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Abstract

Modern deep learning models employ consider-
ably more parameters than required to bt the train-
ing data. Whereas conventional statistical wisdom
suggests such models should drastically overpt,
in practice these models generalize remarkably
well. An emerging paradigm for describing this
unexpected behavior is in terms oflauble de-
scentcurve, in which increasing a modelOs ca-
pacity causes its test error to brst decrease, then
increase to a maximum near the interpolation
threshold, and then decrease again in the over-
parameterized regime. Recent efforts to explain
this phenomenon theoretically have focused on
simple settings, such as linear regression or ker-
nel regression with unstructured random features,
which we argue are too coarse to reveal important
nuances of actual neural networks. We provide
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Figure 1.An illustration of multi-scale generalization phenomena
for neural networks and related kernel methods. The classical
U-shaped under- and over-ptting curve is shown on the far left.
After a peak near the interpolation threshold, when the number
of parameterg equals the number of samples the test loss de-
creases again, a phenomenon knowda@sble descentOn the far
right is the limit whernp ! ", which is described by the Neural
Tangent Kernel. In this work, we identify a new scale of interest in
between these two regimes, namely wipdsa quadratic inm, and
show that it exhibits complex nonmonotonic behavior, suggesting
that double descent does not provide a complete picture. Putting

these observations together we debne three regimes separated by
two transitional phases: (i) tretassical regimeof underparameter-
ization whenp < m, (ii) the abundant parameterizatioregime
whenm < p < m?2, and (i) thesuperabundant parameterization
regime wherp > m?. The transitional phases between them are

of particular interest as they produce nonmonotonic behavior.

a precise high-dimensional asymptotic analysis
of generalization under kernel regression with the
Neural Tangent Kernel, which characterizes the
behavior of wide neural networks optimized with
gradient descent. Our results reveal that the test
error has nonmonotonic behavior deep in the over-
parameterized regime and can even exhibit addi-
tional peaks and descents when the number of
parameters scales quadratically with the dataset
size.

a rigorous understanding for when the models might work,
and, crucially, when they might not. Unfortunately, the cur-
rent theoretical understanding of deep learning is modest at
best, as large gaps persist between theory and observation
and many basic questions remain unanswered.

1. Introduction One of the most conspicuous such gaps is the unexpect-

Machine learning models based on deep neural ntatwork%dIy good generalization performance of large, heavily-

have achieved widespread success across a variety of O%v_erparameterlzed models. These models can be so ex-

mains, often playing integral roles in products and serviced ESsIVe that they can perfectly bt the training data (even

people depend on. As users rely on these systems in increé@ben the lahels are replace by pure naise), but still manage

ingly important scenarios,it becomes paramount to establisf? gengrahze wgll on real dgtit@ang et al.2_01(_3. .An
emerging paradigm for describing this behavior is in terms

"Equal contribution Work done as a member of the Google Al of a double descent curv@élkin et al, 20193, in which
Residency PrograntGoogle Brain. Correspondence to: Jeffrey increasing a model®s capacity causes its test error to brst
Pennington<jpennin@google.com. decrease, then increase to a maximum near the interpola-
Proceedings of th&7" International Conference on Machine tion threshold (where the number of parameters equals the

Learning Vienna, Austria, PMLR 119, 2020. Copyright 2020 by humber of samples), and then decrease again in the overpa-
the author(s). rameterized regime.
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There are of course more elaborate measures of a modelD$. Our Contributions
capacity than a naive xparameter count. Recent empirical
and theoretical work studying the correlation of these capac- ™
ity measures with generalization has found mixed results,
with many measures having the opposite relationship with =
generalization that theory would predittéyshabur et a|.
2017. Other work has questioned whether it is possible
in principle for uniform convergence results to explain the
generalization performance of neural networkagarajan

& Kolter, 2019.

We derive exact high-dimensional asymptotic expres-

sions for the test error of NTK ridge regression.

We prove that the test error can exhibit nonmonotonic

behavior deep in the overparameterized regime.

3. We investigate the origins of this nonmonotonicity and
attribute them to the kernel with respect to the second-
layer weights.

4. We provide empirical evidence that triple descent can

B indeed occur for Pnite-sized networks trained with gra-

Our approach is quite different. We consider the algorithmOs  dient descent.

asymptotic performance on a speciPc data distribution, lever-5. We bnd exceptionally fast learning curves in the noise-

aging the large system size to get precise theoretical results. less case, witfE ! m' 2.

In particular, we examine the high-dimensional asymptotics

of kernel ridge regression with respect to the Neural Tangent

Kernel (NTK) Jacot et a].2018 _and conclude that double 1 5 Related Work

descent does not always provide an accurate or complete

picture of generalization performance. Instead, we iderA recent line of work studying the behavior of interpolat-

tify complex nonmonotonic behavior in the test error as theing models was initiated by the intriguing experimental

number of parameters varies across multiple scales and brigisults of Zhang et al.2016 Belkin et al, 20181, which

that it can exhibit additional peaks and descents when thehowed that deep neural networks and kernel methods can

number of parameters scales quadratically with the datas@eneralize well even in the interpolation regime. A number
size. of theoretical results have since established this behavior
i i , in certain settings, such as interpolating nearest neighbor
Our theoretical analysis focuses on the NTK of a S'ngleéchemeslielkin etal, 20183 and kernel regressioBélkin
!ayer fully-connected model'wheh the sgmples are drawrét al, 2018¢ Liang & Rakhlin 2018.
independently from a Gaussian distribution and the targets
are generated by a wide teacher neural network. We providéhese observations, coupled with classical notions of the
an exact analytical characterization of the generalizatioWias-variance tradeoff, have given rise to the double descent
error in the high-dimensional limit in which the number of paradigm for understanding how test error depends on model
samplesn, the number of featurasy, and the number of complexity. These ideas were Prst discusse8@ikin et al,
hidden units; tend to inPnity with bxed ratids := no/m 20193, and empirical evidence was obtained Ad¢ani &
and" := no/n ;. By adjusting these ratios, we reveal the Saxg 2017 Geiger et al.2019 and recently inilakkiran
intricate ways in which the generalization error depends oret al, 2019. Precise theoretical predictions soon conbrmed

the dataset size and the effective model capacity. this picture for linear regression in various scenari®slKin

. . , - , . et al, 2019h Hastie et al.2019 Mitra, 2019.
We investigate various limits of our results, including the

behavior when the NTK degenerates into the kernel with-inear models struggle to capture all of the phenomena
respect to only the Prst-layer or only the second-layefelevant to double descent because the parameter count is
weights. The latter corresponds to the standard setting dfed to the number of features. Recent work found multiple
random feature ridge regression, which was recently arflescents in the test loss for minimum-norm interpolants in
alyzed in (Mei & Montanari 2019. In this case, the to- Reproducing Kernel Hilbert Spacesigng et al, 2020, but

tal number of parametersis equal to the widtm, i.e. it similarly requires changing the data distribution to vary
p=ny = (/" )m, sothatpis linear in the dataset size. model capacity. A precise analysis of a nonlinear system
In contrast, for the full kernel, the number of parameters ifor a Pxed data generating process is the most direct way
p=(no+1)ny = (123" )m?+(1/" )m,i.e.itisquadratic todraw insightinto double descent. A recent preprivie(

in the dataset size. By studying these two kernels, we derivé Montanari 2019 shares this view and adopts a simi-
insight into the generalization performance in the vicinitieslar analysis to ours, but focuses entirely on the standard
of linear and quadratic overparameterization, and by piecase of unstructured random features. Such a setup can
ing these two perspectives together, we infer the existenc@deed model double descent, and certainly bears relevance
of multi-scale phenomena, which sometimes can includéo certain wide neural networks in which only the top-layer

triple descent. See Fid.for an illustration and Fig4 for ~ weights are optimized\eal 1996 Rahimi & Rechf 2008
empirical conprmation of this behavior. Lee et al, 2017 Matthews et a].2018 Lee et al, 2019,

but its connection to neural networks trained with gradient
descent remains less clear.



The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization

Gradient-based training of wide neural networks initializedwhere the expectation is over an iid test pdixaty) condi-

in the standard way was recently shown to correspond ttional on the training set, the teacher parameters, and any
kernel gradient descent with respect to the Neural Tangemandomness in the learning algorithm produciguch as
Kernel Jacot et al.2018. This result has spawned renewed the random parameters debning the random features. Note
interest in kernel methods and their connection to deep learthat the test loss is a random variable; however, in the high-
ing; a woefully incomplete list of papers in this direction dimensional asymptotics we consider here, it concentrates
includesLee et al.(2019; Chizat et al.(2019; Du et al.  about its mean.

(2018ab); Arora et al.(2019; Xiao et al.(2019.

To connect these research directions, our analysis requir@sz' Neural Tangent Kemel Regression

tools and recent results from random matrix theory and fregve consider predictive functionsdebned by approximate

probability. A central challenge stems from the fact that(j.e. random feature) kernel ridge regression using the Neu-

many of the matrices in question have nonlinear dependera| Tangent Kernel (NTK) of a single-hidden-layer neural

cies between the elements, which arises from the nonlinegfetwork. The NTK can be considered a kerKekhat is

feature matrixe = #(WX). This challenge was over- approximated by random features corresponding to the Jaco-

come in Pennington & Worah2017), which computed the  pianJ of the network®s output with respect to its parameters,

spectrum of, and in Pennington & Worah2018), which i.e. K(x1,Xx2) = J(x1)J(x2)*. As the width of the net-

examined the spectrum of the Fisher information matrixiyork becomes very large (compared to all other relevant

see alsol(ouart et al, 2018 for the case of a deterministic scales in the system), the approximate NTK converges to a

data matrixX . We also utilize the results oAdlam etal,  constant kernel determined by the networkOs initial param-

2019 Peche et al, 2019, which established a linear signal eters and describes the trajectory of the networkOs output

plus noise model foF that shares the same bulk statistics.under gradient descent. In particular,

This linearized model allows us to write the test error as

the trace of a rational function of the underlying random Ny (x) = No(x)+( Y &No(X )K" 1(1 &€ "™ YKy, (3)

matrices. The methods we use to compute such quantities

rely on so-calledinear pencilsthat represent the rational whereN;(x) is the output of the network at tinteK :=

function in terms of the inverse of a larger block matile{- K (&) = K (X, X )+ &I, Ky = K(X, x)," is the learn-

ton et al, 2018, and on operator-valued free probability for ing rate, and is a ridge regularization constanfor this

computing the trace of the lattdfdr et al, 20086. work, we are interested in the' ( limit of (3), which
debnes the predictive function,

2. Preliminaries 9() 1= N5 () = No(x) +( Y & No(X )K" K. (4)

In this section, we introduce our theoretical setting and some

of the tools required to state our results. We remark that if the width is not asymptotically larger
than the dataset size, the validity(@) can break down and
2.1. Problem Setup and Notation (4) may not accurately describe the late-time predictions

) ) ) of the neural network. While this potential discrepancy is
We consider the task of learning an unknown function fromyp, interesting topic, we defer an in-depth analysis to future
m independent samplgs;,yi) " R™ # R, i $ m, where \york (but see Fig.4) for an empirical analysis of gradient
the datapoints are standard Gaussiar,N (0,1n,), and  gescent). Instead, we regai) as the debnition of our
the labels are generated by a widingle-hidden-layer neu- pregictive function and focus on kernel regression with the
ral network: v o NTK. We believe this setup is interesting its own right; for
e, 70 — o example, recent work has demonstrated its effectiveness as
yibi b8 1 S Xl o)l e+ %, @ 2 kernel method on complex image dataskte( al., 2019
The teacherOs activation functibnis applied coordinate- and found it to be competitive with neural networks in small
wise, and its parameters” R"™" "o and$ " R!'"rare dataregimes.
matrices whose entries are independently sampled once f
all data fromN (0, 1). We also allow for independent label hidden-layer fully-connected networks. In particular, con-

H 2
noise % !N (0, #7). sider a network of with widtm; and pointwise activation
Let yi(x) denote the modelOs predictive function. We corfunction#, dePned by,

sider squared error, so the test loss is, %
% No(x) = Wo#(W1x/ ng
) T+ %8 W), (2)

P this work, we restrict our study to the NTK of single-

v ®)

. 2These overloaded debnitions&fcan be distinguished by the
We assume the width; | ", but the rate is not important. number of arguments and should be clear from context.

0,
E(y&W? = By ($#:( x/ g
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for initial weight matricesw; " R"™" " andW, " @ — ..
RY "1 with iid entries[W1]; ! N (0,1)% and[W,]; ! g 2| B
N (0,#2,). .

urally decomposes into the Jacobian with respedtVto S
andWo, i.e. J(X) = [(No(X)/(W 1,(No(X)/(W ;] =
[J}(X)' J2(x)]- Thereforg the kernef also decomposes Figure 2.Test error with and without centering for different acti-
this way, and we can write. vation functions withp = 2,y = 10' 3, andSNR= 1 for (a) the
_ # “ second-layer kerngk> and (b) the full NTKK as the number
K (x1,x2) = Ja(x1)J1(x2)" + Ja(x1)J2(X2) (6) of parameterg is varied by changing the network width. Non-
=1 Kp(X1,X2) + Ka(X1,X2) (7)  monotonic behavior is clearly visible at the linear scaling transition

(p = m) and the quadratic scaling transitign{ m?).
A simple calculation yields the per-layer constituent kernels,

X#X . (F%" diag(W,)2F*

Ki(X, X') = No ) Ny (8)  sizem controls the amount of parameterization or com-
1 plexity of a model. In our setting of a single-hidden-layer
K2(X, X)) = niF# F, (9)  fully-connected neural network, = ni(ng + 1), and for
! a bxed dataset, we can adjust the ratim by varying the
where we have introduced the jabbreviatioRs = hidden-layer widt; .

#(W1X/ ng) and F% = #%W,X/ ~'ng). Notice that
when#\z,\,2 " 0,K = Ky, i.e.the NTK degenerates into the
standard random features kernel. However, the predictiv ~ T " oM nony
function(4) contains an offsd¥lo(x) which would typically BecauseKy = JiJ; andJ; * R . the prst-layer

be set to zero in standard random feature kernel regressi(h?me_l _hlas ran_lf at In;)oinm_{ nonﬁ, m_} \ whlcth_uglgelsts
because it simply increases the variance of test prediction ontrivia tran5|_t|ona enhavior whem= ( _m). imrarty,
e rank ofK, is at mostmin{n;, m}, which suggests a

Removing this variance component has an analogous opé ceond i . le whan = " valentl
ation in neural network training: either the function value S€cond interesting scale wheq = (' m), or equivalently,

o P o e ;
at initialization can be subtracted throughout training, orWhenp ="(_ m?) if no ="( ny). Our explicit calculations

a symmetrization trick can be used in which two COpiesconbrm that interesting pht_anomena indeed occur at these
of the NN are initialized identigglly, and their normalized scales, as can be seen in Fg. (

differenceN * N@ & N® / 2is trained with gradi- These two scales partition the degree of parameterization
ent descent. Either method preserves the kefnelhile into three regimes. We consider tblassicalregime to be
enforcingNo * 0. We call this setugentering and present  whenp! m because classical generalization theory tends
results with and without it. to hold and the U-shaped test error curve is observed. The

Finally, we note that ridge regularization in the kernel per_transmon aroungp = *( m) manifests as a sharp rise in

spective corresponds to using L2 regularization of the neuratlhe tESt loss near th-e interpolation threshold, followed k_)y
networkOs weights toward their initial values. a.qwck descent as Increases furth_er, as can be seen in
Fig. (2a). We call this thdinear scalingtransition. After
. . this, we enter a regime we cabundant parameterization
3. Three Regimes of Parameterization whenm ! p! mZ2. In this regime, the test error tends

) I > .
In this section, we outline an argument based on the stru&g decrease untjp nears the vicinity om®, where it can

ture of the NTK as to why one should expect the test erropometimes mcre:’;‘lse a;galn, producing a se(_:ond U-shaped
to exhibit non-trivial phenomena at two different scales of CUrve. Wherp = (' m ),.anoth'er trans_|t_|on IS o.bserved,
overparameterization. From the expressions for the te%hICh we cal! thequadratic scallngrgnsmon,_whlch can
error (2) and the predictive functio(4), it is evident that ? seezzn n Flg.Z(b). On the other side of this transition,
the behavior of the test error is determined by the spectr m*, aregime we caul;uperabt_mdant parameterlzatlon
properties of the NTK. Although the Pne details of the rela- ee Fig 4) for an illustration of this general picture.
tionship can only be revealed by the explicit calculation, wewhile the classical regime has been long studied, and the
can nevertheless make some basic high-level observatiossiperabundant regime has generated considerable recent
based on the coarser structure of the kernel. interest due to the NTK, our main aim in delineating the
above regimes is to highlight the existence of the interme-
diate scale containing complex phenomenology. For this
Any non-zeroog, , can be absorbed into a redePnitiorsof  reason, we focus our theoretical analysis on the novel scal-

The simplest way to see that there should be two scales
gomes from examining the two terms in the kernel separately.

The number of trainable parametgrselative to the dataset
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ing regime in whictp = "( m?). In particular, as mentioned can eliminate the Hadamard product entirely and write,
in Sectionl, we consider the high-dimensional asymptotics ’
in whichng,n;,m'( withng/m * | andng/n,* " L g2 % #w,) o o

Y : 1 Ki= #y,( "&))Im + X" X, (12)

held constant. Ng

where the= notation means the two matrices share the same
4. Overview of Techniques bulk statistics asymptotically.

In _thls section, we prowde_a high-level overview of the anay 5 | inearization 1: Gaussian Equivalents
lytical tools and mathematical results we use to compute the

generalization error. To begin with, let us brst describe th& he test erro(2) involves large random matrices with non-
main technical challenges in computing explicit asymptoticlinear dependencies, which are not immediately amenable
limits of (2). to standard methods of analysis in random matrix the-

The prst challenge, which is evident upon inspectBjg ory._ E(]g}’ 2?%;;'%;;? th_e :;R,?lo)':; (%:,}a;ur(\e( matrix
- 1 0/ = 1 &L

is that the kernel contains a Hadamard product of rando (7 B %
. . . . | + = |

matrices, for which concrete results in the random matrlxr%#T(' X/ “Mo)l "y E.’ andy := $#-(! x/ "No)/ " Ny

. . all suffer from the same issue.

literature are few and far between. We address this problem

in Sectiond.1 The solution is to replace each of these matrices with an

The second challenge, which is apparent by inspe¢gh equivalent matrix without nonlinear dependencies, but cho-
ge, P ynsp g sen to maintain the same Prst- and second-order moments

that the kernel depends on random matrices with nonline r all of the terms that appear in the test erggy. This

dependencies between the entries. We describe how 10 . )
circumvent this difbculty in Sectio.2 approach was described férin (Adlam et al, 2019 (see

also Peche et al, 2019), and is based on the general re-
Finally, by expanding the square (8) and substituting4),  sults of Banna et a].2015, specibcally Theorem 5. The
we bnd terms that are constant, linear, and quadrakcih.  upshot is that the test error is asymptotically invariant to the
Some of the random matrices that appear inside the matrifollowing substitutions,

inverses €.g. X, andW;) also appear outside of them as $__ #

multiplicative factors, a situation that prevents the straight- g+ glin .— )—Wlx v TE) . (13)

forward application of many standard proof techniques in $ No

random matrix theory. We describe how to overcome this in ) &)t

challenge in Sectiod.3. LA G $1 X+ ———3"y+E (14)
tNo Ny

. By #_

4.1. Simplibcation of First-Layer Kernel froflin.= n)—Wlx + & )*g (15)
0

A straightforward central limiting argument shows that in D in $ )e &)t

the asymptotic limit the entries 81X/~ ny are marginally y' y":= nTn0$! X+ T$*y : (16)

Gaussian with mean zero and unit variance. As such, the _ _
prst and gecond moments of the entries in the m&thx  The new object$ ¢, " v, *;, and*, are matrices of the

#%W1X/ "ng) are equal to appropriate shapes with iid standard Gaussian entries. The
4 constants,),' r, and); are chosen so that the mixed mo-
N % ) % % 2 ments up to second order are the same for the original and
) = Bzan 0 #12), = Bzen 0#12)7. (10) linearized versions. In particular,
It follows that we can spliK ; into two terms, ) = [Ezen 0.0#12)]%, ' = Exan 0.0#(2)?, (17)
1@0/"# 2 )t = [Ezen (0,1)#:/12)]2, "= Ezen (0,1)#7(2)2-
X#X °" diag(W % X#X 18
) IWaIP™, o (XPX ) (18)
No N1 No

The statement that the test error only depend¥ bhis
consistent with the observations made@hprbani et a|.
2019 Mei & Montanari 2019 that in the high-dimensional
regime wherag = "( m), only linear functions of the data
can be learned. Indeed, ™ is equivalent to a linear teacher
é)lus noise with signal-to-noise ratio given by,

where@¥is a centered version & Focusing on the brst
term, becausagn; = ! 2/"m 2, the random Ructuations in
the off-diagonal elements at@(1/m ), which are too small
to contribute to the spectrum or moments ofrar# m
matrix whose diagonal entries are order one. In fact, th
diagonal entries are simply proportional to the variance of )t

SNR=

the entries of  namely(' & )). Putting this together, we &)+ #HE (19)
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We often make this equivalence to a linear teacher explicipencil is given by
by setting#;(x) = x, which implies' 1 = ); = 1. Doing

. . ¥ -1
so also removes the noise from the test label, but since this 2 oy ony W FEs, e e
. . . . [+ Sy, ("7 A =X o F Fwenr X
noise merely contributes an additive shift to the test loss, + " ] 0 0 ]
removing it does not change any of our conclusions. T T B esW, [ 0 '
0 0 I Wy [ 1

4.3. Linearization 2: Linear Pencil ] o i
which can be checked by an explicit computation of the

Next we turn our attention to the actual computation of theplock matrix inverse. After obtaining a linear pencil for each
asymptotic test loss. Expanding the test er®)me havé,  of the terms in(24), the only task that remains is computing
the trace. Since each linear pencil is a block matrix whose

Etest:= E(x yb}y & P(x))? (20)  blocks are iid Gaussian random matrices, its trace can be
"% 4 g 1o evaluated using the techniques describedrar ¢t al, 20069
= By t(y"y) & 2tr(Ky K* 7Y 32 or through the general formalism of operator-valued free

probability. We refer the reader to the bodWifigo &

# Vi # 1
FU(KKDYPYKETK) . (2 Speicher2017 for more details on these topics.

The simplibcation12) gives, 5. Asymptotic Training and Test Error
' . )X #X ( E*E The calculations described in the previous section are pre-
K =#g, ("&))In+ M &lm sented in the Supplementary Materials. Here we present the
0 ! main results.
(22)
#2 ) 1 Proposition 1. Asng,ny,m ' ( with! = ng/m and
Ky= Wel x#y 4 —F#f, (23) " = no/n 1 Pxed, the tracesi(z) == L tr(K (2)' !) and
No ni — 1 A y# 11 H i
+(z) = (5, X" XK (2)" ) are given by the unique

) ] . o solutions to the coupled polynomial equations,
which, when applied t¢21) together with the substitutions

(13-(16), expresses the test error directly in terms of the | ()4, + | (4 & +)) + )+1h" (24 & 1)

iid Gaussian random matric®8., X, " ¢,! ," v,E *¢ %y _ 2 " “ %, |

andx. The expectations over andE are trivial because 2‘ &);1*2#w§ O (R&H)" ++H" ™ 1) (25)
these variables do not appear inside the matrix inviérsé. )R (& ) #Hy, T )it (Zh & 1)

Moreover, asymptotically the traces concentrate around their =(h&+H)! O (h&+)+ '+1),

means with respect to," v ,*; and*y, which we can also
compute easily for the same reason. Therefore the test errguch that+, + " C* forz" C*.

can be written as, Theorem 1. Let& = Rgz) and let+ and+ be debned
) 1 ) 1 1 as in Propositionl with Im(z) *  0* . Then the asymptotic
Etest= @+  Btr(BiK' )+ Gtr(CK'"DiK" ") training error Eyain = 2 E+Y & (X )+2 is given by,

i i
(24) Epan = &&#H2++ +8+ #2, 8% (+ + &+
whereB;, Ci, D; are monomials i§ W, X, " ¢} and their train (#H )+ # G, & (h )

% %o x .o (26)
transposes, argh, b, ¢ " R. + #H0, & (&) R+ )

Equation(24) is a rational function of the noncommutative 5 the asymptotic test ern@es= E(y & ¥(x))? is given
random variable®Vy, X and" ¢ . A useful result from non-

commuFatlve_aIge_bra guarantees tha_lt such arational funct_lon Etest= (&4)' 2Eqain & #2 27)

can belinearizedin the sense that it can be expressed in

terms of the inverse of a matrix whose entries are linear irRemark 1. The subtraction o#? in eqn. @7) is because

the noncommutative variables. This representation is oftemwe have assumed that there is no label noise on the test
called a linear pencil, and is not unique; seg.(Helton  points. Had we included the same label noise on both the
et al, 2018 for details. training and test distributions, that term would be absent.

To illustrate this concept, consider the simple cask bf.  Remark 2. Eqn. 7) is the outcome of lengthy algebraic
After applying the substitutiond 3)-(16) to (22), a linear  manipulations that do not provide any obvious clues as to
the origin of the surprisingly simple relationship between

T . . .
For simplicity, we discuss the centered setting wiih= 0, E rain aNd E et

which captures all of technical complexities.
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Test loss

1

01
101
05k .

10 2

Test loss

0.010 \ 0%

[Cr

|
01 . e ! . . . . . . . ,
10°* 0.001 0.010 0.100 10°5 001 1 43 W 104 107 1010 g e # # 1
=ng/m 1/ = nming [ R

0.001 —

Figure 3.Test error for NTK regression with = tanh under various scenarios. (a) Contour plot of the error as a functignofig /m
and@/y = n1/mfory = 0 andSNR = 1. The nonmonotonic behavior is evident not just in the widthbut also in the number

of featuresno. (b) Learning curves for the NTK for different signal-to-noise ratios. With no noise (black curve), the error decreases
quadratically in the dataset size, otherwise it decreases linearly. Dashed lines indigate no andm = ni, where humps emerge for

low SNR. (c) Test error as a function of width for various valueswf, , which controls the relative contribution &f1 andK>. As ow,
decreases (red to blue), the kernel becomes morddikand the small hump at the quadratic transition increases in size until it resembles
the large spike at the linear transition, suggesting fats responsible for the nonmonotonicity in the overparameterized regime.

6. Test Error in Limiting Cases 6.2. Small Width Limit

While the explicit formulas in preceding section provide anHere we consider the limit in which the width is smaller
exact characterization of the asymptotic training and testhan any constant times the dataset sizer the number of
loss, they do not readily admit clear interpretations. On thdeaturesng, which can be obtained by letting' ( with

other hand, eqn26) and therefore the expressions fbgs; ! held constant. In this setting we bnd,
simplify considerably under several natural limits, which 1
we examine in this section. Etesfas = T 10 &)+ A+ 1)+ )(1&3))
1
1 i +—( 1+ -
6.1. Large Width Limit 5 1SNR( 1+) &-1), (31)

Here we examine the test error in the superabundant regimgnere ., := ' %+ &/#3,., and

in which the widthn, is larger than any constant times the #
dataset sizen, which can be obtained by lettifg' 0 and -1= 0 ()4 .1)2&4 2, (32)
I 0. In this setting we bnd, The small width limit characterizes one boundary of the
E _ 1 | &1 (141 /(183 abundant parameterization regime and as such provides an
tesle=0 = 21, (ot )+ A+ )+ 1) upper bound on the test loss in that regime. Therefore, a
#2 sufpcient condition for the global minimum to occur at in-
+ '2| Wy @ +NU+1)Y&Hn) termediate widths i€esfs < E tes{e=0 . By comparing
"2 0 egn. @8) to eqn. B1), precise though unenlightening con-
+ H W, (1 &))+ L +/1&-o (28) straints on the parameters can be derived for satisfying this
20 2- oSNR ' condition. One such conbguration is illustrated in Bigdp).
where, = 0 with centering and = 1 without it and o
[ =)+ #5\/2)’ = &+ 4+ #5\/2- % and 6.3. Large Dataset Limit
o= UFI)EATZ. 29) Here we consider the limit in which the dataseis larger

than any constant times the width, which can be obtained

The learning curve is remarkably steep with centering. TdY letting! '1 Owith I/" " 0. In this setting we Pnd,
see this, expand the resultms' (  ,i.e.as! ' 0, 1+ & ("

—e K SNR< test' (0= 5 ""(+%8y,*+.) * y2 )3 =(
Etesfg=o = % ¢9 ( . (30) 3 (1 %%i(;,z (g)°+ O(g)° SNR=(

(1& 212+ 0(1%) SNR= ( _ _ o _
where, =0 with centering and = 1 with without it and,

Interestingly, we see that when the network is super abun- 2 % \n . w2

dantly parameterized, we obtain very fast learning curves: TiE &ty (17&)), 0:=)" + (7 &))" (33)

for bnite SNR,Est ! m' %, and in the noiseless case Here again we observe very steep learning curves, similar

Ewst! m' 2. See Fig 8b). to the lagre width limit above.
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Figure 4.Empirical validation of multi-scale phenomena, triple descent, and the linear and quadratic scaling transitions for kernel
regression (a,b,c) and gradient descent (c). All cases show a peak near the linear parameterization transition (Prst dashed vertical line),
as well as a bump near the quadratic transition (second dashed vertical line). Theoretical predictions (dashed blue) agree with kernel
regression in their regime of validity (quadratic parameterization). While the global minimum is oftgen=at' , it need not be as

illustrated in (b). The NTK does not perfectly describe gradient dynamics in high dimensions, so the deviations between the red (GD) and
green (kernel regression) curves in (c) are expected. (a) Mean of Pve trialswitR4000, no = 3000, 0%, =1/8,0f =0,y = 10" ®,

ando = erf . (b) Mean of bve trials withn = 24000, no = 6000, 03, = 1 /8,07 = 4, ando = c(erf(6(z + 1) + erf(6( = # 1)) with

c chosen s@ =1 /4. (c) Mean and standard deviation of 20 trials with= 6000, no = 750, 06\,2 =1/8,0f =0,ando = ReLU .

6.4. Ridgeless Limit: First-Layer Kernel When the system is far in the regime of abundant param-
: . . eterization, namelp = ny;, m(or"/! ' 0), we can
Here we examine the ridgeless limdit O of the brst-layer examine the large dataset behavior by brst seritiihg 0

kernelK 1. We bnd that the result can be obtained through 3nd then expanding 4s' 0. The result is described by
degeneration of2), (30) by substituting// ' )

M Etesle=o (34)

K _ .
Etestl#=0 = $V\|/I .
2

7. Quadratic Overparameterization

1
= —— (g( ' % 1 |
2 g (ot & 1)+ H(A+1)+)(1&3) In this section, we investigate the implications of our theo-

1 "% retical results about the generalization performance of NTK
ZﬂSNR(' +) &9, (39) regression in the quadratic scaling limig,n;, m ' (

# with! = no/m and” = ng/n ; held constant. Our high-
whereqg:= () + ' %)2& 41) 2 and we have specialized level observation is that there is complex nonmonotonic
to the centered case= 0. The expansionas ' (  also  behavior in this regime as these ratios are varied, and that
looks similar to(30) and can be obtained from that equation this behavior can depend on the signal-to-noise ratio and
by substituting// ' %) . the initial parameter variancsftaﬁv2 in intricate ways. We

highlight a few examples in Fig3j.

+

6.5. Ridgeless Limit: Second-Layer Kemnel In Fig. (3a), we plot the test error as a functionloand!/" |

Here we examine the ridgeless ligit 0 when the kernel ~ Which reveals the behavior of jqintly varying the number of
is due to the second-layer weights orilg, K . This limit ~ featuresno and the number of hidden units. As expected
can be obtained by lettingy, * 0. In this setting, the from Fig. b), for bxed! the test error has a hump near

result can be expressed as, n; = m. Perhaps unexpectedly, for largg, the test loss

exhibits nonmonontic dependencemy) with a spike near

EKz2lso = ! 1, »3)e&l no = m. Notice that for smalhy, this nonmonotonicity
s SNR|!4& It &M disappears. Itis clear that the test error depends in a complex
1&2- _ 1( &)) way on both variables, underscoring the richness of the

2> 2-SNR & 2)- . (36) quadratically-overparameterized regime.

where$ :=max{l," },1:=)+$ &-,and Fig. (3b) shows learning curves for bxédand various

"# ' ’ values of theSNR. For small enougIsNR, there are visible

= () +4%)2&49%)2, (37) bumps in the vicinity om = ng andm = n; that reveal the

existence of regimes in which more training data actually
and we have again specialized to the centered cas8.  hurts test performance. Note thaf = "( n;) so these two
This expression is in agreement with the result presentetumps are separated by a constant factor, so the presence
in (Mei & Montanari 2019.
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of two humps in this bgure is not evidence of multi-scale9. Conclusion

behavior, though it surely reRects the complex behavior at . . . o .
the quadratic scale. In this work, we provided a precise description of the high-

dimensional asymptotic generalization performance of ker-

It is natural to wonder about the origins of this complex nel regression with the Neural Tangent Kernel of a single-
behavior. Can it be attributed to a particular componenhidden-layer neural network. Our results revealed that the
of the kerneK ? We investigate this question in Figc),  test error has complex nonmonotonic behavior deep in the
which shows how the test error changes as the relative coaverparameterized regime, indicating that double descent
tributions of the per-layer kernels; andK ; are varied. By  does not always provide an accurate or complete picture
decreasingiw,, the contribution oK ; decreases and the of generalization performance. Instead, we argued that the
kernel becomes more lik¢ 2, and the small hump at the test error may exhibit additional peaks and descents as the
quadratic transition increases in size until it resembles th@umber of parameters varies across multiple scales, and we
large spike at the linear transition (c.f. Fig)), suggesting  provided empirical evidence of this behavior for kernel ridge
thatK 7 is in fact responsible for the nonmonotonicity in the regression and for neural networks trained with gradient de-

quadratically-overparameterized regime. scent. We conjecture that similar multi-scale phenomena
may exist for broader classes of architectures and datasets,
8. Empirical Validation but we leave that investigation for future work.
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