Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning

Jize Zhang ¹ Bhavya Kailkhura ¹ T. Yong-Jin Han ¹

Abstract

This paper studies the problem of post-hoc calibration of machine learning classifiers. We introduce the following desiderata for uncertainty calibration: (a) accuracy-preserving, (b) data-efficient, and (c) high expressive power. We show that none of the existing methods satisfy all three requirements, and demonstrate how Mix-n-Match calibration strategies (i.e., ensemble and composition) can help achieve remarkably better data-efficiency and expressive power while provably maintaining the classification accuracy of the original classifier. Mix-n-Match strategies are generic in the sense that they can be used to improve the performance of any off-the-shelf calibrator. We also reveal potential issues in standard evaluation practices. Popular approaches (e.g., histogram-based expected calibration error (ECE)) may provide misleading results especially in small-data regime. Therefore, we propose an alternative data-efficient kernel density-based estimator for a reliable evaluation of the calibration performance and prove its asymptotically unbiasedness and consistency. Our approaches outperform state-of-the-art solutions on both the calibration as well as the evaluation tasks in most of the experimental settings. Our codes are available at https://github.com/zhang64-llnl/Mix-n-Match-Calibration.

1. Introduction

Machine learning (ML) models, e.g., deep neural networks, are increasingly used for making potentially important decisions in applications ranging from object detection (Girshick, 2015), autonomous driving (Chen et al., 2015) to medical diagnosis (Litjens et al., 2017). Several of these applications are high-regret in nature and incorrect decisions have significant costs. Therefore, besides achieving high accuracy, it is also crucial to obtain reliable uncertainty estimates, which can help deciding whether the model predictions can be trusted (Jiang et al., 2018; Kendall & Gal, 2017). Specifically, a classifier should provide a calibrated uncertainty measure in addition to its prediction. A classifier is well-calibrated, if the probability associated with the predicted class label matches the probability of such prediction being correct (Bröcker, 2009; Dawid, 1982). Unfortunately, many off-the-shelf ML models are not well calibrated (Niculescu-Mizil & Caruana, 2005; Zadrozny & Elkan, 2001; 2002). Poor-calibration is particularly promi-
Mix-n-Match Calibration

A popular calibration approach is to learn a transformation (referred to as a calibration map) of the trained classifier’s predictions on a calibration dataset in a post-hoc manner. Pioneering work along this direction include Platt scaling (Platt, 2000), histogram binning (Zadrozny & Elkan, 2001), isotonic regression (Zadrozny & Elkan, 2002), Bayesian binning into quantiles (Naeini et al., 2015). Recently, calibration methods for multi-class deep neural network classifiers have been developed, which include: temperature, vector & matrix scaling (Guo et al., 2017), Dirichlet scaling (Kull et al., 2019), intra order-preserving method (Rahimi et al., 2020) and Gaussian processes based calibration methods (Milios et al., 2018; Wenger et al., 2020). Besides post-hoc calibrations, there also exist approaches for training ab-initio well calibrated models (Kumar et al., 2018; Lakshminarayanan et al., 2017; Pereyra et al., 2017; Seo et al., 2019; Tran et al., 2019), or representing the prediction uncertainty in a Bayesian framework (Blundell et al., 2015; Gal & Ghahramani, 2016; Maddox et al., 2019).

Ideally, an uncertainty calibration method should satisfy the following properties: (a) accuracy-preserving – calibration process should not degrade the classification accuracy of the original classifier, (b) data-efficiency – the ability to achieve well-calibration without requiring a large amount of calibration data, and (c) high expressive power – sufficient representation power to approximate the canonical calibration function given enough calibration data. Despite the popularity of post-hoc calibration, we found that none of the existing methods satisfy all requirements simultaneously (Figure 1). Yet given practical constraints, such as high data collection costs, high complexity of calibration tasks, and need for accurate classifiers, the development of calibration methods which satisfy all three requirements simultaneously is crucial for the success of real-world ML systems.

After calibrating a classifier, the next equally important step is to reliably evaluate the calibration performance. Most of the existing works judge the calibration performance by the expected calibration error (ECE) (Naeini et al., 2015). ECE is usually estimated from a reliability diagram and its associated confidence histogram (Guo et al., 2017; Naeini et al., 2015). However, histogram-based ECE estimators can be unreliable (e.g., asymptotically biased or noisy) due to their sensitivity to binning schemes (Ashukha et al., 2020; Ding et al., 2020; Nixon et al., 2019; Vaicenavicius et al., 2019). Additionally, as a density estimator, histogram is known to be less data-efficient than alternative choices, such as kernel density estimators (Scott, 1992). Therefore, it is of utmost importance to develop reliable and data-efficient methods to evaluate the calibration performance.

To achieve the aforementioned objectives, this paper makes the following contributions:

1. We introduce the following desiderata for uncertainty calibration – (a) accuracy-preserving, (b) data-efficient, and (c) expressive.
2. We propose ensemble and compositional calibration strategies to achieve high data-efficiency and expressive power while provably preserving accuracy.
3. We propose a data-efficient kernel density estimator for a reliable evaluation of the calibration performance.
4. Using extensive experiments, we show that the proposed Mix-n-Match calibration schemes achieve remarkably better data-efficiency and expressivity upon existing methods while provably preserve accuracy.

2. Definitions and Desiderata

Consider a multi-class classification problem. The random variable \(X \in \mathcal{X} \) represents the input feature, and \(Y = (Y_1, \ldots, Y_L) \in \mathcal{Y} \) represents the \(L \)-class one-hot encoded label. Let \(f : \mathcal{X} \rightarrow \mathbb{R}^L \) be a probabilistic classifier that outputs a prediction probability (or confidence) vector \(z = f(x) = (f_1(x), \ldots, f_L(x)) \), where \(\Delta^L \) is the probability simplex \(\{ (z_1, \ldots, z_L) \in [0, 1]^L | \sum_{l=1}^L z_l = 1 \} \). Let \(\mathbb{P}(Z, Y) \) denote the joint distribution of the prediction \(Z \) and label \(Y \). Expectations (\(\mathbb{E} \)) are taken over this distribution unless otherwise specified. Let the canonical calibration function \(\pi(z) \) represents the actual class probability conditioned on the prediction \(z \) (Vaicenavicius et al., 2019):

\[
\pi(z) = (\pi_1(z), \ldots, \pi_L(z)) \text{ with } \pi_l(z) = \mathbb{P}[Y_l = 1 | f(X) = z].
\]

We would like the predictions to be calibrated, which intuitively means that it represents a true probability. The formal definition of calibration is as follows:

Definition 2.1. The classifier \(f \) is perfectly calibrated, if for any input instances \(x \in \mathcal{X} \), the prediction and the canonical calibration probabilities match: \(z = \pi(z) \) (Dawid, 1982).

We focus on a post-hoc approach for calibrating a pre-trained classifier, which consists of two steps: (1) finding a calibration map \(T : \Delta^L \rightarrow \Delta^L \) that adjusts the output of an existing classifier to be better calibrated, based on a set of \(n_e \) calibration data samples; and (2) evaluate the calibration performance based on a set of \(n_e \) evaluation data samples. Next, we discuss both steps in detail and highlight shortcomings of current methods.
2.1. Calibration Step

The first task in the calibration pipeline is to learn a calibration map \(T \) based on \(n_e \) calibration data samples \(\{(x^{(i)}, y^{(i)})\}_{i=1}^{n_e} \). Existing calibration methods can be categorized into two groups:

Parametric methods assume that the calibration map belongs to a finite-dimensional parametric family \(T = \{T(z; \theta) | \theta \in \Theta, \Theta \subseteq \mathbb{R}^M \} \). As an example, for binary classification problems, Platt scaling (Platt, 2000) uses the logistic transform to modify the prediction probability of a class (assuming \(z_1 \)): \(T(z_1; a, b) = (1 + \exp(-az_1 - b))^{-1} \), where the scalar parameters \(a, b \) are learned by minimizing the negative log likelihood on the calibration data set. Parametric methods are easily extendable to multi-class problems, such as temperature, matrix scaling (Guo et al., 2017) and Dirichlet scaling (Kull et al., 2019).

Non-parametric methods assume that the calibration map is described with infinite-dimensional parameters. For binary classification problems, popular methods include: histogram binning (Zadrozny & Elkan, 2001) which leverages histograms to estimate the calibration probabilities \(\pi(z) \) as the calibrated prediction \(T(z) \). Bayesian Binning (Naeini et al., 2015) performs Bayesian averaging to ensemble multiple histogram binning calibration maps, and isotonic regression (Zadrozny & Elkan, 2002) learns a piecewise constant isotonic function that minimizes the residual between the calibrated prediction and the labels. A common way to extend these methods to a multi-class setting is to decompose the problem as \(L \) one-versus-all problems (Zadrozny & Elkan, 2002), separately identify the calibration map \(T_i \) for each class probability \((z_i) \) in the binary manner, and finally normalize the calibrated predictions into \(\Delta^L \).

While there are existing approaches tailored for calibrating multi-class deep neural network models, none of them simultaneously satisfy all three proposed desiderata (accuracy-preserving, data-efficient, expressive). Figure 1 (top right) highlights that good calibration capability might come at the cost of classification accuracy for approaches such as isotonic regression. This motivates us to design provably accuracy-preserving calibration methods. Furthermore, the effectiveness of calibration method changes with the amount of calibration data. Parametric approaches are usually data-efficient but have very limited expressive power. On the other hand, non-parametric approaches are expressive but highly data-inefficient. Therefore, in Figure 1 (top left), we see that temperature scaling is the best calibration method in data-limited regime, while isotonic regression is superior in data-rich regime. It is thus naturally desirable to design a calibrator that is effective in both data-limited and data-rich regime. However, earlier studies examined calibration methods with fixed dataset size (Guo et al., 2017; Kull et al., 2019; Wenger et al., 2020), and shed no light on this issue.

2.2. Calibration Error Evaluation Step

The next task in the calibration pipeline is to evaluate the calibration performance based on \(n_e \) evaluation data points \(\{(x^{(i)}, y^{(i)})\}_{i=1}^{n_e} \). A commonly used statistics is the expected deviation from \(z \) to \(\pi(z) \), also called expected calibration error (Naeini et al., 2015):

\[
ECE^d(f) = \mathbb{E}[\|Z - \pi(Z)\|^d_2] = \int \|z - \pi(z)\|^d_2 p(z) \, dz \quad (2)
\]

where \(\| \cdot \|^d_2 \) denotes the \(d \)-th power of the \(\ell_d \) norm, and \(p(z) \) represents the marginal density function of \(Z = f(X) \). The original ECE definition adopts \(d = 1 \) (Guo et al., 2017; Naeini et al., 2015), while \(d = 2 \) is also commonly used (Bröcker, 2009; Hendrycks et al., 2019; Kumar et al., 2019).

Note that probabilities in Eq. (1) and Eq. (2) cannot be computed directly using finite samples, since \(\pi(z) \) is a continuous random variable. This motivates the need of designing reliable ECE estimators. A popular estimation approach is based on histograms (Naeini et al., 2015). It partitions the evaluation data points into \(b \) bins \(\{B_1, \ldots, B_b\} \) according to the predictions \(z \), calculate the average prediction \(\bar{f}(B_i) \) and label \(\bar{\pi}(B_i) \) inside the bins \(B_i \), and estimate ECE by:

\[
\text{ECE}^d(f) = \sum_{i=1}^{b} \frac{\#B_i}{n_e} \|\bar{f}(B_i) - \bar{\pi}(B_i)\|^d_2. \quad (3)
\]

where \(\#B_i \) denotes the number of instances in \(B_i \).

Despite its simplicity, histogram-based estimator suffers from several issues. First, it has bias-variance dilemma with respect to the selection of bin amount and edge locations. For example, too few bins lead to under-estimation of ECE (Kumar et al., 2019), while too many bins leads to noisy estimates as each bin becomes sparsely populated (Ashukha et al., 2020; Ding et al., 2020; Nixon et al., 2019; Vaicenavicius et al., 2019). Therefore, histogram-based ECE estimators are unreliable (e.g., asymptotically biased or noisy) due to their sensitivity to the binning scheme. Unfortunately, a consistently reliable binning selection scheme does not exist (Scott, 1992; Simonoff & Udina, 1997). Finally, histogram-based estimator is known to converge slower than other advanced non-parametric density estimators (Scott, 1992), leading to a data-inefficient estimation of ECE.

Next (in Sec. 3), we discuss the proposed Mix-n-Match calibration strategies which satisfy the above discussed desiderata. Later (in Sec. 4), we will address the issue of designing a reliable and data-efficient ECE estimator.

3. Designing Calibration Methods

We first present (in Sec. 3.1) a general strategy to design provably accuracy-preserving calibration methods. Next,
we discuss strategies for parametric (in Sec. 3.2) and non-parametric calibration methods (in Sec. 3.3) to fulfill remaining desiderata.

3.1. Accuracy-preserving Calibration

We present a general form of accuracy-preserving calibration maps and validate its accuracy-preserving property.

Definition 3.1 (Accuracy-Preserving Calibration Map). Let \(g : [0, 1] \rightarrow \mathbb{R}_{\geq 0} \) be a non-negative strictly isotonic function. Then, an accuracy-preserving calibration map is given by:

\[
T(z) = \frac{(g(z_1), g(z_2), \ldots, g(z_L))}{\sum_{l=1}^{L} g(z_l)}.
\] (4)

In Eq. (4), we apply the same function \(g \) to transform all entries in the prediction probability vector \(z \) to an un-normalized vector \(g(z) = (g(z_1), \ldots, g(z_L)) \); and normalize \(g(z) \) to a probability simplex \(\Delta^L \). The single strictly isotonic function \(g \) maintains the ordering of class prediction probabilities, and preserves the classification accuracy.

Proposition 3.1. The calibration map in Eq. (4) preserves the classification accuracy of the uncalibrated classifier.

Proof. Please see supplementary material Sec. S1.

3.2. Parametric Calibrations

Parametric methods are already data-efficient, thus, one simply needs to enforce the accuracy-preserving requirement and improve their insufficient expressive power.

3.2.1. Preserving Accuracy

As discussed in Proposition 3.1, the use of a strictly isotonic function preserves the accuracy. Fortunately, several existing parametric methods, such as, Platt (Platt, 2000) or temperature scaling (Guo et al., 2017), and beta scaling (Kull et al., 2017), employ strictly isotonic functions — logistic function and beta function, respectively. Therefore, these methods are already accuracy-preserving. Otherwise, the general form as provided in Eq. (4) can be used for designing accuracy-preserving calibration maps.

3.2.2. Improving Expressivity by Model Ensemble

We outline a strategy compatible with any parametric calibration method to improve its expressivity. The idea is to use an ensemble of calibration maps from the same accuracy-preserving parametric family, but with different parameters (see Figure 2):

\[
T(z) = w_1 T(z; \theta_1) + w_2 T(z; \theta_2) + \ldots + w_M T(z; \theta_M),
\]

where \(w \) are non-negative coefficients summing up to one. The weighted sum preserves isotonicity, thus the ensemble inherits the accuracy-preserving property from its individual components. The increased expressivity stems from the fact that more parameters becomes adjustable, including \(\theta_j \) and the weights \(w_j \) for each component \(j \) in the ensemble. We find the weights \(w \) and parameters \(\theta \) by minimizing the loss \(R(\cdot) \) between calibrated predictions \(T(z) \) and labels \(y \):

\[
\begin{aligned}
\text{minimize}_{w, \theta} & \quad \sum_{i=1}^{n_x} \sum_{j=1}^{M} w_j R(T(z(j); \theta_j), y(i)) \\
\text{s.t.} & \quad 1_{1 \times M} w = 1; w \geq 0_{M \times 1}.
\end{aligned}
\]

Using the above formulation, we show a specific generalization of temperature scaling (TS) (Guo et al., 2017) to satisfy the proposed desiderata.

Ensemble Temperature Scaling (ETS). Note that TS is already accuracy-preserving and data-efficient. Next, we propose an ensemble formulation to improve the expressivity of TS while maintaining its accuracy-preserving and data-efficiency properties. Specifically, we propose a three-component ensemble as follows:

\[
T(z; w, t) = w_1 T(z; t) + w_2 z + w_3 \frac{1}{L},
\] (5)

where the calibration map for original TS is expressed by

\[
T(z; t) = (z_1^{1/t}, z_2^{1/t}, \ldots, z_L^{1/t})/\sum_{l=1}^{L} z_l^{1/t}.
\]

Interestingly, the remaining two components in the ensemble are also TS calibration maps but with fixed temperature \(t \):

- **TS calibration map with** \(t = 1 \) (outputs uncalibrated prediction \(z \)). It increases the stability when the original classifier is well calibrated (Kull et al., 2017).

- **TS calibration map with** \(t = \infty \) (outputs uniform prediction \(z_l = 1/L \) for each class). It ‘smoothes’ the predictions, similar to how label-smoothing training technique smooths the one-hot labels (Szegedy et al., 2016), which has shown to be successful in training better calibrated neural networks (Müller et al., 2019).

The weight \(w \) and temperature \(t \) of ensemble is identified.

Figure 2. Model Ensemble calibration for improving expressivity. The idea is to use the weighted averaged outputs of an ensemble of \(M \) calibration maps to get the final calibrated prediction. Trainable parameters are highlighted in red.
Mix-n-Match Calibration

Prepared by: [Your Name]

Date: [Date]

1. Introduction

1.1. Background

1.2. Problem Statement

1.3. Contributions

2. Related Work

2.1. Previous Approaches

2.2. Limitations

3. Methodology

3.1. Framework Overview

3.2. Model Details

3.2.1. Architecture

3.2.2. Training

3.2.3. Inference

3.3. Evaluation

3.3.1. Experiment Setup

3.3.2. Results

4. Conclusion

4.1. Future Work

References

Appendix

Figure 3. Data Ensemble calibration for improving data-efficiency. The idea is to ensemble the prediction-label pairs from all L classes and learn a single calibration map (e.g., strictly isotonic function for IRM) that is highlighted in red. By solving the following convex optimization problem:

\[
\begin{align*}
\min_{t, w} & \quad \sum_{i=1}^{n_c} R(w_1 T(z^{(i)}; t) + w_2 z^{(i)} + w_3 y^{(i)}) \\
\text{s.t.} & \quad t > 0; 1 \times 3 w = 1; w \geq 0_{3 \times 1}.
\end{align*}
\]

ETS preserves the accuracy, as it uses a convex combination of (strictly) isotonic function \(g = z_1^{1/t} \) across all classes/components. Further, as ETS only has three additional parameters (the weights) compared to TS, we expect it to be data-efficient. We will see later in Sec. 5.1, ETS is significantly more expressive than TS while maintaining its accuracy-preserving and data-efficiency properties.

3.3. Non-parametric Calibrations

Since non-parametric methods are generally expressive, we focus on providing solutions to enforce the accuracy-preserving requirement, and to improve their data-efficiency.

3.3.1. Preserving Accuracy

Following Proposition 3.1, in order to preserve accuracy, a strictly isotonic calibration function is needed to be constructed non-parametrically. For binary classification, this requirement is satisfied by the isotonic regression (IR) calibration (Zadrozny & Elkan, 2002): for class 1 (class 2 is the complement), it sorts data points according to their predictions \((z_1^{(1)} \leq z_1^{(2)} \ldots \leq z_1^{(nc)})\), then fits an isotonic function \(g\) to minimize the residual between \(g(z_1)\) and \(y_1\). The common way to extend this method to a multi-class setting is to decompose the problem as \(L\) one-versus-all problems, which we further denote as IRoVA.

3.3.2. Improving Efficiency by Data Ensemble

We first explain the proposed multi-class isotonic regression (IRM) procedure, and then comment on its data-efficiency.

Figure 4. Composition-based calibration for achieving both high data-efficiency as well as high expressivity. The uncalibrated prediction is transformed by the parametric (or efficient) calibrator, followed by the non-parametric (or expressive) calibrator. Trainable parameters are highlighted in red.

IRM first ensembles the predictions and labels from all the classes, then learn a strictly isotonic function \(g\) that best fits the transformed predictions versus labels (see Figure 3):

Step 1 (Data ensemble): extract all entries of prediction vector \((z^{(i)})_{i=1}^{nc}\) and label vector \((y^{(i)})_{i=1}^{nc}\). Let \(a(j)\) and \(b(j)\) denote the set of \(nc \times L\) prediction and label entries. Sort both vectors such that \(a(1) \leq a(2) \leq \ldots \leq a(nc)\).

Step 2 (Isotonic regression): learn an isotonic function \(g^*\) by minimizing the squared error loss between \(g(a)\) and \(b\):

\[
\begin{align*}
\min_{g \in \mathcal{G}} & \quad \sum_{j=1}^{nc \times L} |g(a(j)) - b(j)|^2,
\end{align*}
\]

where \(\mathcal{G}\) is a family of piecewise constant isotonic functions (Zadrozny & Elkan, 2002). The pair-adjacent violator algorithm (Ayer et al., 1955) is used to find the best function.

Step 3 (Imposing strict isotonicity): the learned function \(g^*\) is only isotonic. To make it strictly isotonic, we modify it to \(\hat{g}(a) = g^*(a) + \epsilon a\), where \(\epsilon\) is a very small positive number, such that \(g(a) < g(a')\) whenever \(a < a'\). Plugging the strictly isotonic function \(\hat{g}\) back to Eq. (4), we can obtain the non-parametric calibration map.

Remark. Comparing to IROvA, the proposed IRM preserves the accuracy. In addition, it is more data-efficient, since it uses \(nc \times L\) data points to identify one isotonic function in contrast to \(nc\) data points in IROvA. We should also highlight that these benefits do not come free: by enforcing the same calibration map on all the classes, the proposed approach is less expressive than IROvA. In fact, we expect an efficiency-expressivity trade-off for the proposed solution – with the number of classes \(L\) increasing, it will become more data-efficient but less expressive comparing to one-vs-all. This phenomenon is later verified in Sec. 5.2.

3.4. The Best of Both Worlds by Composition

Parametric and non-parametric approaches each have their own advantages. To get the best of both worlds, i.e., high data-efficiency of parametric methods and high expressivity of non-parametric methods, we propose a compositional method as well. Specifically, we propose to apply a data-efficient parametric calibration method first, and then conduct non-parametric calibration on the parametric calibrated entries (see Figure 4). Intuitively, first fitting a parametric...
Next step in the calibration pipeline is to evaluate the calibration performance by estimating the expected calibration error as given in Eq. (2). The primary challenge is the involvement of two unknown densities \(p(z) \) and \(\pi(z) \). Histogram-based estimator (Naemi et al., 2015) replaces the unknown densities by their bin-discretized version as given in Eq. (3). It is easy to implement, but also inevitably inherits drawbacks from histograms, such as the sensitivity to the binning schemes, and the data-inefficiency.

We alleviate these challenges by replacing histograms with non-parametric density estimators that are continuous (thus, avoid the binning step) and, are more data-efficient. Specifically, we use kernel density estimation (KDE) (Parzen, 1962; Rosenblatt, 1956) to estimate the ECE for its implementation easiness and tractable theoretical properties.

4.1. KDE-based ECE Estimator

Let \(K: \mathbb{R} \to \mathbb{R}_{\geq 0} \) denote a smoothing kernel function (Tsybakov, 2008). Given a fixed bandwidth \(h > 0 \), we have \(K_h(a) = h^{-1}K(a/h) \). Based on the evaluation dataset, the unknown probabilities are estimated using KDE as follows:

\[
\hat{p}(z) = \frac{h^{-L}}{n_e} \sum_{i=1}^{n_e} \prod_{l=1}^{L} K_h(z_l - z_l^{(i)}),
\]

\[
\hat{\pi}(z) = \sum_{i=1}^{n_e} y^{(i)} \prod_{l=1}^{L} K_h(z_l - z_l^{(i)}),
\]

Plugging them back in Eq. (2), we obtain the KDE-based ECE estimator:

\[
\tilde{\text{ECE}}^d(f) = \int \| z - \hat{\pi}(z) \|_2^d \hat{p}(z) \, dz. \tag{6}
\]

The integration in Eq. (6) can be performed numerically (e.g., using Trapezoidal rule).

We next provide a theoretical analysis of statistical properties of the proposed KDE ECE estimator when \(d = 1 \). The results for \(d = 2 \) can be obtained similarly.

Theorem 4.1 (Statistical properties). Assuming the unknown densities \(p(z) \) and \(\pi(z) \) are smooth (\(\beta \)-Hölder) and bounded, with the bandwidth \(h \approx n_e^{-1/(\beta + L)} \), the KDE ECE is asymptotically unbiased and consistent, with a convergence rate \(\| \mathbb{E}[\hat{\text{ECE}}^d(f)] - \text{ECE}^1(f) \|_2 \in O(n_e^{\beta/(\beta + L)}) \).

Proof. Please see supplementary material Sec. S2.

As verifying these smoothness assumptions in practice is highly non-trivial (Kumar et al., 2019), we corroborate our theoretical results using empirical comparisons in Sec. 5.1. The implementation details for KDE is provided in the supplementary material Sec. S3.

4.2. A Dimensionality-Independent Ranking Method

In many practical situations, the main goal for evaluating calibration errors is to compare (or rank) calibration maps. However, rankings based on the approximations, e.g., top-label and class-wise ECE\(^d\) have been observed to be contradictory (Kull et al., 2019; Nixon et al., 2019). This raises the question rankings based on these approximations are indicative of the ranking based on actual ECE\(^d\) in Eq. (2).

Next, we present a dimensionality-independent solution to compare calibration maps according to their actual calibration capabilities, rather than resorting to weaker variants. The solution relies on the well-known calibration refinement decomposition (Murphy, 1973) for the strictly proper scoring loss (Gneiting & Raftery, 2007). Thus, it is applicable only when \(d = 2 \), since the absolute loss (\(d = 1 \)) is improper (Buja et al., 2005). Since ECE\(^1\) and ECE\(^2\) are closely related (\(\sqrt{\text{ECE}^2} < \text{ECE}^1 < \sqrt{L \cdot \text{ECE}^2} \)), we anticipate comparisons based on ECE\(^2\) and ECE\(^1\) should be similar. Specifically, we propose to use calibration gain (defined next) for the comparison.

Definition 4.1. The calibration gain is defined as the reduction in ECE\(^d\) after applying a calibration map \((T \circ f) \):

\[
\Delta \text{ECE}^d(T) = \text{ECE}^d(f) - \text{ECE}^d(T \circ f).
\]

Higher gain indicates a better calibration map.

Proposition 4.2. For accuracy-preserving maps in Def. 3.1, the calibration gain equals the reduction of squared loss between predictions and labels after calibration:

\[
\Delta \text{ECE}^2(T) = \mathbb{E}[Z - Y]^2 - \mathbb{E}[T(Z) - Y]^2. \tag{7}
\]
Proof. Please see supplementary material Sec. S4.

For non accuracy-preserving methods (Table 1), the squared loss reduction in Eq. (7) bounds its actual calibration gain from below, and may not facilitate a fair comparison. Finally, given an evaluation dataset, Eq. (7) is estimated by:

\[\Delta \text{ECE}^2(T) = \frac{1}{n_e} \sum_{i=1}^{n_e} (\|z^{(i)} - y^{(i)}\|^2_2 - \|T(z^{(i)}) - y^{(i)}\|^2_2) \]

which converges at the rate of \(O(n_e^{-1/2})\) independent of the class dimension \(L\) and avoids the curse of dimensionality.

5. Experiments

5.1. Calibration Error Evaluations

We compare the finite sample performance of proposed KDE-based ECE\(^2\) estimator with histogram-based ones on a synthetic binary classification problem (Vaicenavičius et al., 2019). The classifier is parameterized by two parameters \(\beta_0, \beta_1\) (described in detail in supplementary material Sec. S5). We consider a less-calibrated case \(\beta_0 = 0.5, \beta_1 = -1.5\), and a better-calibrated case with \(\beta_0 = 0.2, \beta_1 = -1.9\). The canonical calibration probability \(\pi^f(z)\) has a closed-form expression (Eq. (S6)), allowing us to obtain the ground truth ECE (Eq. (2)) using Monte Carlo integration with 10\(^6\) samples. We compare the ground truth to the estimation of ECE\(^1\) using KDE and histogram-based estimators – one with 15 equal-width bins and other with data-dependent binning scheme (Sturges, 1926). In Figure 5, we vary the size of evaluation samples \(n_e\) from 64 to 1024 and plot the mean absolute error (averaged over 1000 independent experiments) between KDE/Histograms estimates and the ground truth. KDE consistently outperforms histogram-based estimators regardless of the binning schemes. The discrepancy is particularly noticeable with small \(n_e\), highlighting KDE’s superior efficiency in data-limited regime. In rest of the paper, we adopt KDE for estimating ECE, unless otherwise specified. Additional results can be found in the supplementary material, e.g., the distribution of the estimation errors in Figure S1 and comparison of the proposed KDE estimators with recently proposed debiased histogram ECE estimators (Kumar et al., 2019) in Figure S3.

5.2. Calibrating Neural Network Classifiers

We calibrate various deep neural network classifiers on popular computer vision datasets: CIFAR-10/100 (Krizhevsky, 2009) with 10/100 classes and ImageNet (Deng et al., 2009) with 1000 classes. For CIFAR-10/100, we trained DenseNet (Huang et al., 2017), LeNet (LeCun et al., 1998), ResNet (He et al., 2016) and WideResNet (WRN) (Zagoruyko & Komodakis, 2016). The training detail is described in Sec. S6. We use 45000 images for training and hold out 15000 images for calibration and evaluation. For ImageNet, we acquired 4 pretrained models from (Paszke et al., 2019) which were trained with 1.3 million images, and 50000 images are hold out for calibration and evaluation.

We compare seven calibration methods: for parametric approaches, we use TS, our proposed three-component model ensemble approach ETS, and the Dirichlet calibration with off-diagonal regularization (DirODIR) (Kull et al., 2019). Following (Kumar et al., 2019), we use the squared error as the loss function to fit TS and ETS. For non-parametric approaches, we compare IROvA, our proposed multi-class accuracy-preserving scheme IRM, and the composition method that combines IROvA with TS as described in Sec. 3.3 (referred to as IROvA-TS). In addition, we include the Gaussian Process calibration (GPC) (Wenger et al., 2020). Among all examined methods, only TS, ETS and IRM are accuracy-preserving.

For our first experiment, we adopt a standard calibration setup (Guo et al., 2017) with fixed-size calibration \(n_c\) and evaluation \(n_e\) datasets. We randomly split the hold-out dataset into \(n_c = 5000, n_e = 10000\) for CIFAR-10/100 and \(n_c = n_e = 25000\) for ImageNet. We randomly split the hold-out dataset into \(n_c\) calibration points to learn the calibration map, and \(n_e\) evaluation points to evaluate ECE and classification accuracy. All results are averaged over 100 independent runs. On ImageNet, GPC fails to converge due to its high computational cost, thus we exclude its results.

Table 1 displays top-label ECE\(^1\) and Table 2 displays the calibration gain \(\Delta \text{ECE}^2\). Overall the rankings of calibration methods by top-label ECE\(^1\) or by \(\Delta \text{ECE}^2\) are very similar. Our proposed strategies consistently lead to better performance than the baseline implementations (ETS over TS; IRM and IROvA-TS over IROvA). Depending on the model/data complexity, either parametric or non-parametric variants may be more suitable.
Table 1. Top-label ECE\(^2\) (%) (lower is better). The number following a model’s name denotes the network depth (and width if applicable).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>Uncalibrated</th>
<th>TS</th>
<th>ETS (ours)</th>
<th>IRM (ours)</th>
<th>IROvA</th>
<th>IROvA-TS (ours)</th>
<th>DirODIR</th>
<th>GPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR-10</td>
<td>DenseNet 40</td>
<td>3.30</td>
<td>1.04</td>
<td>1.18</td>
<td>1.16</td>
<td>1.11</td>
<td>1.23</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>LeNet 5</td>
<td>1.42</td>
<td>1.16</td>
<td>1.19</td>
<td>1.26</td>
<td>1.26</td>
<td>1.29</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>ResNet 110</td>
<td>4.25</td>
<td>2.05</td>
<td>1.53</td>
<td>1.45</td>
<td>1.39</td>
<td>1.82</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>WRN 28-10</td>
<td>2.53</td>
<td>1.61</td>
<td>1.61</td>
<td>1.02</td>
<td>0.994</td>
<td>1.49</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>DenseNet 40</td>
<td>12.22</td>
<td>1.55</td>
<td>3.32</td>
<td>4.48</td>
<td>2.22</td>
<td>1.56</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>LeNet 5</td>
<td>2.76</td>
<td>1.11</td>
<td>1.05</td>
<td>3.67</td>
<td>3.18</td>
<td>5.02</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>ResNet 110</td>
<td>13.61</td>
<td>2.75</td>
<td>4.78</td>
<td>5.27</td>
<td>3.00</td>
<td>2.46</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>WRN 28-10</td>
<td>4.41</td>
<td>3.24</td>
<td>3.16</td>
<td>3.45</td>
<td>2.92</td>
<td>3.11</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>DenseNet 161</td>
<td>5.09</td>
<td>1.72</td>
<td>2.13</td>
<td>3.97</td>
<td>3.01</td>
<td>4.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>ResNet 101</td>
<td>7.44</td>
<td>3.03</td>
<td>2.02</td>
<td>3.51</td>
<td>4.64</td>
<td>3.09</td>
<td>5.02</td>
<td></td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>VGG 19</td>
<td>3.31</td>
<td>1.64</td>
<td>1.36</td>
<td>1.85</td>
<td>3.77</td>
<td>3.03</td>
<td>4.04</td>
<td></td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>WRN 50-2</td>
<td>4.83</td>
<td>2.52</td>
<td>1.81</td>
<td>2.54</td>
<td>3.91</td>
<td>3.03</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td>ImageNet</td>
<td>DenseNet 161</td>
<td>5.09</td>
<td>1.72</td>
<td>2.13</td>
<td>3.97</td>
<td>3.01</td>
<td>4.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ImageNet</td>
<td>ResNet 101</td>
<td>7.44</td>
<td>3.03</td>
<td>2.02</td>
<td>3.51</td>
<td>4.64</td>
<td>3.09</td>
<td>5.02</td>
<td></td>
</tr>
<tr>
<td>ImageNet</td>
<td>VGG 19</td>
<td>3.31</td>
<td>1.64</td>
<td>1.36</td>
<td>1.85</td>
<td>3.77</td>
<td>3.03</td>
<td>4.04</td>
<td></td>
</tr>
<tr>
<td>ImageNet</td>
<td>WRN 50-2</td>
<td>4.83</td>
<td>2.52</td>
<td>1.81</td>
<td>2.54</td>
<td>3.91</td>
<td>3.03</td>
<td>4.80</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Calibration Gain ΔECE2 (%) (higher is better). Reported ΔECE2 underestimate the actual calibration gains for IROvA, IROvA-TS, DirODIR, GPC. The number following a model’s name denotes the network depth (and width if applicable).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>TS</th>
<th>ETS (ours)</th>
<th>IRM (ours)</th>
<th>IROvA</th>
<th>IROvA-TS (ours)</th>
<th>DirODIR</th>
<th>GPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR-10</td>
<td>DenseNet 40</td>
<td>0.611</td>
<td>0.611</td>
<td>0.562</td>
<td>0.560</td>
<td>0.593</td>
<td>0.606</td>
<td>0.457</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>LeNet 5</td>
<td>0.027</td>
<td>0.028</td>
<td>-0.028</td>
<td>-0.004</td>
<td>-0.007</td>
<td>-0.119</td>
<td>0.022</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>ResNet 110</td>
<td>0.821</td>
<td>0.821</td>
<td>0.976</td>
<td>1.11</td>
<td>1.15</td>
<td>1.13</td>
<td>1.02</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>WRN 28-10</td>
<td>0.403</td>
<td>0.403</td>
<td>0.596</td>
<td>0.614</td>
<td>0.617</td>
<td>0.297</td>
<td>0.624</td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>DenseNet 40</td>
<td>2.74</td>
<td>2.75</td>
<td>2.50</td>
<td>1.99</td>
<td>2.17</td>
<td>2.36</td>
<td>2.57</td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>LeNet 5</td>
<td>0.077</td>
<td>0.085</td>
<td>0.028</td>
<td>-0.576</td>
<td>-0.558</td>
<td>-0.445</td>
<td>0.055</td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>ResNet 110</td>
<td>3.14</td>
<td>3.17</td>
<td>2.90</td>
<td>2.63</td>
<td>3.09</td>
<td>3.50</td>
<td>3.14</td>
</tr>
<tr>
<td>CIFAR-100</td>
<td>WRN 28-10</td>
<td>0.204</td>
<td>0.263</td>
<td>0.534</td>
<td>0.134</td>
<td>0.218</td>
<td>0.0289</td>
<td>0.841</td>
</tr>
<tr>
<td>ImageNet</td>
<td>DenseNet 161</td>
<td>0.397</td>
<td>0.423</td>
<td>0.368</td>
<td>-0.518</td>
<td>-0.438</td>
<td>-1.63</td>
<td></td>
</tr>
<tr>
<td>ImageNet</td>
<td>ResNet 101</td>
<td>0.915</td>
<td>0.995</td>
<td>0.90</td>
<td>0.028</td>
<td>0.233</td>
<td>-1.35</td>
<td></td>
</tr>
<tr>
<td>ImageNet</td>
<td>VGG 19</td>
<td>0.147</td>
<td>0.168</td>
<td>0.115</td>
<td>-0.989</td>
<td>-0.969</td>
<td>-1.68</td>
<td></td>
</tr>
<tr>
<td>ImageNet</td>
<td>WRN 50-2</td>
<td>0.266</td>
<td>0.317</td>
<td>0.321</td>
<td>-0.604</td>
<td>-0.543</td>
<td>-1.51</td>
<td></td>
</tr>
</tbody>
</table>

Note that calibration methods may perform differently with varying amounts of calibration data. A critically missing aspect of the standard practice of fixed-size comparison is that it does not reveal the data-amount-dependent behavior, and it may provide an incomplete picture of the calibration method’s performance. To explore this holistically, we next conduct a learning curve analysis by varying the calibration dataset size and evaluating three desiderata-related properties (accuracy, data-efficiency and expressivity) of calibration approaches. While such learning curve analysis has been extensively used in the standard machine learning literature, its use in the calibration of deep neural network classifiers is scarce. Specifically, we reserve the same set of 5000 data points for evaluation, and vary the number of calibration data from 128 to 10000 (CIFAR-10/100) or 45000 (ImageNet). This process is repeated 100 times on the baseline (TS, IROvA) and their variants (ETS, IRM, IROvA-TS) to validate the effectiveness of Mix-n-Match.

For Wide ResNets, Figure 6 shows how the average ECE and the accuracy over the repetitions change as a function of calibration dataset size n_c. Results for other cases are provided in the supplementary material Sec. S6. We provide a thorough analysis on the learning curves below.

Accuracy. From Figure 6 bottom, we observe that IROvA and IROvA-TS lead to serious accuracy reduction in the data-limited regime, and require a large calibration datasets to recover the original accuracy, while the accuracy-preserving approaches maintain the accuracy.

Data-efficiency. Parametric methods (TS, ETS) enjoy the fastest converge of ECE (see Figure 6 top), which is anticipated. Our proposed data ensemble (IRM) and compositional (IROvA-TS) solutions also converge faster than IROvA. To quantify their data-efficiency gain, we record the required amount of data for non-parametric approaches to reach a reference calibration level (see Figure S4 right) in Table S2. The proposed data ensemble and compositional
Mix-n-Match Calibration

Figure 6. Learning curve comparisons of various calibration methods on top-label ECE (top) and the classification accuracy (bottom). Approaches achieve remarkable data-efficiency gains.

Expressivity. Note that a more expressive method should attain lower ECE with a sufficiently large calibration dataset. From Figure 6 top, we see that the proposed ensemble approach ETS is significantly more expressive than TS. This gain is particularly visible in many-class datasets, e.g., CIFAR-100 and ImageNet, where the canonical calibration function is expected to be complex. Also, the reduced expressivity of IRM over IROvA can be observed, verifying our hypothesis of its efficiency-expressivity trade-off. In Table S1, we provide a quantitative comparison on the expressivity of TS and ETS by measuring their final ECE (at the highest values of n_c, see Figure S4 left). We see that ETS is consistently more expressive and achieves lower final ECE value than TS across different models/datasets.

Finally, we provide general guidelines on choosing an appropriate calibration method. We recommend ETS for general use and IRM as a strong alternative when the parametric form of ETS is misspecified (see Figure 6 left). Both approaches are accuracy-preserving and can be compared based on the proposed calibration gain metric. For complex calibration tasks, we recommend IROvA-TS if a large calibration dataset is available and the user does not have hard constraints on preserving the accuracy (see Figure 6 middle-right). We expand the analysis and the recommendation in the supplementary material Sec. S7.

To summarize, our proposed **Mix-n-Match** strategies provide substantial benefits for calibration, and can be easily incorporated into many existing calibration methods. We also provide guidelines on determining the most appropriate calibration method for a given problem in Sec. S7. We expect the observed trends to generalize to other potential extensions. For example, the ensemble beta scaling method should be more expressive than the original beta scaling method (Kull et al., 2017), and the composition of TS with other non-parametric methods, e.g., IRM, should also be more data-efficient. We also anticipate additional efficiency gain if one substitutes TS with ETS in the composition, since ETS has been shown to be more expressive.

6. Conclusion

We demonstrated the practical importance of designing calibration methods with provable accuracy-preserving characteristics, high data-efficiency, and high expressivity. We proposed general **Mix-n-Match** calibration strategies (i.e., ensemble and composition) to extend existing calibration methods to fulfill such desiderata simultaneously. Furthermore, we proposed a data-efficient kernel density-based estimator for a reliable evaluation of the calibration performance. Comparisons with existing calibration methods across various datasets and neural network models showed that our proposed strategies consistently outperform their conventional counterparts. We hope that our developments will advance research on this essential topic further.
Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and LLNL-LDRD Program Project No. 19-SI-001.

References

Mix-n-Match Calibration

Zadrozny, B. and Elkan, C. Learning and making decisions when costs and probabilities are both unknown. In *International Conference on Knowledge Discovery and Data Mining (KDD)*, pp. 204–213, 2001.
