Appendix

A. κ-PI-DQN and κ-VI-DQN Algorithms

A.1. Detailed Pseudo-codes

In this section, we report the detailed pseudo-codes of κ-PI-DQN and κ-VI-DQN algorithms, described in Section 4.3, side-by-side.

Algorithm 1 κ-PI-DQN

1. Initialize replay buffer \mathcal{D}: Q-networks Q_θ and Q_ϕ with random weights θ and ϕ;
2. Initialize target networks Q'_θ and Q'_ϕ with weights $\theta' \leftarrow \theta$ and $\phi' \leftarrow \phi$;
3. for $i = 0, \ldots, N_\kappa - 1$ do
 4. # Policy Improvement
 5. for $t = 1, \ldots, T_\kappa$ do
 6. Select a_t as an ϵ-greedy action w.r.t. $Q_\theta(s_t, a)$;
 7. Execute a_t, observe r_t and s_{t+1}, and store the tuple (s_t, a_t, r_t, s_{t+1}) in \mathcal{D};
 8. Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^N$ from \mathcal{D};
 9. Update θ by minimizing the following loss function:
 $$L_{Q_\theta} = \frac{1}{N} \sum_{j=1}^{N} \left[Q_\theta(s_j, a_j) - (r_j + \gamma \max_a Q'_\theta(s_{j+1}, a)) \right]^2,$$
 where $V_\phi(s_{j+1}) = Q_\phi(s_{j+1}, \pi_{i-1}(s_{j+1}))$ and $\pi_{i-1}(s_{j+1}) \in \arg \max_a Q'_\phi(s_{j+1}, a)$;
 10. Copy θ to θ' occasionally ($\theta' \leftarrow \theta$);
 11. end for
 12. # Policy Evaluation
 13. for $t' = 1, \ldots, T(\kappa)$ do
 14. Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^N$ from \mathcal{D};
 15. Update ϕ by minimizing the following loss function:
 $$L_{Q_\phi} = \frac{1}{N} \sum_{j=1}^{N} \left[Q_\phi(s_j, a_j) - (r_j + \gamma Q'_\phi(s_{j+1}, s_{j+1})) \right]^2;$$
 16. Copy ϕ to ϕ' occasionally ($\phi' \leftarrow \phi$);
 17. end for
 18. end for
 19. end for
30. end for

Algorithm 2 κ-VI-DQN

1. Initialize replay buffer \mathcal{D}: Q-networks Q_θ and Q_ϕ with random weights θ and ϕ;
2. Initialize target network Q'_θ with weights $\theta' \leftarrow \theta$;
3. for $i = 0, \ldots, N_\kappa - 1$ do
 4. # Evaluate $T_\kappa V_\phi$ and the κ-greedy policy w.r.t. V_ϕ
 5. for $t = 1, \ldots, T_\kappa$ do
 6. Select a_t as an ϵ-greedy action w.r.t. $Q_\theta(s_t, a)$;
 7. Execute a_t, observe r_t and s_{t+1}, and store the tuple (s_t, a_t, r_t, s_{t+1}) in \mathcal{D};
 8. Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^N$ from \mathcal{D};
 9. Update θ by minimizing the following loss function:
 $$L_{Q_\theta} = \frac{1}{N} \sum_{j=1}^{N} \left[Q_\theta(s_j, a_j) - (r_j + \gamma \max_a Q'_\theta(s_{j+1}, a)) \right]^2,$$
 where $V_\phi(s_{j+1}) = Q_\phi(s_{j+1}, \pi(s_{j+1}))$ and $\pi(s_{j+1}) \in \arg \max_a Q_\phi(s_{j+1}, a)$;
 10. Copy θ to θ' occasionally ($\theta' \leftarrow \theta$);
 11. end for
 12. Copy θ to ϕ ($\phi \leftarrow \theta$)
 13. end for
 14. end for
<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon (T)</td>
<td>1000</td>
</tr>
<tr>
<td>Adam stepsize</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>Target network update frequency</td>
<td>1000</td>
</tr>
<tr>
<td>Replay memory size</td>
<td>100000</td>
</tr>
<tr>
<td>Discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>Total training time steps</td>
<td>10000000</td>
</tr>
<tr>
<td>Minibatch size</td>
<td>32</td>
</tr>
<tr>
<td>Initial exploration</td>
<td>1</td>
</tr>
<tr>
<td>Final exploration</td>
<td>0.1</td>
</tr>
<tr>
<td>Final exploration frame</td>
<td>1000000</td>
</tr>
<tr>
<td>#Runs used for plot averages</td>
<td>10</td>
</tr>
<tr>
<td>Confidence interval for plot runs</td>
<td>$\sim 95%$</td>
</tr>
</tbody>
</table>

Table 1: Hyperparameters for κ-PI-DQN and κ-VI-DQN.

A.2. Ablation Test for C_{FA}

![Performance of κ-PI-DQN and κ-VI-DQN on Breakout for different values of C_{FA}](image1)

Figure 1: Performance of κ-PI-DQN and κ-VI-DQN on Breakout for different values of C_{FA}.

A.3. κ-PI-DQN and κ-VI-DQN Plots

In this section, we report additional results of the application of κ-PI-DQN and κ-VI-DQN on the Atari domains. A summary of these results has been reported in Table 1 in the main paper.

![Training performance of the ‘naive’ baseline $N_{\kappa} = T$ and κ-PI-DQN, κ-VI-DQN for $C_{FA} = 0.05$ on SpaceInvaders](image2)

Figure 2: Training performance of the ‘naive’ baseline $N_{\kappa} = T$ and κ-PI-DQN, κ-VI-DQN for $C_{FA} = 0.05$ on SpaceInvaders.
Figure 3: Training performance of the ‘naive’ baseline $N_\kappa = T$ and κ-PI-DQN, κ-VI-DQN for $C_{FA} = 0.05$ on Seaquest

Figure 4: Training performance of the ‘naive’ baseline $N_\kappa = T$ and κ-PI-DQN, κ-VI-DQN for $C_{FA} = 0.05$ on Enduro

Figure 5: Training performance of the ‘naive’ baseline $N_\kappa = T$ and κ-PI-DQN, κ-VI-DQN for $C_{FA} = 0.05$ on BeamRider

Figure 6: Training performance of the ‘naive’ baseline $N_\kappa = T$ and κ-PI-DQN, κ-VI-DQN for $C_{FA} = 0.05$ on Qbert
B. κ-PI-TRPO and κ-VI-TRPO Algorithms

B.1. Detailed Pseudo-codes

In this section, we report the detailed pseudo-codes of the κ-PI-TRPO and κ-VI-TRPO algorithms, described in Section 4.4, side-by-side.

Algorithm 3 κ-PI-TRPO

1. Initialize V-networks V_θ and V_ϕ with random weights θ and ϕ; policy network π_ψ with random weights ψ;
2. for $i = 0, \ldots, N_\kappa - 1$ do
3. for $t = 1, \ldots, T_\kappa$ do
4. Simulate the current policy π_ψ for M time-steps;
5. for $j = 1, \ldots, M$ do
6. Calculate $R_j(\kappa, V_\phi) = \sum_{t=1}^{T}(\gamma \kappa)^{t-j} r_t(\kappa, V_\phi)$ and $\rho_j = \sum_{t=1}^{T} \gamma^{t-j} r_t$;
7. end for
8. Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^{N}$ from the simulated M time-steps;
9. Update θ by minimizing the loss function: $L_\theta = \frac{1}{N} \sum_{j=1}^{N} (V_\theta(s_j) - R_j(\kappa, V_\phi))^2$;
10. # Policy Improvement
11. Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^{N}$ from the simulated M time-steps;
12. Update ψ using TRPO with advantage function computed by $\{(R_j(\kappa, V_\phi), V_\theta(s_j))\}_{j=1}^{N}$;
13. end for
14. # Policy Evaluation
15. Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^{N}$ from the simulated M time-steps;
16. Update ϕ by minimizing the loss function: $L_\phi = \frac{1}{N} \sum_{j=1}^{N} (V_\phi(s_j) - \rho_j)^2$;
17. end for

Algorithm 4 κ-VI-TRPO

1. Initialize V-networks V_θ and V_ϕ with random weights θ and ϕ; policy network π_ψ with random weights ψ;
2. for $i = 0, \ldots, N_\kappa - 1$ do
3. # Evaluate T_κ, V_ϕ and the κ-greedy policy w.r.t. V_ϕ
4. for $t = 1, \ldots, T_\kappa$ do
5. Simulate the current policy π_ψ for M time-steps;
6. for $j = 1, \ldots, M$ do
7. Calculate $R_j(\kappa, V_\phi) = \sum_{t=1}^{T}(\gamma \kappa)^{t-j} r_t(\kappa, V_\phi)$;
8. end for
9. Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^{N}$ from the simulated M time-steps;
10. Update θ by minimizing the loss function: $L_\theta = \frac{1}{N} \sum_{j=1}^{N} (V_\theta(s_j) - R_j(\kappa, V_\phi))^2$;
11. Sample a random mini-batch $\{(s_j, a_j, r_j, s_{j+1})\}_{j=1}^{N}$ from the simulated M time-steps;
12. Update ψ using TRPO with advantage function computed by $\{(R_j(\kappa, V_\phi), V_\theta(s_j))\}_{j=1}^{N}$;
13. end for
14. Copy θ to ϕ ($\phi \leftarrow \theta$);
15. end for
<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon (T)</td>
<td>1000</td>
</tr>
<tr>
<td>Adam stepsize</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>Number of samples per Iteration</td>
<td>1024</td>
</tr>
<tr>
<td>Entropy coefficient</td>
<td>0.01</td>
</tr>
<tr>
<td>Discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>Number of Iterations</td>
<td>2000</td>
</tr>
<tr>
<td>Minibatch size</td>
<td>128</td>
</tr>
<tr>
<td>#Runs used for plot averages</td>
<td>10</td>
</tr>
<tr>
<td>Confidence interval for plot runs</td>
<td>$\sim 95%$</td>
</tr>
</tbody>
</table>

Table 2: Hyper-parameters of κ-PI-TRPO and κ-VI-TRPO on the MuJoCo domains.

B.2. Ablation Test for C_{FA}

![Performance of κ-PI-TRPO and κ-VI-TRPO on Walker2d-v2 for different values of C_{FA}](image)

Figure 7: Performance of κ-PI-TRPO and κ-VI-TRPO on Walker2d-v2 for different values of C_{FA}.

B.3. κ-PI-TRPO and κ-VI-TRPO Plots

In this section, we report additional results of the application of κ-PI-TRPO and κ-VI-TRPO on the MuJoCo domains. A summary of these results has been reported in Table 2 in the main paper.

![Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on Ant-v2.](image)

Figure 8: Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on Ant-v2.
Figure 9: Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on HalfCheetah-v2.

Figure 10: Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on HumanoidStandup-v2.

Figure 11: Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on Swimmer-v2.

Figure 12: Performance of GAE, ‘Naive’ baseline and κ-PI-TRPO, κ-VI-TRPO on Hopper-v2.