Causal Modeling for Fairness in Dynamical Systems (Supplemental)

Elliot Creager1,2 David Madras1,2 Toniann Pitassi1,2 Richard Zemel1,2

A. Code

Code is available at github.com/ecreager/causal-dyna-fair.

B. Experimental Details for Off-Policy Evaluation and Selection

Here, we discuss details on the setup for the off-policy evaluation experiment in Sec. 5.

B.1. Data Generation

We generate data from the Liu et al. (2018) model, described in full in Appendix C. We use $(c_+, c_-) = (75, -150)$ and $(u_+, u_-) = (1, -4)$. We use a single threshold policy of $\tau_j = 620\forall j$. We generate 13 data sets of 10,000 examples each, using 11 for training (to get confidence intervals), 1 for validation, and 1 for test.

In order to use re-weighting estimators, we must have overlap i.e. each point (X, A) must have a non-zero probability of receiving each treatment in the observational data. Since a threshold policy does not satisfy this, we flipped the treatment chosen by the threshold policy with a probability of 0.1.

B.2. Treatment and Outcome Models

We use L2-regularized logistic regression for both the treatment and the outcome model using the liblinear default solver in sklearn. We train a treatment and outcome model on each of the 11 training sets, and use these to construct our confidence intervals.

B.3. Estimation of Equal Opportunity Distance

We define the equal opportunity metric δ_{EqOpp} as

$$\delta_{EqOpp} = |P(T = 1|Y = 1, A = 0) - P(T = 1|Y = 1, A = 1)|.$$ \hfill (3)

The key unit in this expression is $P(T = 1)$ (removing $A = a$ from the right side for clarity). This is non-trivial to estimate, since Y is unobserved for many cases.

We take the following approach. First, using Bayes rule, we have

$$P(T = 1|Y = 1) = \frac{P(Y = 1|T = 1)P(T = 1)}{P(Y = 1)}.$$ \hfill (4)

$P(T = 1)$ is easy to estimate from observational data. $P(Y = 1|T = 1)$ is the off-policy estimation question — we use either \mathcal{E}_{Reg} or \mathcal{E}_{DR} to estimate this. We estimate $P(Y = 1)$ using off-policy estimation as well, noting that $P(Y = 1) = P(Y = 1|\tilde{T} = 1)$, if $\tilde{T} \perp Y$. Therefore, we can obtain an estimate for the marginal distribution of Y by doing

1University of Toronto 2Vector Institute. Correspondence to: Elliot Creager <creager@cs.toronto.edu>.

off-policy estimation for random policies \hat{T} (again, using either E_{Reg} or E_{DR}). We choose 10 random Bernoulli policies to obtain 10 estimates of $P(Y = 1)$ and average them.

B.4. Threshold Search

In both the estimation (Fig. 5) and selection (Fig. 6) experiments, we consider all thresholds\(^1\) $\tau \in [300, 850]$ in increments of 5. To choose our best thresholds in the selection experiment, we consider all pairs of group-specific thresholds (τ_0, τ_1), and estimate the value of \mathcal{V}_τ for the policy associated with those thresholds. We find the optimal value on the validation set, and test them to obtain a final value on the test set. Since we do not require overlap to hold in the target policy, we consider hard threshold policies (we do not flip any predictions post-hoc, as we do in the observational data). In the selection experiment, we test λ in increments of 0.1 from 0 to 0.9.

C. Liu et al. (2018) SCM Details

As briefly discussed above, Liu et al. (2018) propose a one-step feedback model for a decision-making setting then analyze several candidate policies—denoted by the structural equation f_T in our analysis—by simulating one step of dynamics to compute the institution’s profit and group outcomes for each policy. Figure 4a shows our SCM formulation of this dynamics. To choose our best thresholds in the selection experiment, we consider all pairs of group-specific thresholds (τ_j) and tie-breaking Bernoulli probabilities γ_j (for simplicity of exposition we assume the tie-breaking probability is shared across groups). The original expression was

\begin{align*}
P(Y_x = y | Z = z, X = x) &= P(Y = y | Z = z, X = x) \tag{5}\end{align*}

for all x, y, z, where Y_x is the counterfactual potential outcome for Y under the treatment x.

To sample over $p(X, A)$ we start with Bernoulli sampling of A, parameterized SCM-style like

\begin{align*}
U_{A_i} &\sim \text{Bernoulli}(U_{A_i} | \theta); ~ A_i = f_A(U_{A_i}) \triangleq U_{A_i} \tag{6}
\end{align*}

where $\theta \in [0, 1]$ is the proportion of the $A = 1$ group.

We then sample scores by the inverse CDF trick\(^2\). Given an inverse cumulative distribution function CDF^{-1}_j for each group $j \in \{0, 1\}$, we can write

\begin{align*}
U_{X_i} &\sim \text{Uniform}(U_{X_i} | [0, 1]) \tag{7}
\end{align*}

\begin{align*}
X_i &= f_X(U_{X_i}, A_i) \triangleq \text{CDF}^{-1}_j(U_{X_i}) \tag{8}
\end{align*}

Liu et al. (2018) discuss implementing threshold policies for each group $j \in \{0, 1\}$, which are parameterized by thresholds c_j and tie-breaking Bernoulli probabilities γ (for simplicity of exposition we assume the tie-breaking probability is shared across groups). The original expression was

\begin{align*}
\mathbb{P}(T = 1 | X, A = j) &= \begin{cases}
1 & X > c_j \\
\gamma & X = c_j \\
0 & X < c_j.
\end{cases} \tag{9}
\end{align*}

Then, after denoting by $1(\cdot)$ the indicator function, we can rephrase this distribution in terms of a structural equation governing treatment:

\begin{align*}
U_{T_i} &\sim \text{Bernoulli}(U_{T_i} | \gamma) \tag{10}
\end{align*}

\begin{align*}
T_i &= f_T(U_{T_i}, X_i, A_i) \\
&\triangleq 1(1(U_{X_i} > c_{A_i})), U_{T_i}^{A_i(X_i = c_{A_i})}, 0(U_{X_i} < c_{A_i}) \tag{11}
\end{align*}

\(^1\)300 and 850 are the minimum and maximum credit scores in the dataset.

\(^2\)This standard trick is used for sampling from distributions with known densities. Recalling that $\text{CDF}_p : \mathcal{X} \to [0, 1]$ is a monotonic (invertible) function representing $\text{CDF}_{p}(X') = \int_{-\infty}^{X'} dXp(X < X')$. Then to sample $X' \sim p$ we first sample $U \sim \text{Uniform}(U|[0, 1])$ then compute $X' = \text{CDF}_p^{-1}(U)$.
A policy \(f_T\) (which itself may or may not satisfy some fairness criteria) is evaluated in terms of whether loans were given to creditworthy individuals, and in terms of whether each demographic group successfully repaid any allocated loans on average. To capture the notion of creditworthiness, we introduce a potential outcome \(Y\) (repayment if the loan were given) for each individual, which is drawn\(^3\) from \(p(Y|X, A)\). By convention \(T = 1\) as the “positive” treatment (e.g., got loan) and \(Y = 1\) as the “positive” outcome (e.g., would have repaid loan if given) Note that \(Y\) is independent of \(T\) given \(X\), meaning \(Y\) is really an indicator of success. Formally, the potential outcome \(Y\) is distributed as \(Y_i \sim \text{Bernoulli}(\rho(X_i, A_i))\) for some function \(\rho : X \times A \to [0, 1]\). We reparameterize this as a structural equation using the Gumbel-max trick\(^5\) (Gumbel & Lieblein, 1954; Maddison et al., 2014):

\[
U_{Y_i} \sim \text{Uniform}(U_{Y_i}|[0, 1])
\]

\[
Y_i = f_Y(U_Y, X_i, A_i) \triangleq 1 \left(\log \frac{\rho(X_i, A_i)}{1 - \rho(X_i, A_i)} + \log \frac{U_{Y_i}}{1 - U_{Y_i}} > 0 \right).
\]

The institutional utility \(u_i\) and the updated individual score \(\tilde{X}_i\) are deterministic functions of the outcome \(Y_i\) and the treatment \(T_i\), and the original score \(X_i\):

\[
u_i = f_u(Y_i, T_i) \triangleq \begin{cases} \nu_+^{Y_i = 1} \cdot \nu_-^{Y_i = 0} & \text{if } T_i = 1, \\ 0 & \text{else} \end{cases}
\]

\[
\tilde{X}_i = f_{\tilde{X}}(X_i, Y_i, T_i) \triangleq \begin{cases} X_i + c_+^{Y_i = 1} \cdot c_-^{Y_i = 0} & \text{if } T_i = 1, \\ X_i & \text{else} \end{cases}
\]

As mentioned in Section 5, \(\{\nu_+, \nu_-, c_+, c_-\}\) are fixed parameters that encode expected gain/loss in utility/score based on payment/default of loan.

There are two global quantities of interest. Firstly, the institution cares about its overall utility at the current step (ignoring all aspects of the future), expressed as

\[
U = f_u(u_1...N) \triangleq \frac{1}{N} \sum_{i=1}^{N} u_i.
\]

Secondly, to understand the societal impact of the lending policy, we measure the average per-group score change induced by the policy, expressed for group \(A = j\) as

\[
\Delta_j = f_{\Delta_j}(X_1...N, \tilde{X}_1...N, A_1...N) \triangleq \frac{1}{N_{A_j}} \sum_{i=1}^{N} (\tilde{X}_i - X_i)^{2(A_i = j)}.
\]

with \(N_{A_j} \triangleq \sum_{i'} 1(A_{i'} = j)\) is the size of the \(A_j = 1\) group.

D. Symbol Legends

Here we provide the following symbol decoders for SCMs expressed in the main paper:

- Table 1 decodes the symbols used in Figure 4a
- Table 2 decodes the symbols used in Figure 3

\(^3\)The authors denoted by \(\rho(x)\) the probability of potential success at score \(X\). Various quantities were then computed, e.g., \(u(x) = u_+ \rho(x) + u_- (1 - \rho(x))\). We observe that this is equivalent to marginalizing over potential outcomes \(u(x) = \mathbb{E}_{p(Y|X)}[u_+ Y + u_- (1 - Y)]\); in our simulations we compute such expectations via Monte Carlo sampling with values of \(Y^*\) explicitly sampled.

\(^4\)The authors use \(\rho(X) = p(Y|X)\) in their analysis (suggesting that potential outcome is independent of group membership conditioned on score) but \(\rho(X, A) = p(Y|X, A)\) in the code, i.e. the potential outcome depends differently on score for each group. The SCM as expressed in Figure 4a represents the codebase version.

\(^5\)This trick reparameterizes a Categorical or Bernoulli sample as a deterministic transformation of a Uniform sample. See Oberst & Sontag (2019) for discussion of how to perform counterfactual inference for SCMs with Categorical random variables.
Causal Modeling for Fairness in Dynamical Systems (Supplemental)

Table 1: Symbol legend for Figure 4a

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of individuals</td>
</tr>
<tr>
<td>$</td>
<td>A</td>
</tr>
<tr>
<td>A_i</td>
<td>Sensitive attribute for individual i</td>
</tr>
<tr>
<td>U_{A_i}</td>
<td>Exogenous noise on sensitive attribute for individual i</td>
</tr>
<tr>
<td>X_i</td>
<td>Score for individual i</td>
</tr>
<tr>
<td>U_X</td>
<td>Exogenous noise on score for individual i</td>
</tr>
<tr>
<td>Y_i</td>
<td>Potential outcome (loan repayment/default) for individual i</td>
</tr>
<tr>
<td>U_Y</td>
<td>Exogenous noise on potential outcome for individual i</td>
</tr>
<tr>
<td>T_i</td>
<td>Treatment (institution gives/withholds loan) for individual i</td>
</tr>
<tr>
<td>U_T</td>
<td>Exogenous noise on treatment for individual i</td>
</tr>
<tr>
<td>u_i</td>
<td>Utility of individual i (from the institution’s perspective)</td>
</tr>
<tr>
<td>Δ_i</td>
<td>Expected improvement of score for individual i</td>
</tr>
<tr>
<td>\tilde{X}_i</td>
<td>Score for individual i after one time step</td>
</tr>
<tr>
<td>\mathcal{U}</td>
<td>Global utility (from institution’s perspective)</td>
</tr>
<tr>
<td>Δ_j</td>
<td>Expected change in score for group j</td>
</tr>
</tbody>
</table>

Table 2: Symbol legend for Figure 3

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>indexes groups</td>
</tr>
<tr>
<td>P_k</td>
<td>distribution over (X,Y) for group k</td>
</tr>
<tr>
<td>b_k</td>
<td>expected group-k baseline population growth at each step</td>
</tr>
<tr>
<td>λ_k^t</td>
<td>expected population for group k at time t</td>
</tr>
<tr>
<td>α_k^t</td>
<td>mixing coeff for group k at time t</td>
</tr>
<tr>
<td>N^t</td>
<td>Total population at time t</td>
</tr>
<tr>
<td>z_k^t</td>
<td>indicator of individual belonging to k-th group</td>
</tr>
<tr>
<td>X^t</td>
<td>input features for an individual at time t</td>
</tr>
<tr>
<td>Y^t</td>
<td>label for an individual at time t</td>
</tr>
<tr>
<td>U^t</td>
<td>Exogenous noise in learning algo. (e.g., random seed)</td>
</tr>
<tr>
<td>θ^t</td>
<td>Estimated classifier parameters at time t</td>
</tr>
<tr>
<td>\hat{Y}^t</td>
<td>Predicted label for an individual at time t</td>
</tr>
<tr>
<td>R_k^t</td>
<td>Classification error for group k at time t (unobserved)</td>
</tr>
</tbody>
</table>

E. Other SCMS

Here we provide some SCMs for some additional papers from the literature:

- Figure 10 describes the multi-step loan setting discussed by Mouzannar et al. (2019). Their model is similar to the one proposed by Liu et al. (2018). The main difference is that Mouzannar et al. (2019) describes dynamics that unfold exclusively at the population level, where decisions rendered by the institution do not affect the future well-being of the individuals themselves.

- Figure 11 corresponds to the news recommender simulator discussed by Bountouridis et al. (2019). The goal of this simulator was to understand the long-term effects of recommender algorithms on news consumption behaviors.

- Figure 12 shows the hiring market model proposed in Hu & Chen (2018). Figure 12a shows the higher-level structure of the model: a global state of the hiring market Θ progresses through time, a cohort of workers are initialized at each time step with attributes Φ set by the current global state, and the cohorts progress through time, feeding back into the global state at each step.

 Figure 12b shows the structure of each individual/cohort’s journey through the labour market. At the top of Figure 12b, we see the variables which constitute the global state Θ: wages w, reputation Π_μ of group μ, and the proportion of “good” workers on the permanent labour market in group μ, g_μ. The bottom plate of Figure 12b shows the variables which are part of Φ and which correspond to attributes of an individual worker’s experience.
Figure 10: SCM for the group dynamics model proposed by Mouzannar et al. (2019). See Table 4 for a description of each symbol.

Figure 11: SCM for the news recommendation simulator model proposed by Bountouridis et al. (2019). The key dynamic modeling is in the user vectors in topic space, which drift over time towards the articles that are consumed (these in turn partially depend on the recommendations). Articles are also modeled as decaying in popularity in time. See Table 5 for explanation of all symbols.

E.1. Symbols for Figures in Supplemental Material

Here we provide the following symbol decoders for SCMs expressed in the Appendices:

- Table 3 decodes the symbols used in Figure 12
- Table 4 decodes the symbols used in Figure 10
- Table 5 decodes the symbols used in Figure 11

References

Causal Modeling for Fairness in Dynamical Systems (Supplemental)

(a) Macro-level DAG showing how market state Θ^t and worker cohorts Φ^t_j dynamically affect one another

(b) Micro-level DAG isolating how market state Θ^t affects investment and effort levels of a single worker cohort, and how worker choices affect market state at the next step

Figure 12: SCM for the hiring model from Hu & Chen (2018). 12a shows macro-level causal assumptions. At step t the global state Θ^t of the PLM affects the choices of all cohorts of workers (a cohort denotes workers that enter the market at the same step) via wage signals (12b). The choices of investment and effort and resulting outcomes in turn affect the workers themselves in terms of hiring decisions, and the global state of the market in terms of average group reputation and performance per group. Teal arrows denote structural functions going into the global state. Orange arrows denote structural functions going into the cohort state. Black arrows denote structural functions within the cohort state. See Table 3 in Appendix D for explanation of all symbols.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>indexes time</td>
</tr>
<tr>
<td>i</td>
<td>indexes individuals</td>
</tr>
<tr>
<td>j</td>
<td>indexes cohorts</td>
</tr>
<tr>
<td>w^t_i</td>
<td>wages at time t</td>
</tr>
<tr>
<td>g^t_μ</td>
<td>proportion “good” group-μ workers in PLM</td>
</tr>
<tr>
<td>Π^t_μ</td>
<td>group μ reputation at time t</td>
</tr>
<tr>
<td>μ_i</td>
<td>group membership for worker i</td>
</tr>
<tr>
<td>θ_i</td>
<td>individual i ability</td>
</tr>
<tr>
<td>c_i</td>
<td>cost of investment for individual i</td>
</tr>
<tr>
<td>η_i</td>
<td>investment level for individual i</td>
</tr>
<tr>
<td>ρ_i</td>
<td>qualification level for individual i</td>
</tr>
<tr>
<td>ϵ_i</td>
<td>individual-i cost of effort</td>
</tr>
<tr>
<td>ϵ^t_i</td>
<td>individual-i actual effort exerted at time t</td>
</tr>
<tr>
<td>α^t_i</td>
<td>individual-i outcome at time t</td>
</tr>
<tr>
<td>h^t_i</td>
<td>was individual hired to TLM following education?</td>
</tr>
<tr>
<td>$H^t_i \tau^{-1}$</td>
<td>individual i τ-recent history (outcomes and TLM/PLM status)</td>
</tr>
<tr>
<td>π^t_i</td>
<td>individual i reputation at time t</td>
</tr>
<tr>
<td>p^t_i</td>
<td>was individual hired to PLM at step t?</td>
</tr>
</tbody>
</table>

Table 3: Symbol legend for Figure 12
Causal Modeling for Fairness in Dynamical Systems (Supplemental)

Symbol	Meaning
A_i | Sensitive attribute for individual i
U_{A_i} | Exogenous noise on sensitive attribute for individual i
$|A|_i$ | Number of demographic groups
V_i | Qualification for individual i
U_{V_i} | Exogenous noise on qualification for individual i
$|V|_i$ | Number of qualification levels
θ_j^i | Bernoulli parameter of qualifications of group j at time t
N | Number of individuals
T_i | “Treatment” (whether the institution gives loan) for individual i
U_{T_i} | Exogenous noise on treatment for individual i
u_i | Utility of individual i (from the institution’s perspective)
$\beta^v_{t,i}$ | Selection rate for group j members with qual. v at step t
U | Global institutional utility

Table 4: Symbol legend for Figure 10

Symbol	Meaning
u_i^t | i-th user topic vector at step t
θ | Awareness decay with user-article distance
θ' | Awareness decay with article prominence
λ | Prominent vs proximity in awareness computation
w | Max awareness pool size for any user
k | i-th user’s sensitivity to article proximity in awareness computation
θ'' | i-th user’s sensitivity to article proximity in drift computation
s | number of articles read per user per step
$U_{\text{drift},i}$ | Exogenous noise on user i’s drift at step t
$|U|$ | Number of users
A_j | j-th article topic vector
z^0_j | initial prominence of article j (possibly shared across topic)
z^t_j | prominence of article j at step t
δ | prominence (linear) decay factor
$|A|$ | Number of articles
$d_{i,j}^t$ | distance between user u_i and article a_j at step t
$\delta_{i,j}^t$ | computed step-t distance (user u_i, article a_j) in awareness computation
$c_{i,j}^t$ | computed step-t choice of user u_i about article a_j
$U_{\text{reco},i,j}$ | Exogenous noise on user i’s choice of article j at step t
$|A|$ | Number of articles
$d_{i,j}^t$ | distance between user u_i and article a_j at step t
$\delta_{i,j}^t$ | computed step-t distance (user u_i, article a_j) in awareness computation
$c_{i,j}^t$ | computed step-t choice of user u_i about article a_j
$U_{\text{reco},i,j}$ | Exogenous noise on user i’s choice of article j at step t
m | Number of articles recommended to each user at each step
ν_j^t | Rank of recommendation of article j to user i at step t
ν_j^t | Rank of recommendation of article j to user i at step t
β | Rank-decay of salience induced by a recommendation
U_{sal} | Exogenous (possibly observed) noise in the recommender algo at step t
d | Number of steps in the simulation

Table 5: Symbol legend for Figure 11