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Abstract
Bayesian inference using Markov Chain Monte
Carlo (MCMC) on large datasets has developed
rapidly in recent years. However, the underlying
methods are generally limited to relatively simple
settings where the data have specific forms of in-
dependence. We propose a novel technique for
speeding up MCMC for time series data by effi-
cient data subsampling in the frequency domain.
For several challenging time series models, we
demonstrate a speedup of up to two orders of mag-
nitude while incurring negligible bias compared
to MCMC on the full dataset. We also propose
alternative control variates for variance reduction
based on data grouping and coreset constructions.

1. INTRODUCTION
Bayesian inference has gained widespread use in Statistics
and Machine Learning largely due to convenient and quite
generally applicable Markov Chain Monte Carlo (MCMC)
and Hamiltonian Monte Carlo (HMC) algorithms that simu-
late from the posterior distribution of the model parameters.

However, it is now increasingly common for datasets to
contain millions or even billions of observations. This is
particularly true for temporal data recorded by sensors at
increasingly faster sampling rates. MCMC is often too
slow for such big data problems and practitioners are replac-
ing MCMC with more scalable approximate methods such
as Variational Inference (Blei et al., 2017), Approximate
Bayesian Computation (Marin et al., 2012) and Integrated
Nested Laplace Approximation (Rue et al., 2009).

A recent strand of the literature instead proposes methods
that speed up MCMC and HMC by data subsampling, where
the costly likelihood evaluation in each MCMC iteration
is replaced by an estimate from a subsample of data ob-
servations (Quiroz et al., 2019a; Dang et al., 2019) or by
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a weighted coreset of data points found by optimization
(Campbell & Broderick, 2018; Campbell & Beronov, 2019;
Campbell & Broderick, 2019). Data subsampling methods
require that the log-likelihood is a sum, where each term
depends on a unique piece of data — a condition satisfied
for independent observations or for independent subjects in
longitudinal data (with potentially dependent data within
each subject) — but does not hold for general time series
problems.

Our paper extends the applicability of previously proposed
subsampling methods to stationary time series. The method
is based on using the Fast Fourier Transform (FFT) to eval-
uate the likelihood function in the frequency domain for
the periodogram data. The advantage of working in the
frequency domain is that under quite general conditions the
periodogram observations are known to be asymptotically
independent and exponentially distributed with scale equal
to the spectral density. The logarithm of this so called Whit-
tle likelihood approximation of the likelihood is therefore a
sum even when the data are dependent in the time domain.
The asymptotic nature of the Whittle likelihood makes it
especially suitable here since subsampling tends to be used
for large-scale problems where the Whittle likelihood is
expected to be accurate. Moreover, our algorithm can also
be used with the recently proposed Debiased Whittle Likeli-
hood (Sykulski et al., 2019) which gives better likelihood
approximations for smaller datasets.

It is by now well established that efficient subsampling
MCMC methods require likelihood estimators with low
variance (Quiroz et al., 2019a;b). Variance reduction is
typically achieved by using control variates that approxi-
mate the individual log-likelihood terms, often by assuming
that these terms are approximately quadratic around a refer-
ence value. Our second contribution proposes a grouping
strategy that makes the grouped log-likelihood terms more
quadratic compared to that of the individual log-likelihood
terms. In addition, when the number of observation in each
group is large, we propose to use the coreset construction of
Campbell & Broderick (2018) to approximate the grouped
log-likelihood. This is advantageous when the grouped log-
likelihood terms are not approximately quadratic. The new
control variate approach thus confers additional robustness
to the method, and is of independent interest beyond the
time series setting.
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The structure of our paper is as follows. Section 2 introduces
the necessary frequency domain concepts and defines the
Whittle likelihood. Section 3 gives an overview of the Sub-
sampling MCMC approach of Quiroz et al. (2019a). Section
4 introduces our novel control variate schemes. Section 5
summarizes the results of experiments on examples of mod-
els that have previously not been feasible with large data
methods, such as long memory stochastic volatility models.

2. DATA SUBSAMPLING USING THE
WHITTLE LIKELIHOOD

2.1. Discrete Fourier Transformed Data

Let {Xt}nt=1 be a covariance stationary zero-mean time
series with covariance function γ(τ) := EXtXt−τ for τ ∈
Z. The spectral density is the Fourier transform of γ(τ)
(Lindgren, 2012)

f(ω) =
1

2π

∞∑

τ=−∞
γ(τ) exp(−iωτ), (1)

where ω ∈ (−π, π] is called the angular frequency. The dis-
crete Fourier Transform (DFT) of {Xt}nt=1 is the complex
valued series

J(ωk) :=
1√
2π

n∑

t=1

Xt exp(−iωkt), (2)

for ω1, . . . , ωn in the set of Fourier frequencies

Ω = {2πk/n, for k = −dn/2e+ 1, . . . , bn/2c}.

The DFT is efficiently computed by the Fast Fourier Trans-
form (FFT). The periodogram I(ωk) := n−1|J(ωk)|2 is an
asymptotically unbiased estimate of f(ωk).

2.2. Frequency Domain Asymptotics

The DFT in (2) is a linear transformation that acts like a
weighted average of time-domain data. A central limit theo-
rem can therefore be used to prove that J(ωk) are asymp-
totically independent complex Gaussian under quite gen-
eral conditions (Shao et al., 2007, Corollary 2.1); see also
Peligrad et al. (2010, Theorem 2.1) who establish the re-
sult for ω ∈ (0, 2π) almost-everywhere under even weaker
conditions.

Furthermore, the real and imaginary parts are asymptoti-
cally independent. Denote a chi-squared random variable
with r degrees of freedom as χ2

r . The scaled periodogram
ordinate I(ωk)/f(ωk) is asymptotically distributed as χ2

2/2
(i.e. standard exponential) for all k 6= 0, n; and as χ2

1 for
k = 0 and k = n. Hence, we have the following asymptotic
distribution of the periodogram

I(ωk) ∼ Exp(f(ωk)), k = 1, . . . , n− 1 (3)

independently as n → ∞, with the exponential distribu-
tion in the scale parameterization, i.e., parameterized by its
mean.

2.3. The Whittle Likelihood

The asymptotic distribution of the periodogram ordinates in
(3) motivates the Whittle log-likelihood (Whittle, 1953) for
a time series model with parameter vector θ:

`W (θ) = −
b(n−1)/2c∑

k=1

(
log fθ(ωk) +

I(ωk)

fθ(ωk)

)
, (4)

where fθ(ω) is the spectral density of the model. For real-
valued data, both fθ(ωk) and I(ωk) are symmetric about
the origin, so the Whittle log-likelihood is evaluated by sum-
ming only over the non-negative frequencies; for demeaned
data, the term for ωk = 0 is removed from the likelihood as
then J(ωk) = 0.

The Whittle log-likelihood has several desirable properties
that enable scalable Bayesian inference:

• The periodogram does not depend on the parameter
vector θ and can therefore be computed before the
MCMC at a cost of O(n log n) via the Fast Fourier
Transform algorithm. After this one-time cost, like-
lihood evaluations have the same O(n) cost as for
independent data.

• The Whittle log-likelihood is a sum in the frequency
domain and is therefore amenable to subsampling using
the same algorithms developed for independent data in
the time domain.

• As the Whittle log-likelihood relies on large sample
properties of the periodogram, it is particularly suited
to large datasets where subsampling MCMC and re-
lated methods are used.

Below, the term log-likelihood refers to the Whittle log-
likelihood, and n to be the number of unique summands in
(4) — i.e., we assume the FFT has been performed and we
are working in the frequency domain.

3. Subsampling MCMC
The fundamental idea in the previous section can be used to
extend any existing method for subsampling that requires
conditionally independent data to the case of fitting a para-
metric stationary time series model with known spectral
density. To provide a proof-of-concept in the form of nu-
merical experiments, we focus on the Subsampling MCMC
approach of Quiroz et al. (2019a), as it has been shown
to give more accurate posterior inferences than other ap-
proaches such as Stochastic Gradient Langevin Dynamics
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(SGLD) (Welling & Teh, 2011) and Stochastic Gradient
Hamiltonian Monte Carlo (SG-HMC) (Chen et al., 2014)),
see for example Dang et al. (2019).

We also propose novel control variates that we use with
Subsampling MCMC which are also likely to be useful in
further improving SG-HMC and SGLD.

3.1. MCMC with an estimated likelihood

Let π(θ) ∝ Ln(θ)p(θ) denote the posterior distribution
from a sample of n observations with likelihood function
Ln(θ). MCMC and HMC algorithms sample iteratively
from π(θ) by proposing a parameter vector θ(j) at the jth
iteration and accepting it with probability

min

{
1,

Ln(θ(j))p(θ(j))

Ln(θ(j−1))p(θ(j−1))
· g(θ(j−1)|θ(j))

g(θ(j)|θ(j−1))

}
, (5)

where g(·|·) is the proposal distribution. Repeated evalu-
ations of the likelihood in the acceptance probability are
costly when n is large. Quiroz et al. (2019a) propose speed-
ing up MCMC for large n by replacing Ln(θ) with an
estimate L̂(θ,u) based on a small random subsample of
m � n observations, where u = (u1, ..., um) indexes the
selected observations.

Their algorithm samples θ and u jointly from an extended
target distribution π̃(θ,u). Andrieu et al. (2009) prove
that such pseudo-marginal MCMC algorithms sample from
the full-data posterior π(θ) if the likelihood estimator is
unbiased; i.e., EuL̂(θ,u) = L(θ).

Quiroz et al. (2019a) use an unbiased estimator of the log-
likelihood ̂̀(θ,u) and subsequently debias exp(̂̀(θ,u)) to
estimate the full-data likelihood. Although the debiasing
approach in general cannot remove all bias, their pseudo-
marginal sampler is still a valid MCMC algorithm, targeting
a slightly perturbed posterior which is shown to be within
O(n−1m−2) distance in total variation norm of the true
posterior. See Quiroz et al. (2018b) for an alternative com-
pletely unbiased likelihood estimator and Dang et al. (2019)
for an HMC extension.

3.2. Estimators based on control variates

Assume that the log-likelihood decomposes as a sum `(θ) =∑n
k=1 `k(θ); either by assuming independent data or by

using the Whittle likelihood in the frequency domain for
temporally dependent data. A naive estimator of the log-
likelihood is

̂̀
naive(θ) :=

n

m

m∑

i=1

`ui
(θ),

where u1, . . . , um
iid∼ Unif({1, . . . , n}) and we suppress

dependence on u in the notation for ̂̀for notational clarity.

This estimator typically has large variance and is prone to
occasional gross overestimates of the likelihood causing the
MCMC sampler to become stuck for extended periods and
thus become very inefficient.

Quiroz et al. (2019a) propose using a control variate to
reduce the variance in the so-called difference estimator

̂̀
diff(θ) :=

n∑

k=1

qk(θ) +
n

m

m∑

i=1

(
`ui

(θ)− qui
(θ)

)
, (6)

where u1, . . . , um
iid∼ Unif({1, . . . , n}). The qk(θ) is the

control variate for the kth observation. It is evident from
(6) that the variance of ̂̀diff is small when the qk(θ) approx-
imates `k(θ) well. Quiroz et al. (2019a) follow Bardenet
et al. (2017) and use a second order Taylor expansion of
`k(θ) around some central value θ? as the control variate:

qk(θ) := `k(θ?)+∇θ`k(θ?)>(θ − θ?)

+
1

2
(θ − θ?)>∇2

θ`k(θ?)(θ − θ?).

One advantage of this control variate is that the otherwise
O(n) term

∑n
i=1 qi(θ) can be computed at O(1) cost; see

Bardenet et al. (2017).

3.3. Block Pseudo-Marginal Sampling

The acceptance probability in (5) reveals that it is actually
the variability of the ratio of estimates at the proposed and
current draw that matters for MCMC efficiency (Deligian-
nidis et al., 2018). Tran et al. (2016) propose a blocked
pseudo-marginal scheme for subsampling that partitions the
indicators in B blocks u = (u1, ...,uB) and only updates
one of the blocks in each MCMC iteration. Under simpli-
fying assumptions, Lemma 2 in Tran et al. (2016) shows
that blocking induces a controllable correlation between
subsequent estimates in the MCMC of the simple form

Corr
(̂̀(θ(j)), ̂̀(θ(j−1))

)
≈ 1− 1/B.

4. Alternative Control Variates via Grouping
The control variates presented in Section 3.2 are only good
approximations if the individual log-likelihood terms, `k(θ),
are approximately quadratic or ||θ−θ?|| is sufficiently small.
We propose two new control variates that may be preferable
when this is not the case.

4.1. Grouped Quadratic Control Variates

Rather than sampling individual observations, we can sam-
ple observations in groups. The advantage of sampling
groups is that the quadratic control variates are expected
to be more accurate for the group as a whole compared to
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individual observations. The reason is that the Bernstein-
von Mises theorem (asymptotic normality of the posterior)
suggests an approximately quadratic log-likelihood for the
group provided the number of observations in the group is
large enough; see Tamaki (2008) for a Bernstein-von Mises
theorem specifically for the Whittle likelihood.

Let G be a partition of the set of indices U = {1, ..., n}
into |G| groups G1, . . . , G|G|; i.e. U = ∪|G|k=1Gk, where
Gk is the set of data indices associated with the kth group.
Similarly, write

`Gk
(θ) :=

∑

i∈Gk

`i(θ)

for the sum of log-likelihood terms corresponding to the
observations in the kth group, noting that ` = `∪kGk

=∑
k `Gk

. Since `Gk
(θ) is based on |Gk| observations we

expect it to be closer to a quadratic function than the `i(θ)
belonging to the individual samples in the group. Now,
define the control variate for group Gk as

qGk
(θ) := `Gk

(θ?)+∇θ`Gk
(θ?)>(θ − θ?)

+
1

2
(θ − θ?)>∇2

θ`Gk
(θ?)(θ − θ?),

where the same θ? is used for all groups. The grouped
difference estimator for a sample of m groups is then

̂̀
gr(θ) :=

|G|∑

k=1

qGk
(θ) +

|G|
m

m∑

i=1

(
`Gui

(θ)− qGui
(θ)

)
,

(7)
where u1, . . . , um

iid∼ Unif({1, . . . , |G|}).

4.2. Grouped Coreset Control Variates

When the grouped log-likelihoods are far from quadratic,
we propose an alternative method using Bayesian Coresets
(Huggins et al., 2016) to construct control variates. An
advantage of this approach is that it is unnecessary to select a
central point θ?, or to rely on a quadratic expansion function
which may be unsuitable.

Bayesian Coresets replace the true log-likelihood `(θ) with
the approximation `C(θ) =

∑n
k=1 wk`k(θ), where w is a

sparse vector with a number of non-zero elements that is
much less than n. Let π̂ denote some weighting distribution
that has the same support as the posterior and can easily be
sampled from — for example a Gaussian based on Laplace
approximation, or the empirical distribution of samples from
an MCMC on a smaller data set. The log-likelihood approx-
imation `C is constructed using a greedy algorithm, which,
after M steps, provides an approximate solution to

argminw∈Rn

{
Eπ̂
[
(`(θ)− `C(θ))

2
]}

subject to the constraints that wi ≥ 0 for i = 1, . . . , n, and∑n
k=1 I{wk > 0} ≤M , where M is a user-specified num-

ber of iterations in the coreset optimization procedure. We
use the Greedy Iterative Geodesic Ascent (GIGA) method in
Campbell & Broderick (2018) for tackling the optimization.

We propose approximating the group log-likelihoods
`Gk

(θ), k = 1, . . . , |G|, by a separate coreset approxima-
tion for each group. We can use the grouped difference
estimator in (7) with coreset approximations as control vari-
ates for each respective group. The coreset control variates
are attractive as by design they approximate `Gk

(θ) well for
each group using less density evaluations than the number of
observations in the group. While the construction of coreset
control variates requires |G| runs of the coreset procedure,
each is only on a group of the dataset, so the overall effort
is roughly that of the standard coreset approach, or less if
run in parallel.

4.3. Perturbation of Subsampled Whittle Posterior

In this section, we present a result regarding the perturbation
of the subsampled Whittle posterior to the exact Whittle
posterior.

Let πn(θ) ∝ Ln(θ)p(θ) be the posterior based on the
Whittle likelihood Ln(θ) = exp(`n(θ)) with n samples.
Following Quiroz et al. (2019a) we define πn,m(θ,u) as
the target for θ extended with the m (group) subsample
indicators u, and use MCMC to sample θ and u jointly
from the extended target. The MCMC algorithm produces
valid draws from the marginal πn,m(θ) =

∫
πn,m(θ,u)du.

Note that πn,m(θ) 6= πn(θ) as with the methodology in
Quiroz et al. (2019a), it is not possible to eliminate all bias
in exp(`n(θ)).

However, as a direct consequence of Quiroz et al. (2019a,
Theorem 1), we have the following lemma, which shows
that the perturbation error decreases rapidly.

Lemma 1 Suppose that the regularity conditions discussed
in the supplement are satisfied, and that the control variates
in Section 4.1 are used, with the number of groups m de-
pending on n in a manner such that m(n)→∞ as n→∞.
Then,

∫

θ

∣∣πn,m(n)(θ)− πn(θ)
∣∣ dθ = O

(
1

nm(n)2

)
.

Moreover, for any scalar-valued function h that satisfies
lim supn→∞ Eπn

[h2(θ)] <∞

|Eπn,m(n)
h(θ)− Eπnh(θ)| = O

(
1

nm(n)2

)
.

We highlight that the required regularity conditions are es-
sentially those of Quiroz et al. (2019a) but where the pos-
terior density has (4) as a (log)-likelihood function. Thus,
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these conditions are justified by results such as the asymp-
totic normality of the maximum Whittle-likelihood esti-
mator (Fox & Taqqu, 1986) and the Bernstein-von Mises
theorem for the Whittle measure (Tamaki, 2008).

5. EXPERIMENTS
5.1. Settings and Performance Measures

There are many ways to partition the dataset into groups for
the control variates. We use the same number of samples for
each group. The kth group is chosen by starting with the kth
lowest frequency and then systematically sampling every
|G| frequency after that. This way we ensure that each group
contains periodogram ordinates across the entire frequency
range. The homogeneity of the groups makes it possible to
use the same θ? for all groups.

We use the Laplace approximation of the posterior as weight-
ing function in the coreset approximation, truncated to the
region of admissible parameters. Each coreset is fitted us-
ing the GIGA algorithm for M = 200 iterations, using
500 random projections; see Campbell & Broderick (2018)
for details. We note that the mode used in the Laplace ap-
proximation comes with no extra cost compared to full-data
MCMC as the latter uses the mode as a starting value for the
sampler and to build the covariance matrix of the random
walk Metropolis proposal. Likewise, the Taylor control vari-
ates are constructed using the mode as θ?. Therefore, this
part of the start-up cost is assumed to be the same for all
algorithms. However, both control variates have additional
start-up costs compared to full-data MCMC. The coreset
control variate needs to perform the GIGA optimization,
which makes M sweeps of the full dataset, using Mn den-
sity evaluations. As discussed above, this can in practice
be done in parallel for each group, where each group uses
M |Gk| observations. Recall that n =

∑
k |Gk|, which

explains the cost of Mn density evaluations. The Taylor
control variate requires summing all the qk once (first term
in (6)), hence adding n to the total cost. For simplicity,
assume all groups have the same number of observations
|G| = |Gk|. During run time, full-data MCMC requires
n density evaluations in each iteration, whereas the Taylor
control variate uses m|G| and the coreset control variate
|m|G +

∑|G|
k=1 gk, where the second term is the cost of

evaluating the summation of all qGk
(θ), which is much

faster than full-data MCMC if the coreset size gk is small in
relation to |Gk|.
We follow Quiroz et al. (2019a) and use the computational
time (CT) as our measure of performance. This measure bal-
ances the cost (number of density evaluations as discussed
above) and the efficiency of the Markov chain. It is defined
as

CT := IF× number of density evaluations,

where the inefficiency factor (IF) is proportional to the
asymptotic variance when estimating a univariate poste-
rior mean based on MCMC output. The IF is interpreted
as the number of (correlated) samples needed to obtain the
equivalent of a single independent sample. It is convenient
to measure the cost using density evaluations since it makes
the comparisons implementation independent. We use the
CODA package (Plummer et al., 2006) in R to estimate IF.
Our measure of interest is the relative CT (RCT) which we
define as the ratio between the CT of full-data MCMC and
that of the subsampling algorithm of interest. Hence, val-
ues larger than one mean that the subsampling algorithm is
more efficient when balancing computing cost (density eval-
uations) and statistical efficiency (variance of the posterior
mean estimator).

5.2. Experiments

We consider several time series models for large data in our
experiments, including the recently proposed class of autore-
gressive tempered fractionally integrated moving average
(ARTFIMA) models and several of its widely-used special
cases such as ARMA and ARFIMA — though we highlight
that any model class for which the spectral density is known
can be used. We also consider a stochastic volatility model
with an underlying ARTFIMA process.

Sabzikar et al. (2019) defines Yt as an
ARTFIMA(p, d, λ, q) process if

φq(L)∆d,λ(Yt − µ) = θp(L)εt,

where {εt}t∈Z is an iid sequence of zero mean random
variables with variance σ2, φp(L) := 1−φ1L−· · ·−φpLp,
and θq(L) := 1 + θ1L+ · · ·+ θqL

q , are the autoregressive
and moving average lag polynomials, where L is the lag
operator, i.e. Lk(Xt) = Xt−k. The tempered fractional
differencing operator is defined by

∆d,λYt := (1− e−λL)dYt

=

∞∑

j=0

(−1)j
Γ(1 + d)

Γ(1 + d− j)j!e
−λjYt−j ,

where d is called the fractional integration parameter and
λ is called the tempering parameter. To explain the role
of the parameters d and λ, note that for λ = 0 and d a
non-negative integer, ∆d,λYt reduces to simple differenc-
ing of order d and we obtain the AutoRegressive Integrated
Moving Average (ARIMA) processes. Autoregressive Frac-
tionally Integrated Moving Average (ARFIMA) (Granger &
Joyeux, 1980) extends this class by allowing fractional dif-
ferences, i.e. d need not be an integer. For −0.5 < d < 0.5,
ARFIMA is stationary, and is of particular interest as it has
long-range or long-memory dependence with an autocovari-
ance function that dies off so slowly it is not absolutely



Spectral Subsampling MCMC for Stationary Time Series

summable,
∑∞
k=−∞ |γ(k)| =∞. The tempering parameter

λ > 0 in ARTFIMA allows for semi-long range dependence,
i.e. ARFIMA-like long-range dependence for a number of
lags beyond which the autocovariance decays exponentially
fast.

Provided that λ > 0, d /∈ Z, and the roots of φp(z) lie out-
side of the unit circle in the complex plane, the ARTFIMA
process is stationary (Sabzikar et al., 2019, Theorem 2.2)
with spectral density

f(ω) =
σ2

2π

∣∣∣1− e−(λ+iω)
∣∣∣
−2d

∣∣∣∣
θq(e

−iω)

φp(e−λiω)

∣∣∣∣
2

. (8)

We follow Barndorff-Nielsen & Schou (1973) and reparam-
eterize the autoregressive parameters, φk for k = 1, . . . , p,
in terms of the partial autocorrelations φ̃p = (φ̃1, . . . , φ̃q).
Stationarity can now be enforced by the conditions |φ̃k| < 1,
for k = 1, . . . , p. We perform the same reparameterization
to θq to obtain θ̃q, which ensures the underlying process
is invertible provided that the constraint |θ̃k| < 1 for k =
1, . . . , q is satisfied. We use the priors φ̃p ∼ Unif

(
(−1, 1)p

)

and θ̃q ∼ Unif
(
(−1, 1)q

)

A log-transformation is used for both σ2 and λ, with both
priors log(σ2), log(λ) ∼ N (0, 1). For ARFIMA models,
the fractional integration parameter d is parametrized by
a scaled Fisher transformation d̃ := arctanh(2d) with
prior d̃ ∼ N (0, 1), which is a weakly informative on
d = 0.5 tanh(d̃) in the region

(
− 1

2 ,
1
2

)
. For ARTFIMA

models (d not restricted to (−0.5, 0.5)) we set d ∼ N (0, 1).

Example 1: Vancouver Temperatures (ARMA)

The first example considers the ARMA model for hourly
temperature data for the city of Vancouver during the years
2012 to 2017 sourced from openweathermap.org. Us-
ing the relatively simple ARMA model makes it possible to
compare with the posterior obtained by MCMC using the
exact time domain likelihood from the Kalman filter. We use
the stl function in R to remove the trend and yearly seasonal
from the original series. We then confirm that the series
passes the Augmented Dickey-Fuller and Phillips-Perron
unit-root tests for stationarity. The final time series is of
length n = 44001, yielding a likelihood with n = 2.2×104

frequency terms. The auto.arima function in the Forecast
(Hyndman & Khandakar, 2008) package in R was used for
model selection, yielding an ARMA(2, 3) model.

Example 2: Stockholm Temperatures (ARTFIMA)

The second example fits an ARTFIMA(2,2) model to hourly
temperature data for the city of Stockholm during the years
1967 to 2018, obtained from the Swedish Meteorological
and Hydrological Institute (www.smhi.se/en). The data
preparation procedure is the same as in the last example.

The series is of length 4.5 × 105 + 1 yielding 2.25 × 105

terms in the Whittle likelihood.

Example 3: Simulated ARMA Series (ARFIMA)

To assess the performance of our methods on even larger
datasets, we simulate an ARMA(2,1) series of length n =
5×106 +1, and fit an ARFIMA(2,1) model. The parameters
of the data generating process are φ = (0.22,−0.1), θ =
(0.5), and σ2 = 1.

Example 4: Bitcoin Prices Stochastic Volatility
(ARTFIMA-SV)

Finally, we test our methods on a challenging ARTFIMA
model extended with stochastic volatility. A general class
of Stochastic Volatility (SV) models is

yt = exp(vt/2)ξt, (9)

where {ξt} is an independent and identically distributed
sequence having mean zero and unit variance, and vt is
a stationary process with parameter vector ψ and spectral
density fv(ω;ψ). Breidt et al. (1998) observe that the SV
model in (9) can be estimated by noting that

log y2
t = µ+ vt + εt, (10)

where µ ∈ R, and {εt} is independent and identically dis-
tributed white noise process with zero mean and variance
σ2
ε . Thus, as the spectral density of εt is fε(ω) = σ2

ε/2π,
fitting a parametric spectral density of the form

f(ω;ψ, σ2
ε ) = fv(ω;ψ) +

σ2
ε

2π
,

to the log-squared series is equivalent to fitting the model
in (9) to the original series. We set log σ2

ε ∼ N (0, 0.01) a
priori.

We let vt be an ARTFIMA(1,1) process, which generalizes
the Long Memory Stochastic Volatility model of Breidt et al.
(1998) to allow for tempered fractional differencing. This
is a challenging model to estimate even without tempering
since the computational cost of filtering to obtain the Gaus-
sian ARFIMA likelihood scales poorly with the length of the
time series (Chan & Palma, 1998). Tempering introduces
additional difficulty as the ARTFIMA covariance function
involves infinite sums involving the Gaussian hypergeomet-
ric function (Sabzikar et al., 2019, Equation (2.9)). We show
that spectral subsampling MCMC is a computationally ef-
ficient way to obtain the posterior of the ARTFIMA-SV
model for large datasets. We fit the model to a dataset
of one-minute Bitcoin returns (prices from the exchange
on coinbase.com) of length n = 106 + 1 (resulting in
n = 5× 105 terms in the Whittle likelihood).

openweathermap.org
www.smhi.se/en
coinbase.com
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M1 M2 M3 M4

n (×104) 2.2 22.5 250 50
|G| (×103) 1 1 1 1
|G| 22 225 2500 500
m (%|G|) 2 1 1 1
B 10 10 10 10
M - 200 200 200
RP - 500 500 500
ḡk - 29 34 39

Table 1. Settings for models ARMA(2,3) (M1), ARTFIMA(2,2)
(M2), ARFIMA(2,1) (M3) and ARTFIMA-SV(1,1) (M4). The
table shows number of frequency observations (n), number of
groups (|G|), number of observations per group (|G|, the same for
all groups), percentage of subsampled groups (m) and number of
blocks in the block pseudo-marginal algorithm (B). The coreset
settings are number of iterations of GIGA algorithm (M ), number
of random projections (RP ) (see Campbell & Broderick (2018)
for details) and the average size of the coreset (ḡk).
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Figure 1. Kernel Density Estimates of some marginal distributions
(see the supplementary for all parameters) for all examples. Each
row corresponds to a single model (from the top: ARMA(2,3),
ARTFIMA(2,2), ARFIMA(2,1) and ARTFIMA-SV(1,1)). MCMC
is the full-data MCMC on the Whittle likelihood. Taylor and core-
set are the Subsampling MCMC methods using the corresponding
control variates. Gauss-MCMC is the full-data MCMC with the
time-domain Gaussian likelihood.

5.3. Results

Table 1 displays the settings for each example. Note that
only for the ARMA(2,3) model is it computationally feasi-
ble to compare with the posterior based on the exact time
domain likelihood. Furthermore, the number of observa-
tions per group in the Vancouver temperature data is too
small (22) for the coreset control variates to be useful.

Figure 1 displays a selection of kernel density estimates for
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Figure 2. Effect of grouping the Taylor series control variate for
all examples. The figure shows the relative variance reduction
(in log-scale) with no grouping (i.e. one observation per group
G| = 1) as baseline over the MCMC iterations post burn-in. A
value larger than 1 means that the corresponding control variate is
more efficient compared to the baseline.

marginal posteriors across all examples. Note that the in-
curred bias from subsampling is neglible, especially for the
Taylor series control variate. The coreset control variate re-
sults in a higher variance and thus a larger perturbation error
(Quiroz et al., 2019a). Figure 1 also shows that the posterior
based on the Whittle likelihood is close to the Gaussian
time-domain posterior for the ARMA(2,3) example. We
stress that we can not make this comparison for the other
models because, as discussed in Section 5.2, the Gaussian
time-domain likelihood is not computationally feasible for
large n for the ARFIMA and ARTFIMA models. Further,
no such comparison can be made in the ARTFIMA-SV case
as the model is non-Gaussian (Breidt et al., 1998).

Figure 2 shows that in general the use of grouping in the
control variates reduces the variance, especially for the more
complex models. This experiment is performed using the
last 2001 time observations for each model (n = 1000 in
the frequency domain) to prevent ||θ − θ?|| becoming too
small.

Figure 3 reports the relative computational time with
MCMC on the full-data Whittle likelihood as baseline for
all parameters — showing that our method introduces close
to two orders of magnitude speedup on these examples.

Finally, Figure 4 plots the periodogram and posterior mean
spectral density for all models using our Subsampling
MCMC method and, for comparison, the full-data MCMC
(on the Whittle likelihood) method. The figure confirms
the accuracy of our method and, moreover, that we recover
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the true spectral density perfectly in a simulated data set-
ting (ARFIMA(2,1)). Recall that due to (4), the fitting of
a Stationary time series model is essentially a univariate
regression problem for the spectral density. Thus, the figure
also shows that the models we consider capture features of
the real world datasets while avoiding overfitting.
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Figure 3. Relative computational time each parameter in all exam-
ples. Results are relative to full-data MCMC (larger is better for
Subsampling MCMC).

Figure 4. Periodogram data (grey) in log-scale with posterior
means of the (log) spectral density estimate from MCMC on
full-data Whittle likelihood and from Subsampling MCMC on
the subsampled Whittle likelihood for all four models. The fig-
ure also shows the true spectral density, which is only available
for the ARFIMA(2,1) example (simulated data). All posterior
means are indistinguishable, showing the accuracy of our method
and, moreover, the accuracy of the Whittle approximation for the
ARFIMA(2,1) example.

6. Discussion
We introduce novel methods allowing efficient Bayesian
inference in stationary models for large time series datasets.
The idea is simple and elegant: overcome the lack of inde-
pendence in the data by transforming them to the frequency
domain where they are independent. This work is, to our
knowledge, the first to extend scalable MCMC algorithms
to models with temporal dependence. The article is focused
on Subsampling MCMC, but the ideas introduced here can
be directly applied to many other scalable inference ap-
proaches, e.g.,those in Quiroz et al. (2018b;a) and Cornish
et al. (2019). Subsampling of periodogram frequencies also
extends beyond the MCMC setting, for example to Doubly
Stochastic Variational Inference (Titsias & Lázaro-Gredilla,
2014). We also introduce novel control variate schemes
based on grouping and coresets to improve the robustness
of Subsampling MCMC.

Two immediate and interesting extensions of our methods
are to multiple time series and locally stationary time se-
ries; Dahlhaus et al. (2000) define a suitable analogue to
the univariate Whittle likelihood for these cases. A third
extension is to semi-parametric and non-parametric spectral
density estimation as in for example Carter & Kohn (1997),
Choudhuri et al. (2004), and Edwards et al. (2019).

More generally, we remark that development of special-
ized subsampling methodogy for the case where the data-
generating process is not believed to be have an absolutely
summable covariance function would also be interesting,
e.g., based on the methods of Chopin et al. (2013), who
provide an alternate likelihood with superior properties to
the Whittle Likelihood in such cases.

Finally, it has not escaped our notice that our approach
can be directly extended to spatial and spatio-temporal data
using the multidimensional DFT (see Peligrad & Zhang
(2017) for results regarding the asymptotic distribution of
the Fourier transform in the spatial setting).
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