A. Appendix

A.1. Lipschitz Constants

The Lipschitz constant describes: when input changes, how much does the output change correspondingly. For a function \(f : X \to Y \), if it satisfies
\[
\| f(x_1) - f(x_2) \|_Y \leq L \| x_1 - x_2 \|_X, \quad \forall x_1, x_2 \in X
\]
for \(L \geq 0 \), and norms \(\| \cdot \|_X \) and \(\| \cdot \|_Y \) on their respective spaces, then we call \(f \) Lipschitz continuous and \(L \) is the known as the Lipschitz constant of \(f \).

For a one layer network, full precision network \(f_p \) has Lipschitz constant \(L \), which satisfies
\[
L \leq C_\sigma \| W_p \| \text{ for } C_\sigma = \frac{d\sigma}{dx}.
\]
This bound is immediate from the fact that \(\nabla f_p(x) = \sigma'((W_p)x) \cdot [W_{1,1} \ldots W_{d,1}] \), and \(L \leq \max_x \| \nabla f_p(x) \| \).

A.2. Proofs and Additional Lemmas

Lemma 1. Let \(f_p \) be an \(m \) layer network, and each layer has Lipschitz constant \(L_i \). Assume that quantizing each layer leads to a maximum pointwise error of \(\delta_i \), and results in a quantized \(m \) layer network \(f_q \). Then for any two points \(x, y \in X \), \(f_q \) satisfies
\[
\| f_q(x) - f_q(y) \| < \left(\prod_{j=1}^{m} L_j \right) \| x - y \| + 2\Delta_{m,L},
\]
where \(\Delta_{m,L} = \delta_m + \sum_{i=1}^{m-1} \left(\prod_{j=i+1}^{m} L_j \right) \delta_i \).

Proof of Lemma 1. Let \(\phi_q^{(i)} \) be the quantized \(i \)th layer of the network. From Section A.1, we know that
\[
\| \phi_q^{(i)}(x) - \phi_q^{(i)}(y) \| \leq L_i \| x - y \| + 2\delta_i.
\]
Similarly, we know that feeding in the previous layer’s quantized output yields
\[
\| \phi_q^{(2)} \circ \phi_q^{(1)}(x) - \phi_q^{(2)} \circ \phi_q^{(1)}(y) \| \leq L_2 \| \phi_q^{(1)}(x) - \phi_q^{(1)}(y) \| + 2\delta_2
\]
\[
\leq L_2 L_1 \| x - y \| + 2L_2 \delta_1 + 2\delta_2.
\]
By chaining together the \(i \) layers inductively up to \(m \), we complete the desired inequality. \(\square \)

Proof of Theorem 2. We know that \(\| \phi_q^{(1)}(x) - \phi^{(1)}(x) \| < \delta_1 \). This means \(\phi^{(2)} \) receives different inputs depending on whether \(\phi^{(1)} \) was quantized or not, and thus requires the Lipschitz bound. Thus
\[
\| \phi_q^{(2)}(\phi_q^{(1)}(x)) - \phi^{(2)}(\phi^{(1)}(x)) \| \leq \| \phi_q^{(2)}(\phi_q^{(1)}(x)) - \phi_q^{(2)}(\phi^{(1)}(x)) \| + \| \phi_q^{(2)}(\phi^{(1)}(x)) - \phi^{(2)}(\phi^{(1)}(x)) \|
\]
\[
\leq \left(L_2 \| \phi_q^{(1)}(x) - \phi^{(1)}(x) \| + 2\delta_2 \right) + \delta_2
\]
\[
\leq 2L_2 \delta_1 + 3\delta_2,
\]
where the second inequality comes from Lemma 1. Chaining the argument for the \(i \)th layer inductively up to \(m \), we arrive at the desired inequality. \(\square \)

Proof of Theorem 2. From the guarantee of Lemma 1, we know
\[
\| f_q(x + \eta) - f_q(x) \| \leq L \| (x + \eta) - x \| + 2\Delta_{m,L}.
\]
If we consider a full precision network f_{fp} that classifies x_i correctly with output margin $r_i > 0$, then we must simply apply a triangle inequality to attain

$$
\|f_q(x_i + \eta) - f_{fp}(x_i)\| \leq \|f_q(x_i + \eta) - f_q(x_i)\| + \|f_q(x_i) - f_{fp}(x_i)\|
$$

$$\leq L \|(x_i + \eta) - x_i\| + 2\Delta_m.L + 3\Delta_m.L.
$$

Thus for η such that $\|\eta\| < \frac{r_i - 5\Delta_m.L}{L}$, we will attain $\|f_q(x_i + \eta) - f_{fp}(x_i)\| < r_i$.

Since we also have that $\|z\|_\infty \leq \|z\|_2$ for any $z \in \mathbb{R}^X$, this means that $\|f_q(x_i + \eta) - f_{fp}(x_i)\|_\infty < r_i$. If f_{fp} classifies x_i as class k, this means that

$$
f_{fp}(x_i)_k - f_{fp}(x_i)_j \geq 2r_i, \forall j \neq k.
$$

By the triangle inequality, we get

$$
f_q(x_i + \eta)_k - f_q(x_i + \eta)_j = f_q(x_i + \eta)_k - f_q(x_i + \eta)_j + f_{fp}(x_i)_k + f_{fp}(x_i)_j
$$

$$\geq (f_q(x_i + \eta)_k - f_{fp}(x_i)_k) - (f_q(x_i + \eta)_j - f_{fp}(x_i)_j) + (f_{fp}(x_i)_k - f_{fp}(x_i)_j)
$$

$$> -r_i - r_j + 2r_i
$$

$$\geq 0.
$$

Since this difference is strictly greater than 0, f_q classifies $x + \eta$ correctly.

Proof of Theorem Let $\hat{y}_{i,fp}$ be the estimated class of x_i using f_{fp} and $\hat{y}_{i,q}$ be the estimated class of x_i using f_q. We use basic probabilistic bounds (where the probability is a uniform distribution over the dataset) to arrive at

$$
e_q = \Pr(\hat{y}_{i,q} \neq y_i) = \Pr(\hat{y}_{i,q} \neq y_i \text{ and } \hat{y}_{i,fp} \neq y_i) + \Pr(\hat{y}_{i,q} \neq y_i \text{ and } \hat{y}_{i,fp} = y_i)
$$

$$\leq \Pr(\hat{y}_{i,fp} = y_i) + \Pr(\hat{y}_{i,q} \neq y_i \text{ and } \hat{y}_{i,fp} = y_i)
$$

$$\leq \epsilon_{fp} + \Pr(\hat{y}_{i,fp} = y_i) \Pr(\hat{y}_{i,q} \neq \hat{y}_{i,fp} | \hat{y}_{i,fp} = y_i)
$$

$$\leq \epsilon_{fp} + (1 - \epsilon_{fp}) \Pr(\hat{y}_{i,q} \neq \hat{y}_{i,fp} | \hat{y}_{i,fp} = y_i)
$$

$$= \epsilon_{fp} + (1 - \epsilon_{fp}) (1 - \Pr(\hat{y}_{i,q} = \hat{y}_{i,fp} | \hat{y}_{i,fp} = y_i))
$$

All that remains is lower bounding the final conditional probability of matching. However, this can be done using Theorem 2. We know that $\hat{y}_{i,q} = \hat{y}_{i,fp}$ so long as $\|f_q(x_i) + f_{fp}(x_i)\|_\infty < r_i$. From Theorem 2, a sufficient condition for this is for $r_i - 5\Delta_m.L > 0$, as this implies one can construct a neighborhood of positive radius $\|\eta\| < \frac{r_i - 5\Delta_m.L}{L}$ such that $\|f_q(x_i + \eta) + f_{fp}(x_i)\|_\infty < r_i$. In particular, this implies $\|f_q(x_i) + f_{fp}(x_i)\|_\infty < r_i$ by choosing $\eta = 0$. This gives us

$$\Pr(\hat{y}_{i,q} = \hat{y}_{i,fp} | \hat{y}_{i,fp} = y_i) = \Pr(\|f_q(x_i) + f_{fp}(x_i)\|_\infty < r_i | \hat{y}_{i,fp} = y_i)
$$

$$\geq \Pr(3\delta \geq 0, \forall \|\eta\| < \|\hat{y}_{i,q} - f_{fp}(x_i)\|_\infty < r_i | \hat{y}_{i,fp} = y_i)
$$

$$\geq \Pr \left(\frac{r_i - 5\Delta_m.L}{L} > 0 | \hat{y}_{i,fp} = y_i \right)
$$

$$= \mathbb{E}_{x_i \in X} \left[1_{r_i > 5\Delta_m.L} | \hat{y}_{i,fp} = y_i \right].
$$

Combining these terms, we arrive at

$$e_q \leq \epsilon_{fp} + (1 - \epsilon_{fp}) \left(1 - \mathbb{E}_{x_i \in X} \left[1_{r_i > 5\Delta_m.L} | \hat{y}_{i,fp} = y_i \right] \right)
$$

$$= \epsilon_{fp} + (1 - \epsilon_{fp}) \mathbb{E}_{x_i \in X} \left[1_{r_i \leq 5\Delta_m.L} | \hat{y}_{i,fp} = y_i \right].
$$