamma = -\frac{\partial}{\partial \gamma} \nabla_\theta J = -\frac{\partial}{\partial \gamma} \mathbb{E}_{x \sim p(x)} \left[\frac{1}{Z_{\theta, x}} \int \nabla_\theta H \exp(-H) \, dz \right]
\]

\[
= \mathbb{E}_{x \sim p(x)} \left[\left\langle \frac{\partial \nabla_\theta H}{\partial \gamma} \right\rangle - \left\langle \frac{\partial H}{\partial \gamma} \nabla_\theta H \right\rangle + \left\langle \frac{\partial H}{\partial \gamma} \right\rangle \langle \nabla_\theta H \rangle \right]
\]
According to the quasi-static constraints (16), we have

$$A\dot{\theta} - \dot{\lambda} b_\lambda - \dot{\gamma} b_\gamma = 0,$$

that implies

$$\dot{\theta} = A^{-1} b_\lambda \dot{\lambda} + A^{-1} b_\gamma \dot{\gamma} = \theta_\lambda \dot{\lambda} + \theta_\gamma \dot{\gamma}. \quad (32)$$

D. Computation of Iso-classification constraint

We start with computing the gradient of classification loss, clear that $C = \mathbb{E}_{x \sim p(x)} [-\int dz \ c(z|x) \log c(y|z)] = -\mathbb{E}_{x \sim p(x)} (\ell)$, where $\ell = \log c_0(y_x|z)$ is the logarithm of the classification loss, then

$$\nabla_\theta C = -\nabla_\theta \mathbb{E}_{x \sim p(x)} \left[\frac{1}{Z_{\theta,x}} \int \ell \ \exp(-H) \ dz \right]$$

$$= - \mathbb{E}_{x \sim p(x)} \left[\frac{1}{Z_{\theta,x}} \left(\int (-\nabla_\theta H) \ \exp(-H) \ dz \right) \left(\int \ell \ \exp(-H) \ dz \right) \right] + \frac{1}{Z_{\theta,x}} \int \nabla_\theta \ell \ \exp(-H) \ dz - \frac{1}{Z_{\theta,x}} \int \ell \ \exp(-H) \ dz$$

$$= - \mathbb{E}_{x \sim p(x)} \left[\langle \nabla_\theta \ell \rangle + \langle \nabla_\theta H \rangle \langle \ell \rangle - \langle \ell \ \nabla_\theta H \rangle \right];$$

$$\frac{\partial}{\partial \lambda} C = - \mathbb{E}_{x \sim p(x)} \left[\frac{1}{Z_{\theta,x}} \int \ell \ \exp(-H) \ dz \right]$$

$$= - \mathbb{E}_{x \sim p(x)} \left[\left(\int -\frac{\partial H}{\partial \lambda} \ \exp(-H) \ dz \right) \left(\int \ell \ \exp(-H) \ dz \right) \right] - \frac{1}{Z_{\theta,x}} \int \ell \ \frac{\partial H}{\partial \lambda} \ \exp(-H) \ dz$$

$$= - \mathbb{E}_{x \sim p(x)} \left[\langle \frac{\partial H}{\partial \lambda} \rangle \langle \ell \rangle - \langle \ell \ \frac{\partial H}{\partial \lambda} \rangle \right];$$

$$\frac{\partial}{\partial \gamma} C = - \mathbb{E}_{x \sim p(x)} \left[\frac{1}{Z_{\theta,x}} \int \ell \ \exp(-H) \ dz \right]$$

$$= - \mathbb{E}_{x \sim p(x)} \left[\left(\int -\frac{\partial H}{\partial \gamma} \ \exp(-H) \ dz \right) \left(\int \ell \ \exp(-H) \ dz \right) \right] - \frac{1}{Z_{\theta,x}} \int \ell \ \frac{\partial H}{\partial \gamma} \ \exp(-H) \ dz$$

$$= - \mathbb{E}_{x \sim p(x)} \left[\langle \frac{\partial H}{\partial \gamma} \rangle \langle \ell \rangle - \langle \ell \ \frac{\partial H}{\partial \gamma} \rangle \right].$$

The iso-classification loss constrains together with quasi-static constrains imply that:

$$0 = \frac{d}{dt} C$$

$$= \dot{\theta} \nabla_\theta C + \dot{\lambda} \frac{\partial C}{\partial \lambda} + \dot{\gamma} \frac{\partial C}{\partial \gamma}$$

$$= \lambda \left(\theta_\lambda \nabla_\theta C + \frac{\partial C}{\partial \lambda} \right) + \gamma \left(\theta_\gamma \nabla_\theta C + \frac{\partial C}{\partial \gamma} \right)$$

$$= - \lambda \mathbb{E}_{x \sim p(x)} \left[\langle \frac{\partial H}{\partial \lambda} \rangle \langle \ell \rangle - \langle \ell \frac{\partial H}{\partial \lambda} \rangle \right] + \langle \theta_\lambda \nabla_\theta H \rangle \langle \ell \rangle - \langle \ell \theta_\lambda \nabla_\theta H \rangle + \langle \theta_\gamma \nabla_\theta H \rangle \langle \ell \rangle - \langle \ell \theta_\gamma \nabla_\theta H \rangle + \langle \theta_\gamma \nabla_\theta \ell \rangle \langle \ell \rangle - \langle \ell \theta_\gamma \nabla_\theta \ell \rangle$$

$$= C_\lambda \dot{\lambda} + C_\gamma \dot{\gamma},$$

where the third equation is followed by the equilibrium dynamics (17) for parameters θ. So far we developed the constrained dynamics for iso-classification process:

$$0 = C_\lambda \dot{\lambda} + C_\gamma \dot{\gamma}$$

$$\dot{\theta} = \theta_\lambda \dot{\lambda} + \theta_\gamma \dot{\gamma}. \quad (33)$$
E. Iso-classification equations for changing data distribution

In this section we analyze the dynamics for iso-classification loss process when the data distribution evolves with time. \(\frac{\partial p(x)}{\partial t} \) will lead to additional terms that represent the partial derivatives with respect to \(t \) on both the quasi-static and iso-classification constraints. More precisely, the new terms are

\[
b_t = -\frac{\partial}{\partial t} \nabla_\theta J = -\int \frac{\partial p(x)}{\partial t} \langle \nabla_\theta H \rangle \, dx;
\]

\[
\frac{\partial}{\partial t} C = -\int \frac{\partial p(x)}{\partial t} \langle \ell \rangle \, dx,
\]

then the quasi-static and iso-classification constraints are ready to be modified as

\[
0 \equiv \frac{d}{dt} \nabla_\theta J(\theta, \lambda, \gamma) \iff 0 = \nabla_\theta^2 F \dot{\theta} + \lambda \frac{\partial \nabla_\theta F}{\partial \lambda} + \gamma \frac{\partial \nabla_\theta F}{\partial \gamma} + \frac{\partial \nabla_\theta^2 F}{\partial \gamma} \frac{\partial \nabla_\theta C}{\partial \gamma} \frac{\partial \nabla_\theta C}{\partial \gamma} \frac{\partial \nabla_\theta C}{\partial \gamma}
\]

\[
\iff \dot{\theta} = \lambda A^{-1} b_\lambda + \gamma A^{-1} b_\gamma + A^{-1} b_t
\]

\[
0 \equiv \frac{d}{dt} C \iff 0 = \theta^\top \nabla_\theta C + \lambda \frac{\partial C}{\partial \lambda} + \gamma \frac{\partial C}{\partial \gamma} + \frac{\partial C}{\partial \gamma}
\]

\[
\iff 0 = \lambda \left(\theta^\top \nabla_\theta C + \frac{\partial C}{\partial \lambda} \right) + \gamma \left(\theta^\top \nabla_\theta C + \frac{\partial C}{\partial \gamma} \right) + \left(\theta^\top \nabla_\theta C + \frac{\partial C}{\partial \gamma} \right)
\]

\[
\iff 0 = \lambda C_\lambda + \gamma C_\gamma + C_t,
\]

where \(A, b_\lambda, b_\gamma, C_\lambda \) and \(C_\gamma \) where \(C_\lambda \) and \(C_\gamma \) are as given in lemma 5 and (21) with the only change being that the outer expectation is taken with respect to \(x \sim p(x, t) \). The new terms that depends on time \(t \) are

\[
C_t = -\int \frac{\partial p(x, t)}{\partial t} \langle \ell \rangle \, dx - \mathbb{E}_{x \sim p(x, t)} \left[\langle \theta^\top_i \nabla_\theta H \rangle \ell - \langle \theta^\top_i \nabla_\theta H \ell \rangle + \langle \theta^\top_i \nabla_\theta \ell \rangle \right]
\]

with \(\ell = \log c_\theta(y_{x_t} | z) \). We can combine modified quasi-static and iso-classification constraints to get

\[
\dot{\theta} = \left(\theta_\lambda - \frac{C_\lambda}{C_\gamma} \theta_\gamma \right) \lambda + \left(\theta_t - \frac{C_t}{C_\gamma} \theta_\gamma \right)
\]

\[
= \dot{\theta}_\lambda \lambda + \dot{\theta}_t
\]

This indicates that \(\theta = \theta(\lambda, t) \) is a surface parameterized by \(\lambda \) and \(t \), equipped with a basis of tangent plane \((\dot{\theta}_\lambda, \dot{\theta}_t) \).

F. Optimally transporting the data distribution

We first give a brief description of the theory of optimal transportation. The optimal transport map between the source task and the target task will be used to define a dynamical process for the task. We only compute the transport for the inputs \(x \) between the source and target distributions and use a heuristic to obtain the transport for the labels \(y \). This choice is made only to simplify the exposition; it is straightforward to handle the case of transport on the joint distribution \(p(x, y) \).

If i.i.d samples from the source task are denoted by \(\{x^*_1, \ldots, x^*_n_s\} \) and those of the target distribution are \(\{x^*_1, \ldots, x^*_n_t\} \) the empirical source and target distributions can be written as

\[
p^s(x) = \frac{1}{n_s} \sum_{i=1}^{n_s} \delta_{x^*}, \text{and } p^t(x) = \frac{1}{n_t} \sum_{i=1}^{n_t} \delta_{x^*}
\]

respectively; here \(\delta_{x^*} \) is a Dirac delta distribution at \(x^* \). Since the empirical data distribution is a sum of a finite number of Dirac measures, this is a discrete optimal transport problem and easy to solve. We can use the Kantorovich relaxation to denote by \(B \) the set of probabilistic couplings between the two distributions:

\[
B = \{ \Gamma \in \mathbb{R}^{n_s \times n_t} : \Gamma 1_{n_s} = p, \Gamma^\top 1_{n_t} = q \}.
\]
where 1_n is an n-dimensional vector of ones. The Kantorovich formulation solves for

$$
\Gamma^* = \arg\min_{\Gamma \in \mathcal{B}} \sum_{i=1}^{n_s} \sum_{t=1}^{n_t} \Gamma_{ij} \kappa_{ij}
$$

(36)

where $\kappa \in \mathbb{R}^{n_s \times n_t}$ is a cost function that models transporting the datum x^s_i to x^t_j. This is the metric of the underlying data domain and one may choose any reasonable metric for $\kappa = ||x^s_i - x^t_j||^2_2$. The problem in (36) is a convex optimization problem and can be solved easily; in practice we use the Sinkhorn’s algorithm (Cuturi, 2013) which adds an entropic regularizer $-h(\Gamma) = \sum_{ij} \Gamma_{ij} \log \Gamma_{ij}$ to the objective in (36).

F.1. Changing the data distribution

Given the optimal probabilistic coupling Γ^* between the source and the target data distributions, we can interpolate between them at any $t \in [0, 1]$ by following the geodesics of the Wasserstein metric

$$
p(x, t) = \arg\min_p (1 - t)W_2^2(p^s, p) + tW_2^2(p, p^t).
$$

For discrete optimal transport problems, as shown in Villani (2008), the interpolated distribution p_t for the metric $\kappa_{ij} = ||x^s_i - x^t_j||^2_2$ is given by

$$
p(x, t) = \sum_{i=1}^{n_s} \sum_{j=1}^{n_t} \Gamma_{ij}^* \delta_{x-(1-t)x^s_i + tx^t_j}.
$$

(37)

Observe that the interpolated data distribution equals the source and target distribution at $t = 0$ and $t = 1$ respectively and it consists of linear interpolations of the data in between.

Remark 11 (Interpolating the labels). The interpolation in (37) gives the marginal on the input space interpolated between the source and target tasks. To evaluate the functionals in Section 3 for the classification setting, we would also like to interpolate the labels. We do so by setting the true label of the interpolated datum $x = (1 - t)x^s_i + tx^t_j$ to be linear interpolation between the source label and the target label.

$$
y(x, t) = (1 - t)\delta_{y - y^s_i} + t\delta_{y - y^t_j}
$$

for all i, j. Notice that the interpolated distribution $p(x, t)$ is a sum of Dirac delta distributions weighted by the optimal coupling. We therefore only need to evaluate the labels at all the interpolated data.

Remark 12 (Linear interpolation of data). Our formulation of optimal transportation leads to a linear interpolation of the data in (23). This may not work well for image-based data where the square metric $\kappa_{ij} = ||x^s_i - x^t_j||^2_2$ may not be the appropriate metric. We note that this interpolation of data is an artifact of our choice of κ_{ij}, other choices for the metric also fit into the formulation and should be viable alternatives if they result in efficient computation.