
Appendix

A. Experimental Details
We use the code kindly open sourced by (Grover et al.,
2019) to perform the sorting, quantile regression, and kNN
experiments. As such, we are using the same setup as in
(Grover et al., 2019). The work of (Cuturi et al., 2019)
also uses this code for the sorting task, allowing for a fair
comparison.

To make our work self-contained, in this section we recall
the main experimental details from (Grover et al., 2019),
and we also provide our hyperparameter settings, which
crucially differ from those used in (Grover et al., 2019) by
the use of higher learning rates and temperatures (leading
to improved results).

A.1. Sorting Handwritten Numbers

A.1.1. ARCHITECTURE

The convolutional neural network architecture used to map
112× 28 large-MNIST images to scores is as follows:

Conv[Kernel: 5x5, Stride: 1, Output: 112x28x32,
Activation: Relu]

→Pool[Stride: 2, Output: 56x14x32]
→Conv[Kernel: 5x5, Stride: 1, Output: 56x14x64,

Activation: Relu]
→Pool[Stride: 2, Output: 28x7x64]
→FC[Units: 64, Activation: Relu]
→FC[Units: 1, Activation: None]

Recall that the large-MNIST dataset is formed by concate-
nating four 28 × 28 MNIST images, hence each large-
MNIST image input is of size 112× 28.

For a given input sequence x of large-MNIST images, using
the above CNN we obtain a vector s of scores (one score
per image). Feeding this score vector into NeuralSort
or SoftSort yields the matrix P̂ (s) which is a relaxation
for Pargsort(s).

A.1.2. LOSS FUNCTIONS

To lean to sort the input sequence x of large-MNIST digits,
(Grover et al., 2019) imposes a cross-entropy loss between
the rows of the true permutation matrix P and the learnt
relaxation P̂ (s), namely:

L =
1

n

n∑
i,j=1

1{P [i, j] = 1} log P̂ (s)[i, j]

This is the loss for one example (x, P) in the determinis-
tic setup. For the stochastic setup with reparameterized
Plackett-Luce distributions, the loss is instead:

L =
1

n

n∑
i,j=1

ns∑
k=1

1{P [i, j] = 1} log P̂ (s+ zk)[i, j]

where zk (1 ≤ k ≤ ns) are samples from the Gumbel
distribution.

A.1.3. HYPERPARAMATERS

For this task we used an Adam optimizer with an initial
learning rate of 0.005 and a batch size of 20. The temper-
ature τ was selected from the set {1, 16, 128, 1024} based
on validation set accuracy on predicting entire permutations.
As a results, we used a value of τ = 1024 for n = 3, 5, 7
and τ = 128 for n = 9, 15. 100 iterations were used to
train all models. For the stochastic setting, ns = 5 samples
were used.

A.1.4. LEARNING CURVES

In Figure 1 (a) we show the learning curves for deterministic
SoftSort and NeuralSort, with N = 15. These are
the average learning curves over all 10 runs. Both learning
curves are almost identical, showing that in this task both
operators can essentially be exchanged for one another.

A.2. Quantile Regression

A.2.1. ARCHITECTURE

The same convolutional neural network as in the sorting task
was used to map large-MNIST images to scores. A second
neural network gθ with the same architecture but different
parameters is used to regress each image to its value. These
two networks are then used by the loss functions below to
learn the median element.

A.2.2. LOSS FUNCTIONS

To learn the median element of the input sequence x of
large-MNIST digits, (Grover et al., 2019) first soft-sorts x
via P̂ (s)x which allows extracting the candidate median
image. This candidate median image is then mapped to its
predicted value ŷ via the CNN gθ. The square loss between
ŷ and the true median value y is incurred. As in (Grover
et al., 2019, Section E.2), the loss for a single example (x, y)
can thus compactly be written as (in the deterministic case):

L = ‖y − gθ(P̂ (s)x)‖22
For the stochastic case, the loss for a single example (x, y)
is instead:

L =

ns∑
k=1

‖y − gθ(P̂ (s+ zk)x)‖22

(a) Sorting handwritten numbers learning curves. (b) Quantile regression learning curves

Figure 1. Learning curves for the ‘sorting handwritten numbers’ and ‘quantile regression’ tasks. The learning curves for SoftSort and
NeuralSort are almost identical.

Table 1. Values of τ used for the quantile regression task.

ALGORITHM n = 5 n = 9 n = 15

DETERMINISTIC NEURALSORT 1024 512 1024
STOCHASTIC NEURALSORT 2048 512 4096

DETERMINISTIC SOFTSORT 2048 2048 256
STOCHASTIC SOFTSORT 4096 2048 2048

where zk (1 ≤ k ≤ ns) are samples from the Gumbel
distribution.

A.2.3. HYPERPARAMATERS

We used an Adam optimizer with an initial learning rate of
0.001 and a batch size of 5. The value of τ was grid searched
on the set {128, 256, 512, 1024, 2048, 4096} based on val-
idation set MSE. The final values of τ used to train the
models and evaluate test set performance are given in Ta-
ble 1. 100 iterations were used to train all models. For the
stochastic setting, ns = 5 samples were used.

A.2.4. LEARNING CURVES

In Figure 1 (b) we show the learning curves for determin-
istic SoftSort and NeuralSort, with N = 15. Both
learning curves are almost identical, showing that in this
task both operators can essentially be exchanged for one
another.

A.3. Differentiable KNN

A.3.1. ARCHITECTURES

To embed the images before applying differentiable kNN,
we used the following convolutional network architectures.
For MNIST:

Conv[Kernel: 5x5, Stride: 1, Output: 24x24x20,
Activation: Relu]

→Pool[Stride: 2, Output: 12x12x20]
→Conv[Kernel: 5x5, Stride: 1, Output: 8x8x50,

Activation: Relu]
→Pool[Stride: 2, Output: 4x4x50]
→FC[Units: 50, Activation: Relu]

and for Fashion-MNIST and CIFAR-10 we used the
ResNet18 architecture (He et al., 2016) as defined in
github.com/kuangliu/pytorch-cifar, but we keep the 512 di-
mensional output before the last classification layer.

For the baseline experiments in pixel distance with PCA and
kNN, we report the results of (Grover et al., 2019), using
scikit-learn implementations.

In the auto-encoder baselines, the embeddings were trained
using the follow architectures. For MNIST and Fashion-

MNIST:

Encoder:
FC[Units: 500, Activation: Relu]

→FC[Units: 500, Activation: Relu]
→FC[Units: 50, Activation: Relu]

Decoder:
→FC[Units: 500, Activation: Relu]
→FC[Units: 500, Activation: Relu]
→FC[Units: 784, Activation: Sigmoid]

For CIFAR-10, we follow the architecture defined at
github.com/shibuiwilliam/Keras Autoencoder, with a bot-
tleneck dimension of 256.

A.3.2. LOSS FUNCTIONS

For the models using SoftSort or NeuralSort we use
the negative of the probability output from the kNN model
as a loss function. For the auto-encoder baselines we use a
per-pixel binary cross entropy loss.

A.3.3. HYPERPARAMATERS

We perform a grid search for k ∈ (1, 3, 5, 9), τ ∈
(1, 4, 16, 64, 128, 512), learning rates taking values in 10−3,
10−4 and 10−5. We train for 200 epochs and choose the
model based on validation loss. The optimizer used is SGD
with momentum of 0.9. Every batch has 100 episode, each
containing 100 candidates.

A.4. Speed Comparison

A.4.1. ARCHITECTURE

The input parameter vector θ of shape 20× n (20 being the
batch size) is first normalized to [0, 1] and then fed through
the NeuralSort or SoftSort operator, producing an
output tensor P̂ of shape 20× n× n.

A.4.2. LOSS FUNCTION

We impose the following loss term over the batch:

L(P̂) = − 1

20

20∑
i=1

1

n

n∑
j=1

log P̂ [i, j, j]

This loss term encourages the probability mass from each
row of P̂ [i, :, :] to concentrate on the diagonal, i.e. encour-
ages each row of θ to become sorted in decreasing order.
We also add an L2 penalty term 1

200‖θ‖
2
2 which ensures that

the entries of θ do not diverge during training.

A.4.3. HYPERPARAMATERS

We used 100 epochs to train the models, with the first epoch
used as burn-in to warm up the CPU or GPU (i.e. the
first epoch is excluded from the time measurement). We
used a temperature of τ = 100.0 for NeuralSort and
τ = 0.03, d = | · |2 for SoftSort. The entries of θ are
initialized uniformly at random in [−1, 1]. A momentum
optimizer with learning rate 10 and momentum 0.5 was
used. With these settings, 100 epochs are enough to sort
each row of θ in decreasing order perfectly for n = 4000.

Note that since the goal is to benchmark the operator’s
speeds, performance on the Spearman rank correlation met-
ric is anecdotal. However, we took the trouble of tuning
the hyperparameters and the optimizer to make the learning
setting as realistic as possible, and to ensure that the en-
tries in θ are not diverging (which would negatively impact
and confound the performance results). Finally, note that
the learning problem is trivial, as a pointwise loss such as∑20
i=1

∑n
j=1(θij + j)2 sorts the rows of θ without need for

the NeuralSort or SoftSort operator. However, this
bare-bones task exposes the computational performance of
the NeuralSort and SoftSort operators.

A.4.4. LEARNING CURVES

In Figure 2 we show the learning curves for N = 4000; the
Spearman correlation metric is plotted against epoch. We
see that SoftSort with d = | · |2 and NeuralSort have
almost identical learning curves. Interestingly, SoftSort
with d = | · | converges more slowly.

Figure 2. Learning curves for SoftSort with d = | · |p for p ∈
{1, 2}, and NeuralSort, on the speed comparison task.

A.4.5. NEURALSORT PERFORMANCE IMPROVEMENT

We found that the NeuralSort implementations provided
by (Grover et al., 2019) in both TensorFlow and PyTorch
have complexity O(n3). Indeed, in their TensorFlow imple-
mentation (Figure 4), the complexity of the following line
is O(n3):

B = tf.matmul(A_s, tf.matmul(one,
tf.transpose(one)))

since the three matrices multiplied have sizes n× n, n× 1,
and 1 × n respectively. To obtain O(n2) complexity we
associate differently:

B = tf.matmul(tf.matmul(A_s, one),
tf.transpose(one))

The same is true for their PyTorch implementation (Fig-
ure 5). This way, we were able to speed up the implementa-
tions provided by (Grover et al., 2019).

A.4.6. PYTORCH RESULTS

In Figure 3 we show the benchmarking results for the Py-
Torch framework (Paszke et al., 2017). These are analogous
to the results presented in Figure 6) of the main text. The
results are similar to those for the TensorFlow framework,
except that for PyTorch, NeuralSort runs out of mem-
ory on CPU for n = 3600, on GPU for n = 3900, and
SoftSort runs out of memory on CPU for n = 3700.

A.4.7. HARDWARE SPECIFICATION

We used a GPU V100 and an n1-highmem-2 (2 vCPUs, 13
GB memory) Google Cloud instance to perform the speed
comparison experiment.

We were also able to closely reproduce the GPU results
on an Amazon EC2 p2.xlarge instance (4 vCPUs, 61 GB
memory) equipped with a GPU Tesla K80, and the CPU
results on an Amazon EC2 c5.2xlarge instance (8 vCPUs,
16 GB memory).

B. Proof of Proposition 1
First we recall the Proposition:

Proposition. For both f = SoftSortdτ (with any d) and
f = NeuralSortτ , the following identity holds:

f(s) = f(sort(s))Pargsort(s) (1)

To prove the proposition, we will use the following two
Lemmas:

Lemma 1 Let P ∈ Rn×n be a permutation matrix,
and let g : Rk → R be any function. Let G :

Rn×n × · · · × Rn×n︸ ︷︷ ︸
k times

→ Rn×n be the pointwise applica-

tion of g, that is:

G(A1, . . . , Ak)i,j = g((A1)i,j , . . . , (Ak)i,j) (2)

Then the following identity holds for any A1, . . . , Ak ∈
Rn×n:

G(A1, . . . , Ak)P = G(A1P, . . . , AkP) (3)

Proof of Lemma 1. Since P is a permutation matrix, mul-
tiplication to the right by P permutes columns according to
some permutation, i.e.

(AP)i,j = Ai,π(j) (4)

for some permutation π and any A ∈ Rn×n. Thus, for any
fixed i, j:

(G(A1, . . . , Ak)P)i,j
(i)
=G(A1, . . . , Ak)i,π(j)

(ii)
= g((A1)i,π(j), . . . , (Ak)i,π(j))

(iii)
= g((A1P)i,j , . . . , (AkP)i,j)

(iv)
= G(A1P, . . . , AkP)i,j

where (i), (iii) follow from Eq. 4, and (ii), (iv) follow from
Eq. 2. This proves the Lemma. �

Lemma 2 Let P ∈ Rn×n be a permutation matrix, and
σ = softmax denote the row-wise softmax, i.e.:

σ(A)i,j =
exp{Ai,j}∑
k exp{Ai,k}

(5)

Then the following identity holds for any A ∈ Rn×n:

σ(A)P = σ(AP) (6)

Proof of Lemma 2. As before, there exists a permutation π
such that:

(BP)i,j = Bi,π(j) (7)

for any B ∈ Rn×n. Thus for any fixed i, j:

(σ(A)P)i,j
(i)
=σ(A)i,π(j)

(ii)
=

exp{Ai,π(j)}∑
k exp{Ai,π(k)}

(iii)
=

exp{(AP)i,j}∑
k exp{(AP)i,k}

(iv)
= σ(AP)i,j

(a) CPU speed vs input dimension n (b) GPU speed vs input dimension n

Figure 3. Speed of the NeuralSort and SoftSort operators on (a) CPU and (b) GPU, as a function of n (the size of the vector to be
sorted). Twenty vectors of size n are batched together during each epoch. Note that CPU plot y-axis is in seconds (s), while GPU plot
y-axis is in milliseconds (ms). Implementation in PyTorch.

where (i), (iii) follow from Eq. 7 and (ii), (iv) follow from
the definition of the row-wise softmax (Eq. 5). This proves
the Lemma. �

We now leverage the Lemmas to provide proofs of Propo-
sition 1 for each operator. To unclutter equations, we will
denote by σ = softmax the row-wise softmax operator.

Proof of Proposition 1 for SoftSort. We have that:

SoftSortdτ (sort(s))Pargsort(s)

(i)
=σ
(−d(sort(sort(s))1T ,1sort(s)T)

τ

)
Pargsort(s)

(ii)
= σ

(−d(sort(s)1T ,1sort(s)T)

τ

)
Pargsort(s)

where (i) follows from the definition of the SoftSort op-
erator (Eq. 4) and (ii) follows from the idempotence of the
sort operator, i.e. sort(sort(s)) = sort(s). Invok-
ing Lemma 2, we can push Pargsort(s) into the softmax:

=σ
(−d(sort(s)1T ,1sort(s)T)

τ
Pargsort(s)

)
Using Lemma 1 we can further push Pargsort(s) into the
pointwise d function:

=σ
(−d(sort(s)1TPargsort(s),1sort(s)TPargsort(s))

τ

)
Now note that 1TPargsort(s) = 1T since P is a per-
mutation matrix and thus the columns of P add up
to 1. Also, since sort(s)T = Pargsort(s)s then
sort(s)TPargsort(s) = sTPTargsort(s)Pargsort(s) = sT

since PTargsort(s)Pargsort(s) = I (because Pargsort(s) is a

permutation matrix). Hence we arrive at:

=σ
(−d(sort(s)1T ,1sT)

τ

)
=SoftSortdτ (s)

which proves the proposition for SoftSort. �

Proof of Proposition 1 for NeuralSort. For any fixed i,
inspecting row i we get:

(NeuralSortτ (sort(s))Pargsort(s))[i, :]

(i)
=(NeuralSortτ (sort(s))[i, :])Pargsort(s)

(ii)
= σ

((n+ 1− 2i)sort(s)T − 1TATsort(s)

τ

)
Pargsort(s)

where (i) follows since row-indexing and column permuta-
tion trivially commute, i.e. (BP)[i, :] = (B[i, :])P for any
B ∈ Rn×n, and (ii) is just the definition of NeuralSort
(Eq. 3, taken as a row vector).

Using Lemma 2 we can push Pargsort(s) into the softmax,
and so we get:

= σ
(

((n+ 1− 2i)sort(s)TPargsort(s)

− 1TATsort(s)Pargsort(s))/τ
)

(8)

Now note that sort(s)TPargsort(s) = sT (as we showed
in the proof of the Proposition for SoftSort). As for the
subtracted term, we have, by definition of Asort(s):

1TATsort(s)Pargsort(s)

=1T |sort(s)1T − 1sort(s)T |Pargsort(s)

Applying Lemma 1 to the pointwise absolute value, we can
push Pargsort(s) into the absolute value:

= 1T |sort(s)1TPargsort(s) − 1sort(s)TPargsort(s)|

Again we can simplify sort(s)TPargsort(s) = sT and
1TPargsort(s) = 1T to get:

= 1T |sort(s)1T − 1sT | (9)

We are almost done. Now just note that we can replace
sort(s) in Eq. 9 by s because multiplication to the left by
1T adds up over each column of |sort(s)1T − 1sT | and
thus makes the sort irrelevant, hence we get:

= 1T |s1T − 1sT |
= 1TAs

Thus, putting both pieces together into Eq. 8 we arrive at:

= σ
((n+ 1− 2i)s− 1TAs

τ

)
= NeuralSortτ (s)[i, :]

which proves Proposition 1 for NeuralSort. �

C. Proof of Proposition 2
First, let us recall the proposition:

Proposition. Let k = 1 and P̂ be the differentiable kNN
operator using SoftSort|·|2 . If we choose the embedding
function Φ to be of norm 1, then

P̂ (ŷ|x̂, X, Y) =
∑
i:yi=ŷ

eΦ(x̂)·Φ(xi)

/ ∑
i=1...n

eΦ(x̂)·Φ(xi)

Proof. Since k = 1, only the first row of the SoftSort
matrix is used in the result. Recall that the elements of the
first row are the softmax over −|si − s[1]|. Given that
s[1] ≥ si ∀i, we can remove the negative absolute value
terms. Because of the invariance of softmax for additive
constants, the s[1] term can also be cancelled out.

Furthermore, since the embeddings are normalized, we have
that si = −‖Φ(xi)−Φ(x̂)‖2 = 2 Φ(xi) ·Φ(x̂)− 2. When
we take the softmax with temperature 2, we are left with
values proportional to eΦ(xi)·Φ(x̂). Finally, when the vector
is multiplied by IY=ŷ we obtain the desired identity. �

D. Magnitude of Matrix Entries
The outputs of the NeuralSort and SoftSort opera-
tors are n× n (unimodal) row-stochastic matrices, i.e. each
of their rows add up to one. In section 4.1 we compared the

mathematical complexity of equations 3 and 4 defining both
operators, but how do these operators differ numerically?
What can we say about the magnitude of the matrix entries?

For the SoftSort|·| operator, we show that the values of
a given row come from Laplace densities evaluated at the
sj . Concretely:

Proposition 1 For any s ∈ Rn, τ > 0 and 1 ≤ i ≤ n,
it holds that SoftSort|·|τ (s)[i, j] ∝j φLaplace(s[i],τ)(sj).
Here φLaplace(µ,b) is the density of a Laplace distribution
with location parameter µ ≥ 0 and scale parameter b > 0.

Proof. This is trivial, since:

SoftSort|·|τ (s)[i, j] =

1∑n
k=1 exp{−|s[i] − sk|/τ}︸ ︷︷ ︸

ci

exp{−|s[i] − sj |/τ}︸ ︷︷ ︸
φLaplace(s[i],τ)

(sj)

where ci a constant which does not depend on j (specifically,
the normalizing constant for row i). �

In contrast, for the NeuralSort operator, we show that
in the prototypical case when the values of s are equally
spaced, the values of a given row of the NeuralSort
operator come from Gaussian densities evaluated at the sj .
This is of course not true in general, but we believe that this
case provides a meaningful insight into the NeuralSort
operator. Without loss of generality, we will assume that the
sj are sorted in decreasing order (which we can, as argued
in section 4.1); this conveniently simplifies the indexing.
Our claim, concretely, is:

Proposition 2 Let a, b ∈ R with a > 0, and assume that
sk = b−ak ∀k. Let also τ > 0 and i ∈ {1, 2, . . . , n}. Then
NeuralSortτ (s)[i, j] ∝j φN (si,aτ)(sj). Here φN (µ,σ2)

is the density of a Gaussian distribution with mean µ ≥ 0
and variance σ2 > 0.

Proof. The i, j-th logit of the NeuralSort operator be-

Figure 4. Rows of the SoftSort|·| operator are proportional to Laplace densities evaluated at the sj , while under the equal-spacing
assumption, rows of the NeuralSort operator are proportional to Gaussian densities evaluated at the sj . Similarly, rows of the
SoftSort|·|

2

operator are proportional to Gaussian densities evaluated at the sj (plot not shown).

fore division by the temperature τ is (by Eq. 3):

(n+ 1− 2i)sj −
n∑
k=1

|sk − sj |

= (n+ 1− 2i)(b− aj)−
n∑
k=1

|b− ak − b+ aj|

= (n+ 1− 2i)(b− aj)− a
n∑
k=1

|j − k|

= (n+ 1− 2i)(b− aj)− aj(j − 1)

2

− a (n− j)(n− j + 1)

2

= −a(i− j)2 + a(i2 − n2

2
− n

2
)− b(2i− n− 1)

= − (si − sj)2

a
+ a(i2 − n2

2
− n

2
)− b(2i− n− 1)︸ ︷︷ ︸
∆i

where ∆i is a constant that does not depend on j. Thus,
after dividing by τ and taking softmax on the i-th row, ∆i/τ
vanishes and we are left with:

NeuralSortτ [i, j] =

1∑n
k=1 exp{−(si − sk)2/(aτ)}︸ ︷︷ ︸

ci

exp{−(si − sj)2/(aτ)}︸ ︷︷ ︸
φN(si,aτ)

(sj)

where ci a constant which does not depend on j (specifically,
the normalizing constant for row i). �

Gaussian densities can be obtained for SoftSort too by
choosing d = | · |2. Indeed:

Proposition 3 For any s ∈ Rn, τ > 0 and 1 ≤ i ≤ n, it
holds that SoftSort|·|

2

τ (s)[i, j] ∝j φN (s[i],τ)(sj).

Proof. This is trivial, since:

SoftSort|·|
2

τ (s)[i, j] =

1∑n
k=1 exp{−(s[i] − sk)2/τ}︸ ︷︷ ︸

ci

exp{−(s[i] − sj)2/τ}︸ ︷︷ ︸
φN(s[i],τ)

(sj)

where ci a constant which does not depend on j (specifically,
the normalizing constant for row i). �

Figure 4 illustrates propositions 1 and 2. As far as we can
tell, the Laplace-like and Gaussian-like nature of each oper-
ator is neither an advantage nor a disadvantage; as we show
in the experimental section, both methods perform compa-
rably on the benchmarks. Only on the speed comparison
task does it seem like NeuralSort and SoftSort|·|

2

outperform SoftSort|·|.

Finally, we would like to remark that SoftSort|·|
2

does
not recover the NeuralSort operator, not only because
Proposition 2 only holds when the si are equally spaced,
but also because even when they are equally spaced, the
Gaussian in Proposition 2 has variance aτ whereas the
Gaussian in Proposition 3 has variance τ . Concretely:
we can only make the claim that SoftSort|·|

2

aτ (s) =
NeuralSortτ (s) when si are equally spaced at distance
a. As soon as the spacing between the si changes, we need
to change the temperature of the SoftSort|·|

2

operator
to match the NeuralSort operator again. Also, the fact
that the SoftSort|·|

2

and NeuralSort operators agree
in this prototypical case for some choice of τ does not mean

that their gradients agree. An interesting and under-explored
avenue for future work might involve trying to understand
how the gradients of the different continuous relaxations
of the argsort operator proposed thus far compare, and
whether some gradients are preferred over others. So far we
only have empirical insights in terms of learning curves.

E. Sorting Task - Proportion of Individual
Permutation Elements Correctly Identified

Table 2 shows the results for the second metric (the propor-
tion of individual permutation elements correctly identified).
Again, we report the mean and standard deviation over 10
runs. Note that this is a less stringent metric than the one
reported in the main text. The results are analogous to those
for the first metric, with SoftSort and NeuralSort
performing identically for all n, and outperforming the
method of (Cuturi et al., 2019) for n = 9, 15.

F. PyTorch Implementation
In Figure 6 we provide our PyTorch implementation for the
SoftSort|·| operator. Figure 5 shows the PyTorch im-
plementation of the NeuralSort operator (Grover et al.,
2019) for comparison, which is more complex.

Table 2. Results for the sorting task averaged over 10 runs. We report the mean and standard deviation for the proportion of individual
permutation elements correctly identified.

ALGORITHM n = 3 n = 5 n = 7 n = 9 n = 15

DETERMINISTIC NEURALSORT 0.946 ± 0.004 0.911 ± 0.005 0.882 ± 0.006 0.862 ± 0.006 0.802 ± 0.009
STOCHASTIC NEURALSORT 0.944 ± 0.004 0.912 ± 0.004 0.883 ± 0.005 0.860 ± 0.006 0.803 ± 0.009

DETERMINISTIC SOFTSORT 0.944 ± 0.004 0.910 ± 0.005 0.883 ± 0.007 0.861 ± 0.006 0.805 ± 0.007
STOCHASTIC SOFTSORT 0.944 ± 0.003 0.910 ± 0.002 0.884 ± 0.006 0.862 ± 0.008 0.802 ± 0.007

(CUTURI ET AL., 2019, REPORTED) 0.950 0.917 0.882 0.847 0.742

def neural_sort(s, tau):
n = s.size()[1]
one = torch.ones((n, 1), dtype = torch.float32)
A_s = torch.abs(s - s.permute(0, 2, 1))
B = torch.matmul(A_s, torch.matmul(one, torch.transpose(one, 0, 1)))
scaling = (n + 1 - 2 * (torch.arange(n) + 1)).type(torch.float32)
C = torch.matmul(s, scaling.unsqueeze(0))
P_max = (C-B).permute(0, 2, 1)
sm = torch.nn.Softmax(-1)
P_hat = sm(P_max / tau)
return P_hat

Figure 5. Implementation of NeuralSort in PyTorch as given in (Grover et al., 2019)

def soft_sort(s, tau):
s_sorted = s.sort(descending=True, dim=1)[0]
pairwise_distances = (s.transpose(1, 2) - s_sorted).abs().neg() / tau
P_hat = pairwise_distances.softmax(-1)
return P_hat

Figure 6. Implementation of SoftSort in PyTorch as proposed by us (with d = | · |).

References
Cuturi, M., Teboul, O., and Vert, J.-P. Differentiable rank-

ing and sorting using optimal transport. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 32, pp. 6858–6868. Curran Asso-
ciates, Inc., 2019.

Grover, A., Wang, E., Zweig, A., and Ermon, S. Stochastic
optimization of sorting networks via continuous relax-
ations. In International Conference on Learning Repre-
sentations, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In Leibe, B., Matas, J., Sebe,
N., and Welling, M. (eds.), Computer Vision – ECCV
2016, pp. 630–645, Cham, 2016. Springer International
Publishing. ISBN 978-3-319-46493-0.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
Devito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In Advances in
Neural Information Processing Systems 30, 2017.

	Experimental Details
	Sorting Handwritten Numbers
	Architecture
	Loss Functions
	Hyperparamaters
	Learning Curves

	Quantile Regression
	Architecture
	Loss Functions
	Hyperparamaters
	Learning Curves

	Differentiable KNN
	Architectures
	Loss Functions
	Hyperparamaters

	Speed Comparison
	Architecture
	Loss Function
	Hyperparamaters
	Learning Curves
	NeuralSort Performance Improvement
	PyTorch Results
	Hardware Specification

	Proof of Proposition 1
	Proof of Proposition 2
	Magnitude of Matrix Entries
	Sorting Task - Proportion of Individual Permutation Elements Correctly Identified
	PyTorch Implementation

