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Abstract

Modern deep learning models employ consider-
ably more parameters than required to Þt the train-
ing data. Whereas conventional statistical wisdom
suggests such models should drastically overÞt,
in practice these models generalize remarkably
well. An emerging paradigm for describing this
unexpected behavior is in terms of adouble de-
scentcurve, in which increasing a modelÕs ca-
pacity causes its test error to Þrst decrease, then
increase to a maximum near the interpolation
threshold, and then decrease again in the over-
parameterized regime. Recent efforts to explain
this phenomenon theoretically have focused on
simple settings, such as linear regression or ker-
nel regression with unstructured random features,
which we argue are too coarse to reveal important
nuances of actual neural networks. We provide
a precise high-dimensional asymptotic analysis
of generalization under kernel regression with the
Neural Tangent Kernel, which characterizes the
behavior of wide neural networks optimized with
gradient descent. Our results reveal that the test
error has nonmonotonic behavior deep in the over-
parameterized regime and can even exhibit addi-
tional peaks and descents when the number of
parameters scales quadratically with the dataset
size.

1. Introduction

Machine learning models based on deep neural networks
have achieved widespread success across a variety of do-
mains, often playing integral roles in products and services
people depend on. As users rely on these systems in increas-
ingly important scenarios,it becomes paramount to establish

* Equal contribution  Work done as a member of the Google AI
Residency Program.1Google Brain. Correspondence to: Jeffrey
Pennington<jpennin@google.com>.

Proceedings of the37th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

!"
##

!"#$%#&'( )#"#*(+(",

-'#,,$.#' "(/$*( 0&1%2#%+ )#"#*(+("$3#+$4% 51)("#&1%2#%+ )#"#*(+("$3#+$4%

!$
%

&
'(

#)
'*

$%
+

,-
'.(

'/$
)

#)
'*

$%
+

6(+("*$%$,+$.
7!8

! �� " ! �� " !

Figure 1.An illustration of multi-scale generalization phenomena
for neural networks and related kernel methods. The classical
U-shaped under- and over-Þtting curve is shown on the far left.
After a peak near the interpolation threshold, when the number
of parametersp equals the number of samplesm, the test loss de-
creases again, a phenomenon known asdouble descent. On the far
right is the limit whenp ! " , which is described by the Neural
Tangent Kernel. In this work, we identify a new scale of interest in
between these two regimes, namely whenp is quadratic inm, and
show that it exhibits complex nonmonotonic behavior, suggesting
that double descent does not provide a complete picture. Putting
these observations together we deÞne three regimes separated by
two transitional phases: (i) theclassical regimeof underparameter-
ization whenp < m, (ii) the abundant parameterizationregime
whenm < p < m2, and (iii) thesuperabundant parameterization
regime whenp > m2. The transitional phases between them are
of particular interest as they produce nonmonotonic behavior.

a rigorous understanding for when the models might work,
and, crucially, when they might not. Unfortunately, the cur-
rent theoretical understanding of deep learning is modest at
best, as large gaps persist between theory and observation
and many basic questions remain unanswered.

One of the most conspicuous such gaps is the unexpect-
edly good generalization performance of large, heavily-
overparameterized models. These models can be so ex-
pressive that they can perfectly Þt the training data (even
when the labels are replace by pure noise), but still manage
to generalize well on real data (Zhang et al., 2016). An
emerging paradigm for describing this behavior is in terms
of a double descent curve (Belkin et al., 2019a), in which
increasing a modelÕs capacity causes its test error to Þrst
decrease, then increase to a maximum near the interpola-
tion threshold (where the number of parameters equals the
number of samples), and then decrease again in the overpa-
rameterized regime.
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There are of course more elaborate measures of a modelÕs
capacity than a naive xparameter count. Recent empirical
and theoretical work studying the correlation of these capac-
ity measures with generalization has found mixed results,
with many measures having the opposite relationship with
generalization that theory would predict (Neyshabur et al.,
2017). Other work has questioned whether it is possible
in principle for uniform convergence results to explain the
generalization performance of neural networks (Nagarajan
& Kolter, 2019).

Our approach is quite different. We consider the algorithmÕs
asymptotic performance on a speciÞc data distribution, lever-
aging the large system size to get precise theoretical results.
In particular, we examine the high-dimensional asymptotics
of kernel ridge regression with respect to the Neural Tangent
Kernel (NTK) (Jacot et al., 2018) and conclude that double
descent does not always provide an accurate or complete
picture of generalization performance. Instead, we iden-
tify complex nonmonotonic behavior in the test error as the
number of parameters varies across multiple scales and Þnd
that it can exhibit additional peaks and descents when the
number of parameters scales quadratically with the dataset
size.

Our theoretical analysis focuses on the NTK of a single-
layer fully-connected model when the samples are drawn
independently from a Gaussian distribution and the targets
are generated by a wide teacher neural network. We provide
an exact analytical characterization of the generalization
error in the high-dimensional limit in which the number of
samplesm, the number of featuresn0, and the number of
hidden unitsn1 tend to inÞnity with Þxed ratios! := n0/m
and" := n0/n 1. By adjusting these ratios, we reveal the
intricate ways in which the generalization error depends on
the dataset size and the effective model capacity.

We investigate various limits of our results, including the
behavior when the NTK degenerates into the kernel with
respect to only the Þrst-layer or only the second-layer
weights. The latter corresponds to the standard setting of
random feature ridge regression, which was recently an-
alyzed in (Mei & Montanari, 2019). In this case, the to-
tal number of parametersp is equal to the widthn1, i.e.
p = n1 = ( !/" )m, so thatp is linear in the dataset size.
In contrast, for the full kernel, the number of parameters is
p = ( n0 +1) n1 = ( ! 2/" )m2 +( !/" )m, i.e. it is quadratic
in the dataset size. By studying these two kernels, we derive
insight into the generalization performance in the vicinities
of linear and quadratic overparameterization, and by piec-
ing these two perspectives together, we infer the existence
of multi-scale phenomena, which sometimes can include
triple descent. See Fig.1 for an illustration and Fig.4 for
empirical conÞrmation of this behavior.

1.1. Our Contributions

1. We derive exact high-dimensional asymptotic expres-
sions for the test error of NTK ridge regression.

2. We prove that the test error can exhibit nonmonotonic
behavior deep in the overparameterized regime.

3. We investigate the origins of this nonmonotonicity and
attribute them to the kernel with respect to the second-
layer weights.

4. We provide empirical evidence that triple descent can
indeed occur for Þnite-sized networks trained with gra-
dient descent.

5. We Þnd exceptionally fast learning curves in the noise-
less case, withEtest ! m! 2.

1.2. Related Work

A recent line of work studying the behavior of interpolat-
ing models was initiated by the intriguing experimental
results of (Zhang et al., 2016; Belkin et al., 2018b), which
showed that deep neural networks and kernel methods can
generalize well even in the interpolation regime. A number
of theoretical results have since established this behavior
in certain settings, such as interpolating nearest neighbor
schemes (Belkin et al., 2018a) and kernel regression (Belkin
et al., 2018c; Liang & Rakhlin, 2018).

These observations, coupled with classical notions of the
bias-variance tradeoff, have given rise to the double descent
paradigm for understanding how test error depends on model
complexity. These ideas were Þrst discussed in (Belkin et al.,
2019a), and empirical evidence was obtained in (Advani &
Saxe, 2017; Geiger et al., 2019) and recently in (Nakkiran
et al., 2019). Precise theoretical predictions soon conÞrmed
this picture for linear regression in various scenarios (Belkin
et al., 2019b; Hastie et al., 2019; Mitra, 2019).

Linear models struggle to capture all of the phenomena
relevant to double descent because the parameter count is
tied to the number of features. Recent work found multiple
descents in the test loss for minimum-norm interpolants in
Reproducing Kernel Hilbert Spaces (Liang et al., 2020), but
it similarly requires changing the data distribution to vary
model capacity. A precise analysis of a nonlinear system
for a Þxed data generating process is the most direct way
to draw insight into double descent. A recent preprint (Mei
& Montanari, 2019) shares this view and adopts a simi-
lar analysis to ours, but focuses entirely on the standard
case of unstructured random features. Such a setup can
indeed model double descent, and certainly bears relevance
to certain wide neural networks in which only the top-layer
weights are optimized (Neal, 1996; Rahimi & Recht, 2008;
Lee et al., 2017; Matthews et al., 2018; Lee et al., 2019),
but its connection to neural networks trained with gradient
descent remains less clear.
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Gradient-based training of wide neural networks initialized
in the standard way was recently shown to correspond to
kernel gradient descent with respect to the Neural Tangent
Kernel (Jacot et al., 2018). This result has spawned renewed
interest in kernel methods and their connection to deep learn-
ing; a woefully incomplete list of papers in this direction
includesLee et al.(2019); Chizat et al.(2019); Du et al.
(2018a;b); Arora et al.(2019); Xiao et al.(2019).

To connect these research directions, our analysis requires
tools and recent results from random matrix theory and free
probability. A central challenge stems from the fact that
many of the matrices in question have nonlinear dependen-
cies between the elements, which arises from the nonlinear
feature matrixF = #(W X ). This challenge was over-
come in (Pennington & Worah, 2017), which computed the
spectrum ofF , and in (Pennington & Worah, 2018), which
examined the spectrum of the Fisher information matrix;
see also (Louart et al., 2018) for the case of a deterministic
data matrixX . We also utilize the results of (Adlam et al.,
2019; P«ech«e et al., 2019), which established a linear signal
plus noise model forF that shares the same bulk statistics.
This linearized model allows us to write the test error as
the trace of a rational function of the underlying random
matrices. The methods we use to compute such quantities
rely on so-calledlinear pencilsthat represent the rational
function in terms of the inverse of a larger block matrix (Hel-
ton et al., 2018), and on operator-valued free probability for
computing the trace of the latter (Far et al., 2006).

2. Preliminaries

In this section, we introduce our theoretical setting and some
of the tools required to state our results.

2.1. Problem Setup and Notation

We consider the task of learning an unknown function from
m independent samples(x i , yi ) " Rn 0 # R, i $ m, where
the datapoints are standard Gaussian,x i ! N (0, I n 0 ), and
the labels are generated by a wide1 single-hidden-layer neu-
ral network:

yi |x i , ! , $ ! $#T(! x i /
%

n0)/
%

nT + %i . (1)

The teacherÕs activation function#T is applied coordinate-
wise, and its parameters! " Rn T" n 0 and$ " R1" n T are
matrices whose entries are independently sampled once for
all data fromN (0, 1). We also allow for independent label
noise,%i ! N (0, #2

! ).

Let öy(x) denote the modelÕs predictive function. We con-
sider squared error, so the test loss is,

E(y& öy)2 = Ex ,! ($#T(! x /
%

n0)/
%

nT + %& öy(x))2, (2)

1We assume the widthnT ! " , but the rate is not important.

where the expectation is over an iid test point(x , y) condi-
tional on the training set, the teacher parameters, and any
randomness in the learning algorithm producingöy, such as
the random parameters deÞning the random features. Note
that the test loss is a random variable; however, in the high-
dimensional asymptotics we consider here, it concentrates
about its mean.

2.2. Neural Tangent Kernel Regression

We consider predictive functionsöy deÞned by approximate
(i.e. random feature) kernel ridge regression using the Neu-
ral Tangent Kernel (NTK) of a single-hidden-layer neural
network. The NTK can be considered a kernelK that is
approximated by random features corresponding to the Jaco-
bianJ of the networkÕs output with respect to its parameters,
i.e. K (x1, x2) = J (x1)J (x2)# . As the width of the net-
work becomes very large (compared to all other relevant
scales in the system), the approximate NTK converges to a
constant kernel determined by the networkÕs initial param-
eters and describes the trajectory of the networkÕs output
under gradient descent. In particular,

Nt (x) = N0(x)+( Y & N0(X ))K ! 1(I & e! "tK )K x , (3)

whereNt (x) is the output of the network at timet, K :=
K (&) = K (X, X ) + &Im , K x := K (X, x), ' is the learn-
ing rate, and& is a ridge regularization constant2. For this
work, we are interested in thet ' ( limit of (3), which
deÞnes the predictive function,

öy(x) := N$ (x) = N0(x) + ( Y & N0(X ))K ! 1K x . (4)

We remark that if the width is not asymptotically larger
than the dataset size, the validity of(3) can break down and
(4) may not accurately describe the late-time predictions
of the neural network. While this potential discrepancy is
an interesting topic, we defer an in-depth analysis to future
work (but see Fig. (4) for an empirical analysis of gradient
descent). Instead, we regard(4) as the deÞnition of our
predictive function and focus on kernel regression with the
NTK. We believe this setup is interesting its own right; for
example, recent work has demonstrated its effectiveness as
a kernel method on complex image datasets (Li et al., 2019)
and found it to be competitive with neural networks in small
data regimes.

In this work, we restrict our study to the NTK of single-
hidden-layer fully-connected networks. In particular, con-
sider a network of with widthn1 and pointwise activation
function#, deÞned by,

N0(x) = W2#(W1x/
%

n0)/
%

n1 , (5)

2These overloaded deÞnitions ofK can be distinguished by the
number of arguments and should be clear from context.
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for initial weight matricesW1 " Rn 1 " n 0 and W2 "
R1" n 1 with iid entries[W1]ij ! N (0, 1)3 and [W2]i !
N (0, #2

W 2
).

The Jacobian of(5) with respect to the parameters nat-
urally decomposes into the Jacobian with respect toW1

and W2, i.e. J (x) = [ (N 0(x)/(W 1, (N 0(x)/(W 2] =
[J1(x), J2(x)]. Therefore the kernelK also decomposes
this way, and we can write.

K (x1, x2) = J1(x1)J1(x2)# + J2(x1)J2(x2)# (6)

= : K 1(x1, x2) + K 2(x1, x2) (7)

A simple calculation yields the per-layer constituent kernels,

K 1(X, X ) =
X # X

n0
)

(F %)# diag(W2)2F %

n1
(8)

K 2(X, X ) =
1
n1

F # F , (9)

where we have introduced the abbreviationsF =
#(W1X/

%
n0) and F % = #%(W1X/

%
n0). Notice that

when#2
W 2

' 0, K = K 2, i.e. the NTK degenerates into the
standard random features kernel. However, the predictive
function(4) contains an offsetN0(x) which would typically
be set to zero in standard random feature kernel regression
because it simply increases the variance of test predictions.
Removing this variance component has an analogous oper-
ation in neural network training: either the function value
at initialization can be subtracted throughout training, or
a symmetrization trick can be used in which two copies
of the NN are initialized identically, and their normalized
differenceN *

!
N (a) & N (b)

"
/
%

2 is trained with gradi-
ent descent. Either method preserves the kernelK while
enforcingN0 * 0. We call this setupcentering, and present
results with and without it.

Finally, we note that ridge regularization in the kernel per-
spective corresponds to using L2 regularization of the neural
networkÕs weights toward their initial values.

3. Three Regimes of Parameterization

In this section, we outline an argument based on the struc-
ture of the NTK as to why one should expect the test error
to exhibit non-trivial phenomena at two different scales of
overparameterization. From the expressions for the test
error (2) and the predictive function(4), it is evident that
the behavior of the test error is determined by the spectral
properties of the NTK. Although the Þne details of the rela-
tionship can only be revealed by the explicit calculation, we
can nevertheless make some basic high-level observations
based on the coarser structure of the kernel.

The number of trainable parametersp relative to the dataset

3Any non-zero�2
W 1

can be absorbed into a redeÞnition of�.

(a) (b)
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Figure 2.Test error with and without centering for different acti-
vation functions with� = 2 , � = 10 ! 3, andSNR= 1 for (a) the
second-layer kernelK2 and (b) the full NTKK as the number
of parametersp is varied by changing the network width. Non-
monotonic behavior is clearly visible at the linear scaling transition
(p = m) and the quadratic scaling transition (p = m2).

size m controls the amount of parameterization or com-
plexity of a model. In our setting of a single-hidden-layer
fully-connected neural network,p = n1(n0 + 1) , and for
a Þxed dataset, we can adjust the ratiop/m by varying the
hidden-layer widthn1.

The simplest way to see that there should be two scales
comes from examining the two terms in the kernel separately.
BecauseK 1 = J1J T

1 andJ1 " Rm " n 0 n 1 , the Þrst-layer
kernel has rank at mostmin{ n0n1, m} , which suggests
nontrivial transitional behavior whenp = "( m). Similarly,
the rank ofK 2 is at mostmin{ n1, m} , which suggests a
second interesting scale whenn1 = "( m), or equivalently,
whenp = "( m2) if n0 = "( n1). Our explicit calculations
conÞrm that interesting phenomena indeed occur at these
scales, as can be seen in Fig. (2).

These two scales partition the degree of parameterization
into three regimes. We consider theclassicalregime to be
whenp ! m because classical generalization theory tends
to hold and the U-shaped test error curve is observed. The
transition aroundp = "( m) manifests as a sharp rise in
the test loss near the interpolation threshold, followed by
a quick descent asp increases further, as can be seen in
Fig. (2a). We call this thelinear scalingtransition. After
this, we enter a regime we callabundant parameterization
whenm ! p ! m2. In this regime, the test error tends
to decrease untilp nears the vicinity ofm2, where it can
sometimes increase again, producing a second U-shaped
curve. Whenp = "( m2), another transition is observed,
which we call thequadratic scalingtransition, which can
be seen in Fig. (2b). On the other side of this transition,
p " m2, a regime we callsuperabundant parameterization.
See Fig (1) for an illustration of this general picture.

While the classical regime has been long studied, and the
superabundant regime has generated considerable recent
interest due to the NTK, our main aim in delineating the
above regimes is to highlight the existence of the interme-
diate scale containing complex phenomenology. For this
reason, we focus our theoretical analysis on the novel scal-
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ing regime in whichp = "( m2). In particular, as mentioned
in Section1, we consider the high-dimensional asymptotics
in whichn0, n1, m ' ( with n0/m * ! andn0/n 1 * "
held constant.

4. Overview of Techniques

In this section, we provide a high-level overview of the ana-
lytical tools and mathematical results we use to compute the
generalization error. To begin with, let us Þrst describe the
main technical challenges in computing explicit asymptotic
limits of (2).

The Þrst challenge, which is evident upon inspecting(8),
is that the kernel contains a Hadamard product of random
matrices, for which concrete results in the random matrix
literature are few and far between. We address this problem
in Section4.1.

The second challenge, which is apparent by inspecting(9), is
that the kernel depends on random matrices with nonlinear
dependencies between the entries. We describe how to
circumvent this difÞculty in Section4.2.

Finally, by expanding the square in(2) and substituting(4),
we Þnd terms that are constant, linear, and quadratic inK ! 1.
Some of the random matrices that appear inside the matrix
inverses (e.g. X , andW1) also appear outside of them as
multiplicative factors, a situation that prevents the straight-
forward application of many standard proof techniques in
random matrix theory. We describe how to overcome this
challenge in Section4.3.

4.1. SimpliÞcation of First-Layer Kernel

A straightforward central limiting argument shows that in
the asymptotic limit the entries ofW1X/

%
n0 are marginally

Gaussian with mean zero and unit variance. As such, the
Þrst and second moments of the entries in the matrixF %=
#%(W1X/

%
n0) are equal to

#
) := Ez&N (0 ,1) #

%(z) , ' %:= Ez&N (0 ,1) #
%(z)2 . (10)

It follows that we can splitK 1 into two terms,

X # X
n0

)

! øF %
"#

diag(W2)2 øF %

n1
+ #2

W 2
)

X # X
n0

, (11)

where øF %is a centered version ofF %. Focusing on the Þrst
term, becausen0n1 = ! 2/"m 2, the random ßuctuations in
the off-diagonal elements areO(1/m ), which are too small
to contribute to the spectrum or moments of anm # m
matrix whose diagonal entries are order one. In fact, the
diagonal entries are simply proportional to the variance of
the entries ofF %, namely(' %& ) ). Putting this together, we

can eliminate the Hadamard product entirely and write,

K 1
!= #2

W 2
(' %& ) )I m +

#2
W 2

)

n0
X # X , (12)

where the!= notation means the two matrices share the same
bulk statistics asymptotically.

4.2. Linearization 1: Gaussian Equivalents

The test error(2) involves large random matrices with non-
linear dependencies, which are not immediately amenable
to standard methods of analysis in random matrix the-
ory. The main culprit is the random feature matrix
F = #(W1X/

%
n0), but f := #(W1x/

%
n0), Y =

$#T(! X/
%

n0)/
%

nT + E, andy := $#T(! x /
%

n0)/
%

nT

all suffer from the same issue.

The solution is to replace each of these matrices with an
equivalent matrix without nonlinear dependencies, but cho-
sen to maintain the same Þrst- and second-order moments
for all of the terms that appear in the test error(2). This
approach was described forF in (Adlam et al., 2019) (see
also (P«ech«e et al., 2019)), and is based on the general re-
sults of (Banna et al., 2015), speciÞcally Theorem 5. The
upshot is that the test error is asymptotically invariant to the
following substitutions,

F ' F lin :=

$
)
n0

W1X +
#

' & ) " F (13)

Y ' Y lin :=

$
) T

nTn0
$! X +

$
' T & ) T

nT

$" Y + E (14)

f ' f lin :=

$
)
n0

W1x +
#

' & )* f (15)

y ' ylin :=

$
) T

nTn0
$! x +

$
' T & ) T

nT

$* y . (16)

The new objects" F , " Y , *f , and*y are matrices of the
appropriate shapes with iid standard Gaussian entries. The
constants', ), ' T, and) T are chosen so that the mixed mo-
ments up to second order are the same for the original and
linearized versions. In particular,

) := [ Ez&N (0 ,1) #
%(z)]2 , ' := Ez&N (0 ,1) #(z)2 , (17)

) T := [ Ez&N (0 ,1) #
%
T(z)]2 , ' T := Ez&N (0 ,1) #T(z)2 .

(18)

The statement that the test error only depends onY lin is
consistent with the observations made in (Ghorbani et al.,
2019; Mei & Montanari, 2019) that in the high-dimensional
regime wheren0 = "( m), only linear functions of the data
can be learned. Indeed,Y lin is equivalent to a linear teacher
plus noise with signal-to-noise ratio given by,

SNR=
) T

' T & ) T + #2
!

. (19)
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We often make this equivalence to a linear teacher explicit
by setting#T(x) = x, which implies' T = ) T = 1 . Doing
so also removes the noise from the test label, but since this
noise merely contributes an additive shift to the test loss,
removing it does not change any of our conclusions.

4.3. Linearization 2: Linear Pencil

Next we turn our attention to the actual computation of the
asymptotic test loss. Expanding the test error (2) we have4,

Etest := E(x ,y ) (y & öy(x))2 (20)

= E(x ,! )

%
tr( y# y) & 2 tr( K #

x K ! 1Y # y)

+ tr( K #
x K ! 1Y # Y K ! 1K x )

&
. (21)

The simpliÞcation (12) gives,

K = #2
W 2

'
(' %& ) )I m +

)X # X
n0

(
+

F # F
n1

+ &Im

(22)

K x =
#2

W 2
)

n0
X # x +

1
n1

F # f , (23)

which, when applied to(21) together with the substitutions
(13)-(16), expresses the test error directly in terms of the
iid Gaussian random matricesW1, X, " F , ! , " Y , E, *f , *y

andx. The expectations overx andE are trivial because
these variables do not appear inside the matrix inverseK ! 1.
Moreover, asymptotically the traces concentrate around their
means with respect to! , " Y , *f and*y , which we can also
compute easily for the same reason. Therefore the test error
can be written as,

Etest = a0+
)

i

bi tr( Bi K ! 1)+
)

i

ci tr( Ci K ! 1D i K ! 1)

(24)
whereBi , Ci , D i are monomials in{ W1, X, " F } and their
transposes, anda0, bi , ci " R.

Equation(24) is a rational function of the noncommutative
random variablesW1, X and" F . A useful result from non-
commutative algebra guarantees that such a rational function
can belinearizedin the sense that it can be expressed in
terms of the inverse of a matrix whose entries are linear in
the noncommutative variables. This representation is often
called a linear pencil, and is not unique; seee.g.(Helton
et al., 2018) for details.

To illustrate this concept, consider the simple case ofK ! 1.
After applying the substitutions(13)-(16) to (22), a linear

4For simplicity, we discuss the centered setting withN0 = 0 ,
which captures all of technical complexities.

pencil is given by

*

+
,

[#+ $ 2
W 2

(" ! ! %)] I
! 2

W 2
"

n 0
X "

#
# $ "
n 0

! "
F

#
"# n 0 n 1

X "

! X I 0 0
!

'
" ! %! F !

#
"# n 0

W 1 I 0

0 0 ! W "
1 I

-

.
/

! 1

11

,

which can be checked by an explicit computation of the
block matrix inverse. After obtaining a linear pencil for each
of the terms in(24), the only task that remains is computing
the trace. Since each linear pencil is a block matrix whose
blocks are iid Gaussian random matrices, its trace can be
evaluated using the techniques described in (Far et al., 2006)
or through the general formalism of operator-valued free
probability. We refer the reader to the book (Mingo &
Speicher, 2017) for more details on these topics.

5. Asymptotic Training and Test Error

The calculations described in the previous section are pre-
sented in the Supplementary Materials. Here we present the
main results.

Proposition 1. As n0, n1, m ' ( with ! = n0/m and
" = n0/n 1 Þxed, the traces+1(z) := 1

m tr( K (z)! 1) and
+2(z) := 1

m tr( 1
n 0

X # XK (z)! 1) are given by the unique
solutions to the coupled polynomial equations,

! ()+2+1 + ! (+2 & +1)) + )+1+2" (z+1 & 1)

= &)+1+2#2
W 2

() (+2 & +1) " + +1"' %+ ! )

)+2
1 +2 (' %& ' ) #2

W 2
+ )+1+2 (z+1 & 1)

= ( +2 & +1) ! () (+2 & +1) + '+ 1) ,

(25)

such that+1, +2 " C+ for z " C+ .

Theorem 1. Let & = Re(z) and let+1 and +2 be deÞned
as in Proposition1 with Im(z) ' 0+ . Then the asymptotic
training error Etrain = 1

m E+Y & öy(X )+2
F is given by,

Etrain = &&2(#2
! +%

1 + +%
2) + ,# 2

W 2
&2(+1 + &+%)

+ ,# 4
W 2

&2 (( ' %& ) )+%
1 + )+%

2) ,
(26)

and the asymptotic test errorEtest = E(y & öy(x))2 is given
by

Etest = ( &+1)! 2Etrain & #2
! . (27)

Remark 1. The subtraction of#2
! in eqn. (27) is because

we have assumed that there is no label noise on the test
points. Had we included the same label noise on both the
training and test distributions, that term would be absent.

Remark 2. Eqn. (27) is the outcome of lengthy algebraic
manipulations that do not provide any obvious clues as to
the origin of the surprisingly simple relationship between
Etrain andEtest.
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Figure 3.Test error for NTK regression with� = tanh under various scenarios. (a) Contour plot of the error as a function of� = n0/m
and�/ = n1/m for � = 0 andSNR = 1 . The nonmonotonic behavior is evident not just in the widthn1, but also in the number
of featuresn0. (b) Learning curves for the NTK for different signal-to-noise ratios. With no noise (black curve), the error decreases
quadratically in the dataset sizem, otherwise it decreases linearly. Dashed lines indicatem = n0 andm = n1, where humps emerge for
low SNR. (c) Test error as a function of width for various values of�W 2 , which controls the relative contribution ofK1 andK2. As�W 2

decreases (red to blue), the kernel becomes more likeK2 and the small hump at the quadratic transition increases in size until it resembles
the large spike at the linear transition, suggesting thatK2 is responsible for the nonmonotonicity in the overparameterized regime.

6. Test Error in Limiting Cases

While the explicit formulas in preceding section provide an
exact characterization of the asymptotic training and test
loss, they do not readily admit clear interpretations. On the
other hand, eqn. (25) and therefore the expressions forEtest

simplify considerably under several natural limits, which
we examine in this section.

6.1. Large Width Limit

Here we examine the test error in the superabundant regime
in which the widthn1 is larger than any constant times the
dataset sizem, which can be obtained by letting" ' 0 and
"/! ' 0. In this setting we Þnd,

Etest|&=0 =
1

2!- 0
(- 0(! & 1) + .! (1 + ! ) + / (1 & 3! ))

+
,# 2

W 2

2!- 0
(( '! + ) )( / + .! ) & 4)/! )

+
,# 2

W 2

2!
('! & ) ) +

!. + / & - 0

2- 0SNR
, (28)

where, = 0 with centering and, = 1 without it and
/ := ) (1 + #2

W 2
), . := &+ ' + #2

W 2
' %, and

- 0 :=
#

(/ + .! )2 & 4!/ 2 . (29)

The learning curve is remarkably steep with centering. To
see this, expand the result asm ' ( , i.e. as! ' 0,

Etest|&=0 =

0
'

SNR + O(! 2) SNR< (
(1 & (

) )2! 2 + O(! 3) SNR= (
. (30)

Interestingly, we see that when the network is super abun-
dantly parameterized, we obtain very fast learning curves:
for Þnite SNR,Etest ! m! 1, and in the noiseless case
Etest ! m! 2. See Fig (3b).

6.2. Small Width Limit

Here we consider the limit in which the widthn1 is smaller
than any constant times the dataset sizem or the number of
featuresn0, which can be obtained by letting" ' ( with
! held constant. In this setting we Þnd,

Etest|&($ =
1

2!- 1
(- 1(! & 1) + . 1! (1 + ! ) + ) (1 & 3! ))

+
1

2- 1SNR
(!. 1 + ) & - 1) , (31)

where . 1 := ' %+ &/# 2
W 2

, and

- 1 :=
#

() + . 1! )2 & 4!) 2 . (32)

The small width limit characterizes one boundary of the
abundant parameterization regime and as such provides an
upper bound on the test loss in that regime. Therefore, a
sufÞcient condition for the global minimum to occur at in-
termediate widths isEtest|&($ < E test|&=0 . By comparing
eqn. (28) to eqn. (31), precise though unenlightening con-
straints on the parameters can be derived for satisfying this
condition. One such conÞguration is illustrated in Fig.4(b).

6.3. Large Dataset Limit

Here we consider the limit in which the datasetm is larger
than any constant times the widthn1, which can be obtained
by letting! ' 0 with !/" ' 0. In this setting we Þnd,

Etest|' ( 0 =

1
2

3

1+ &
SNR( '

& ) + O( '
& )2 SNR< (

* 2 (+%2 $ 4
W 2

+ , )

( " ! %)%2 $ 4
W 2

( '
& )2 + O( '

& )3 SNR= (
,

where, = 0 with centering and, = 1 with without it and,

+ := &+ #2
W 2

(' %& ) ) , 0 := )" + ( ' & ) )" 2 . (33)

Here again we observe very steep learning curves, similar
to the lagre width limit above.
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Figure 4.Empirical validation of multi-scale phenomena, triple descent, and the linear and quadratic scaling transitions for kernel
regression (a,b,c) and gradient descent (c). All cases show a peak near the linear parameterization transition (Þrst dashed vertical line),
as well as a bump near the quadratic transition (second dashed vertical line). Theoretical predictions (dashed blue) agree with kernel
regression in their regime of validity (quadratic parameterization). While the global minimum is often atn1 = " , it need not be as
illustrated in (b). The NTK does not perfectly describe gradient dynamics in high dimensions, so the deviations between the red (GD) and
green (kernel regression) curves in (c) are expected. (a) Mean of Þve trials withm = 24000, n0 = 3000, �2

W 2
= 1 /8, �2

! = 0 , � = 10 ! 6,
and� = erf . (b) Mean of Þve trials withm = 24000, n0 = 6000, �2

W 2
= 1 /8, �2

! = 4 , and� = c(erf(6(x + 1) + erf(6( x # 1)) with
c chosen so⇣ = 1 /4. (c) Mean and standard deviation of 20 trials withm = 6000, n0 = 750, �2

W 2
= 1 /8, �2

! = 0 , and� = ReLU .

6.4. Ridgeless Limit: First-Layer Kernel

Here we examine the ridgeless limit& ' 0 of the Þrst-layer
kernelK 1. We Þnd that the result can be obtained through a
degeneration of (28),

E K 1
test|#=0 = lim

$W 2 ($
Etest|&=0 (34)

=
1

2! ø-
(ø- (! & 1) + ' %! (1 + ! ) + ) (1 & 3! ))

+
1

2ø- SNR
(!' %+ ) & ø- ) , (35)

where,ø- :=
#

() + ' %! )2 & 4!) 2 and we have specialized
to the centered case, = 0 . The expansion asm ' ( also
looks similar to(30) and can be obtained from that equation
by substituting.// ' ' %/) .

6.5. Ridgeless Limit: Second-Layer Kernel

Here we examine the ridgeless limit& ' 0 when the kernel
is due to the second-layer weights only,i.e. K 2. This limit
can be obtained by letting#W 2 ' 0. In this setting, the
result can be expressed as,

E K 2
test|#=0 =

!
SNR

1
|! & " |

+
2$) & 1

2) |! & " |
+

2'>&

4
1 & 2-
2- SNR

&
1(' & ) )

2)-

5
, (36)

where$ := max { !, " } , 1 := ) + $' & - , and

- =
#

() + 4$' )2 & 4$) 2 , (37)

and we have again specialized to the centered case, = 0 .
This expression is in agreement with the result presented
in (Mei & Montanari, 2019).

When the system is far in the regime of abundant param-
eterization, namelyp = n1 , m (or "/! ' 0), we can
examine the large dataset behavior by Þrst sending" ' 0
and then expanding as! ' 0. The result is described by
(30) by substituting.// ' '/) .

7. Quadratic Overparameterization

In this section, we investigate the implications of our theo-
retical results about the generalization performance of NTK
regression in the quadratic scaling limitn0, n1, m ' (
with ! = n0/m and" = n0/n 1 held constant. Our high-
level observation is that there is complex nonmonotonic
behavior in this regime as these ratios are varied, and that
this behavior can depend on the signal-to-noise ratio and
the initial parameter variance#2

W 2
in intricate ways. We

highlight a few examples in Fig. (3).

In Fig. (3a), we plot the test error as a function of! and!/" ,
which reveals the behavior of jointly varying the number of
featuresn0 and the number of hidden unitsn1. As expected
from Fig. (2b), for Þxed! the test error has a hump near
n1 = m. Perhaps unexpectedly, for largen1, the test loss
exhibits nonmonontic dependence onn0, with a spike near
n0 = m. Notice that for smalln1, this nonmonotonicity
disappears. It is clear that the test error depends in a complex
way on both variables, underscoring the richness of the
quadratically-overparameterized regime.

Fig. (3b) shows learning curves for Þxed" and various
values of theSNR. For small enoughSNR, there are visible
bumps in the vicinity ofm = n0 andm = n1 that reveal the
existence of regimes in which more training data actually
hurts test performance. Note thatn0 = "( n1) so these two
humps are separated by a constant factor, so the presence
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of two humps in this Þgure is not evidence of multi-scale
behavior, though it surely reßects the complex behavior at
the quadratic scale.

It is natural to wonder about the origins of this complex
behavior. Can it be attributed to a particular component
of the kernelK ? We investigate this question in Fig. (3c),
which shows how the test error changes as the relative con-
tributions of the per-layer kernelsK 1 andK 2 are varied. By
decreasing#W 2 , the contribution ofK 1 decreases and the
kernel becomes more likeK 2, and the small hump at the
quadratic transition increases in size until it resembles the
large spike at the linear transition (c.f. Fig. (2)), suggesting
thatK 2 is in fact responsible for the nonmonotonicity in the
quadratically-overparameterized regime.

8. Empirical Validation

Our theoretical results establish the existence of nontrivial
behavior of the test loss atp = m for the second-layer
kernelK 2 and atp = m2 for the full kernelK . While these
results are strongly suggestive of multi-scale behavior, they
do not prove this behavior exists for a single kernel. Nor
do they guarantee it will be revealed for Þnite-size systems,
let alone for models trained with gradient descent. Here we
provide positive empirical evidence on all counts.

Fig. (4) demonstrates multi-scale phenomena, triple de-
scent, and the linear and quadratic scaling transitions for
random feature NTK regression and gradient descent for
Þnite-dimensional systems. The simulations all show a peak
near the linear parameterization transition, as well as a bump
near the quadratic transition. The asymptotic theoretical pre-
dictions agree well with kernel regression in their regime
of validity, which is whenn1 is nearm. While we found
that the global minimum of the test error is often atp = ( ,
there are some conÞgurations for which the optimalp lies
betweenm andm2, as illustrated in Fig. (4b).

Fig. (4a) clearly shows triple descent for NTK regression
and a marked difference in loss with and without centering,
suggesting that this source of variance may often dominate
the error for largen1.

Fig. (4c) conÞrms the existence of triple descent for a single-
layer neural network trained with gradient descent. The
noticeable difference between kernel regression and the
actual neural network is to be expected because the NTK
can change during the course of training when the width
is not signiÞcantly larger than the dataset size. Indeed,
the deviation diminishes for largen1. In any case, the
qualitative behavior is similar across all scales, providing
support for the validity of our framework beyond pure kernel
methods.

9. Conclusion

In this work, we provided a precise description of the high-
dimensional asymptotic generalization performance of ker-
nel regression with the Neural Tangent Kernel of a single-
hidden-layer neural network. Our results revealed that the
test error has complex nonmonotonic behavior deep in the
overparameterized regime, indicating that double descent
does not always provide an accurate or complete picture
of generalization performance. Instead, we argued that the
test error may exhibit additional peaks and descents as the
number of parameters varies across multiple scales, and we
provided empirical evidence of this behavior for kernel ridge
regression and for neural networks trained with gradient de-
scent. We conjecture that similar multi-scale phenomena
may exist for broader classes of architectures and datasets,
but we leave that investigation for future work.
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