Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
(Supplementary Material)

Kaixuan Wei !

1. Outline

This supplementary material provides further details and
results to support the content from the main paper. It is
organized as follows.

e Section 2: In the interest of clarity, we provide further
details on the implementation and our tuning-free plug-
and-play (TFPnP) algorithm.

e Section 3: With the purpose of completeness, we
present further insights of our TFPnP algorithm.

e Section 4: We give further details on the experimental
setup, for the competing methods, for both applica-
tions compressive sensing MRI (CS-MRI) and phase-
retrieval (PR).

2. More Implementation Details

In this section, we present additional implementation details
of our TFPnP algorithm. It is divided in two key parts: i)
the network architectures of the policy and value networks,
and ii) the detailed training algorithm for policy learning.

2.1. Policy and Value Networks

The design principal of a policy/value network is to make
it simple yet effective. For convenience, we follow (Huang
et al., 2019) that uses residual structures similar to ResNet-
18 (He et al., 2016) as the feature extractor in the policy
and value networks, followed by fully-connected layers and
activation functions to produce desired outputs. The network
configuration of the feature extractor of the policy and value
networks is shown in Table I. To make the policy aware of
the problem settings, we followed the protocol from (Silver
et al., 2016). That is, we concatenate extra feature planes as

'School of Computer Science and Technology, Beijing Institute
of Technology, Beijing, China “DPMMS, University of Cambridge,
Cambridge, United Kingdom *DAMTP, University of Cambridge,
Cambridge, United Kingdom. Correspondence to: Ying Fu <fuy-
ing@bit.edu.cn>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Angelica Aviles-Rivero? Jingwei Liang? Ying Fu! Carola-Bibiane Schnlieb® Hua Huang '

additional channels in the input, which include the (spatially
constant) observation noise level, the sampling mask (for
CS-MRI), and the number of the steps that have been taken
so far in the optimization process. It is worth noting that the
extra computation cost of the policy network is marginal,
compared with the iteration cost in the PnP-ADMM.

2.2. Detailed Training Algorithm

The detailed training algorithm for policy learning is sum-
marized in Algorithm 1. It requires an image dataset D,
a degradation operator g(-), a state buffer B, initialized
network parameters 6, ¢, gZ; learning rates Irg, lrg, and a
weight parameter /3 for updating (2) We use the 17,125 re-
sized images' with size 128 x 128 from the PASCAL VOC
dataset (Everingham et al., 2014) as the image dataset D. To
sample initial states sg, we define the degradation operator
g(+) as a composition of a observation/forward model and
an initialization function. The observation/forward model
maps the underlying image x to its observation y, while
the initialization function generates the initial estimate g
from the observation y. For linear inverse problems, g(-) is
typically defined by the composition of the forward opera-
tor and the adjoint operator of the problem. For example,
in CS-MRYI, ¢(-) is a composition of the partially-sampled
Fourier transform and the inverse Fourier transform. For
nonlinear inverse problem - phase retrieval, we employ the
HIO algorithm (Fienup, 1982) as the initialization function.

We optimize networks using Adam optimizer with batch
size 48 and 1500 training iterations. We start by setting
the learning rates Irg, Iy for updating the policy 7y and
the value network V' to 3 x 10~* and 107°. Then we
reduced these values to 10~* and 3 x 10~ respectively at
training iteration 1000. The value network learning makes
use of a target value network, which is a soft copy of the
value network itself. The parameter J for softly updating
the target value network is set to 10~3. For each training
iteration, we alternate between collecting states (in a state
buffer) from the environment with the current policy and
updating the network parameters using policy gradients

!The policy/value network is trained on whole images rather
than image patches used to train denoising networks.

Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems

Table I. Network configuration of the feature extractor of our pol-
icy and value networks. 3 x 3, 64 denote the kernel size and the
number of the output feature maps. “layerx” is the building block
of the residual network, which consists of two convolutional layers
with batch normalization (BN) (loffe & Szegedy, 2015) and ReLU
activation. The BN and ReL.U are replaced by weight normaliza-
tion (Salimans & Kingma, 2016) and TReLU (Xiang & Li, 2017)
respectively in the value network.

LAYER NAME | FEATURE EXTRACTOR | OUTPUT SIZE
convl 3 x 3,64 64 x 64
layerl [3x3ea] x 2 32 x 32
layer2 [3x5158] x 2 16 x 16
layer3 [33.220] 2 58
layer4 [3x3:213] x 2 4 x4

avgpool 4 x 4 average pool 1x1

Algorithm 1 Training algorithm

Require: Image dataset D, degradation operator g(-), state buffer
B, initialized network parameters 6, ¢, <2>, learning rates Irg,
lr4, weight parameter [for updating <;A$

1: for each training iteration do

2: sample initial state s from D via g(-)

3: for environment step ¢ € [0, N) do

4 ar ~ mo(at|st)

5: St41 ~ p(St+1]st, ar)

6: B <+ BU/{st+1}

7 break if the boolean outcome of a: equals to 1

8

end for
9: for each gradient step do
10: sample states from the state buffer B
11: 01 <—91+ZT9V91J(71'9)
12: 02 < 02 +l7‘9V92J(7T9)
13: ¢ ¢ —1reVeLly
14: ¢ Bo+(1-p)o
15: end for
16: end for

from batches sampled from the state buffer B. Ten gradient
steps are performed at each training iteration.

3. Algorithm Investigation

In this section, we conduct experiments to further investi-
gate our TFPnP algorithm. We focus on three aspects of
the algorithm: i) the choice of hyperparameters m, /N and
7, ii) the relationship between the Gaussian denoising per-
formance and the PnP performance, and iii) the behavior
of the learned policy (i.e. how do the generated internal
parameters look like?)

- 25.5 -7

Pe
\

2 25.0 o
o R

24.5 .. i i i i
24.0 245 25.0 25.5 26.0
Denoising Perf. (PSNR)

Figure I. Relationship between Gaussian denoising performance
and PnP performance. A better Gaussian denoiser is also a better
denoiser prior.

3.1. Hyperparameter Analysis

Here, we discuss the choice of hyperparameters m, N and
7 in our TFPnP algorithm, where m denotes the number
of iterations of the optimization involved in the transition
function p; N is the max time step to run the policy; n
sets the degree of penalty defined in the reward function.
Table II shows the results of learned policies trained with
different hyperparameter settings (m, N and 7n) for CS-
MRI. These results are divided into two groups (separated
by the “midrule”) to analyze the effects of (m, N) and 7
respectively. In the first group, we fix the value of 1 and
change the value of m (V is varied with m such that the
maximum number of iterations m x N is fixed to 30 to
keep comparisons fair). We observe all these settings yield
similar results. It is up to users’ preference to choose m:
larger m leads to coarser control of the terminal time, but
only requires less rounds of the decision making. In the
second group, we keep (m, V) constant while manipulating
the value of 7. We find n serves as a key parameter to
encourage the early stopping behavior. With n = 0, the
policy would not learn to early stop the optimization process,
whilst large n would make the policy stop too early.

3.2. Is a Better Gaussian Denoiser a Better Denoiser
Prior?

To reveal the relationship between the Gaussian denoising
performance and the PnP performance, we train a series of
denoising networks with incremental Gaussian denoising
performance (by adjusting the number of filters of networks).
Then we incorporate these denoisers into the PnP-ADMM
framework, to evaluate their PnP performance on the CS-
MRI application. The denoising strength/penalty parameters
and the terminal time are exhaustively searched to maxi-
mize PSNR, such that the impact of internal parameters is
excluded. We illustrate this in Fig I, in which we show the
intrinsic relation between the Gaussian denoising and PnP
performance.

Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems

ising strength o
L}

Denoising strength o
.

5

H 3) 5 3 3 3 3 T 3 7 1o 1
Number of iterations (#IT.) Number of iterations (#IT.) Number of iterations (#1T.)

z H 7
Number of iterations (#IT.)

5 15

T 3 7 1 13 H 3 7 3 i3 1
Number of iterations (#IT.) Number of iterations (#1T.) Number of iterations (#1T.)

Penalty parameter
Penalty parameter 4
ey prameters
Penalty parameter

Penalty parameter i

3 3 3 3 3 3 3 B i 7 T 1315
Number of iterations (#IT.) Number of terations (#1T.) Number of iterations (#IT.)

3 3)
Number of iterations (#IT.)

T 3 7 10 1B 3 3 3 B i 7 1 155
Number of terations (#IT.) Number of iterations (#IT.) Number of iterations (#IT.)

Figure II. Behaviors of our learned policy for CS-MRI on medical images. First row: the initial estimate ¢ of the underlying image;
Second row: the predicted denoising strength o by our learned policy; Third row: the predicted penalty parameters p by our learned policy.
Our learned policy customizes different internal parameters with respect to different images, meanwhile the generated parameters change

adaptively across iterations of the optimization process.

Table 1I. Comparisons of learned policies trained with different
hyperparameters for CS-MRI on seven widely used medical images
under various acceleration factors (x2/x4/x8) and noise level 15.
We show both PSNR and the number of iterations (#IT.) used to
induce results.

X2 x4 X8
(m, N, n) PSNR #IT. PSNR #IT. PSNR #IT.
(3,10,0.05) 30.26 3.0 28.59 9.9 26.27 16.7
(10,3,0.05) 3032 10.0 2858 10.0 26.39 10.0
(5, 6,0.05) 30.33 5.0 28.42 5.0 26.44 150
(5,6,0) 3030 27.1 28.60 293 2640 30.0
(5,6,0.1) 30.34 5.0 28.44 5.0 26.29 10.7
(5, 6,0.25) 30.34 5.0 28.37 5.0 25.53 5.0

3.3. Behaviors of Learned Policy

In the Section 4.2 of the main paper, we find our learned
policy sometimes even surpasses the oracle policy tuned via
the inaccessible ground truth. We attribute this phenomena
to the adaptive parameters over iterations generated automat-
ically in our TFPnP algorithm, as the adaptive penalization
has been demonstrated to result in faster convergence in the
convex setting (Xu et al., 2017). We give a graphical illus-
tration, in Fig. II, of our learned policy, i.e. to visualize its
behavior (generated parameters) towards different images.

4. Experimental Setup

In this section, we detail the experimental setup for the
competing methods on both CS-MRI and PR applications.
All the methods were tested on a machine with NVIDIA
GTX 1080Ti GPU, Intel(R) Core(TM) 17-7700K CPU of

4.2GHz and 16 GB RAM. We note all parameters involved
in the competing algorithms were manually tuned optimally
or automatically chosen as described in the reference paper.
The specific parameter setting of each methods is presented
next

4.1. Compressive Sensing MRI

On CS-MRI application, the competing method includes
RecPF (Yang et al., 2010), ADMMNet (Yang et al., 2016),
ISTANet (Zhang & Ghanem, 2018), BM3D-MRI (Eksioglu,
2016) and IRCNN (Zhang et al., 2017). For RecPF, the two
parameters “alpha” and “beta” are set to 2.5 and 3.5 x 1072
respectively. For ADMMNet and ISTANet, we use the
default configurations and train these networks from scratch
using the same dataset as ours. For BM3D-MRI, we set the
“final noise level (the denoising strength in the last iteration)”
as two times of the measurement noise level. For IRCNN,
the “final noise level” is specified as the measurement noise
level.

4.2. Phase Retrieval

On PR application, the competing method includes HIO
(Fienup, 1982), WF (Candes et al., 2014), DOLPHIn (Mairal
et al., 2016), SPAR (Katkovnik, 2017), BM3D-prGAMP
(Metzler et al., 2016) and prDeep (Metzler et al., 2018).
All algorithms are initialized by the vector of ones. The
HIO algorithm is run for 200 iterations and its parameter
“beta” is assigned to 0.96. The WF algorithm is also run for
200 iterations and its parameters “tau0” and “gamma” are
chosen as 10 and 0.05. The BM3D-prGAMP is run for 100

Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems

iterations, whose parameter “wvar” is set to the standard
deviation of the measurement noise. Other algorithms, i.e.
DOLPHIn, SPAR and prDeep, use their default parameters.

References

Candes, E., Li, X., and Soltanolkotabi, M. Phase retrieval
via wirtinger flow: Theory and algorithms. IEEE Trans-
actions on Information Theory, 61, 07 2014.

Eksioglu, E. M. Decoupled algorithm for mri reconstruction
using nonlocal block matching model: Bm3d-mri. Jour-
nal of Mathematical Imaging and Vision, 56(3):430-440,
2016.

Everingham, M., Eslami, S., Van Gool, L., Williams, C.,
Winn, J., and Zisserman, A. The pascal visual object
classes challenge: A retrospective. International Journal
of Computer Vision, 111, 01 2014.

Fienup, J. R. Phase retrieval algorithms: a comparison.
Applied Optics, 21(15):2758-2769, 1982.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2016.

Huang, Z., Heng, W., and Zhou, S. Learning to paint with
model-based deep reinforcement learning. In The IEEE
International Conference on Computer Vision (ICCV),
2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Katkovnik, V. Phase retrieval from noisy data based on
sparse approximation of object phase and amplitude.
arXiv preprint arXiv:1709.01071, 2017.

Mairal, Julien, Tillmann, Andreas, M., Eldar, Yonina, and
C. Dolphin-dictionary learning for phase retrieval. IEEE
Transactions on Signal Processing, 2016.

Metzler, C., Schniter, P., Veeraraghavan, A., et al. prdeep:
Robust phase retrieval with a flexible deep network. In
International Conference on Machine Learning (ICML),
pp. 3498-3507, 2018.

Metzler, C. A., Maleki, A., and Baraniuk, R. G. Bm3d-
prgamp: Compressive phase retrieval based on bm3d
denoising. In IEEFE International Conference on Image
Processing, 2016.

Salimans, T. and Kingma, D. P. Weight normalization: a
simple reparameterization to accelerate training of deep
neural networks. Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 901-909, 2016.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, 1.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 529(7587):484, 2016.

Xiang, S. and Li, H. On the effects of batch and weight
normalization in generative adversarial networks. arXiv
preprint arXiv:1704.03971, 2017.

Xu, Y., Liu, M., Lin, Q., and Yang, T. Admm without a
fixed penalty parameter: Faster convergence with new
adaptive penalization. In Advances in Neural Information
Processing Systems (NIPS), pp. 1267-1277, 2017.

Yang, J., Zhang, Y., and Yin, W. A fast alternating direc-
tion method for tvl1-12 signal reconstruction from partial
fourier data. IEEE Journal of Selected Topics in Signal
Processing, 4(2):288-297, 2010.

Yang, Y., Sun, J., Li, H., and Xu, Z. Deep admm-net for
compressive sensing mri. In Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 10—18. 2016.

Zhang, J. and Ghanem, B. Ista-net: Interpretable
optimization-inspired deep network for image compres-
sive sensing. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

Zhang, K., Zuo, W., Gu, S., and Zhang, L. Learning deep
cnn denoiser prior for image restoration. In /EEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2017.

