Supplementary Materials

S1. Effect of Crowdsourcing Quality

![Graphs showing the effect of crowdsourcing quality.](image)

Figure S1. Decreasing crowdsourcing quality by randomly shuffling results in a highly correlated decrease in accuracy over both MNIST (left) and stop-and-frisk (right) datasets.

We empirically evaluate the role of crowdsourcing data quality on UV-DRO performance to complement our theoretical bound in Section 4. We previously showed a significant performance gap when we shuffle 100% of the crowdsourced unmeasured variables, causing random associations that impact the crowdsourcing quality. We further investigate this gap by shuffling [0, 2, 5, 10, 20, 50, 75]% of the crowdsourced unmeasured variables, and find a highly correlated accuracy drop for both MNIST ($R^2 = .89$) and stop-and-frisk datasets ($R^2 = .91$), as seen in Figure S1. This demonstrates a linear relationship between crowdsourcing quality and robust performance.

S2. Annotation Unigrams Analysis Table

Table S1. Exploratory analysis on the annotations collected over stop-and-frisk data by training a logistic regression model to predict location from a selection of annotation unigrams.

<table>
<thead>
<tr>
<th>UNIGRAM</th>
<th>BROOKLYN</th>
<th>MANHATTAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCRIMINATION</td>
<td>-1.22</td>
<td>0.82</td>
</tr>
<tr>
<td>RACIST</td>
<td>-0.29</td>
<td>0.21</td>
</tr>
<tr>
<td>RACIAL</td>
<td>-0.19</td>
<td>0.89</td>
</tr>
<tr>
<td>HOMELESS</td>
<td>-0.84</td>
<td>0.43</td>
</tr>
<tr>
<td>UNRELATED</td>
<td>-1.68</td>
<td>1.03</td>
</tr>
<tr>
<td>CLEARED</td>
<td>-0.98</td>
<td>0.79</td>
</tr>
<tr>
<td>EVIDENCE</td>
<td>-0.12</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Table S1. Exploratory analysis on the annotations collected over stop-and-frisk data by training a logistic regression model to predict location from a selection of annotation unigrams.
S3. Derivation of the empirical dual estimator

The arguments given here are a simplification of the class of duality arguments from Duchi et al. (2019). Recall that the inner maximization sup_{h \in \mathcal{H}_L} \mathbb{E}[h(x, c)(\mathbb{E}[\ell(\theta; (x, y)) | x, c] - \eta)] admits a plug-in estimator which can be written as a linear objective with Lipschitz smoothness and L_2 norm constraints,

$$\max_{h \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^{n} h_i(\ell(\theta; (x_i, y_i)) - \eta)$$

s.t. $h_i \geq 0$ for all $i \in [n]$, $\frac{1}{n} \sum_{i=1}^{n} h_i^2 \leq 1$,

$$h_i - h_j \leq L(\|x_i - x_j\| + \|c_i - c_j\|)$$

for all $i, j \in [n]$.

Now taking the dual with $\gamma \in \mathbb{R}^n_+$, $\lambda \geq 0$, and $B \in \mathbb{R}^{n \times n}$, the associated Lagrangian is

$$\mathcal{L}(h, \gamma, \lambda, B) := \frac{1}{n} \sum_{i=1}^{n} h_i(\ell(\theta; (x_i, y_i)) - \eta) + \frac{1}{n} \gamma^\top h + \frac{\lambda}{2} \left(1 - \frac{1}{n} \sum_{i=1}^{n} h_i^2 \right)$$

$$+ \frac{1}{n} \left(L \text{tr}(B^\top D) - h^\top (B1 - B^\top 1) \right)$$

where $D \in \mathbb{R}^{n \times n}$ is a matrix with entries $D_{ij} = \|x_i - x_j\| + \|c_i - c_j\|$. From strong duality, the primal optimal value (1) is $\inf_{\gamma \in \mathbb{R}^n_+, \lambda \geq 0, B \in \mathbb{R}^{n \times n}} \sup_h \mathcal{L}(h, \gamma, \lambda, B)$.

The first order conditions for the inner supremum give

$$h_i^* := \frac{1}{\lambda} \left(\ell(\theta; (x_i, y_i)) - \eta + \gamma - (B1 - B^\top 1)_i \right).$$

Substituting these values and taking the infimum over $\lambda, \gamma \geq 0$, we obtain

$$\inf_{\lambda \geq 0} \sup_{\gamma \in \mathbb{R}^n_+} \sup_h \mathcal{L}(h, \gamma, \lambda, B) = \left(\frac{1}{n} \sum_{i=1}^{n} \left(\ell(\theta; (x_i, y_i)) - \sum_{j=1}^{n} (B_{ij} - B_{ji}) - \eta \right)^2 \right)^{1/2}$$

$$+ \frac{L}{n} \sum_{i, j=1}^{n} (\|x_i - x_j\| + \|c_i - c_j\|) B_{ij}.$$

Taking the infimum over B, η and substituting this expression into the inner supremum of R_L gives the desired estimator.

S4. Distortion Proof

Terminology in this section generally follows that of the main text. We will use c to describe some true set of unmeasured variables, and τ to describe the elicited set. All notation with overhead lines are defined in this space of elicited unmeasured variables (e.g. h, \mathcal{H}_L).

Additionally we will define a forward map from true unmeasured variables to elicited ones, $f : \mathcal{C} \rightarrow \mathcal{C}$ and a reverse map from elicited unmeasured variables to true ones $g : \mathcal{C} \rightarrow \mathcal{C}$.

For convenience, define the following risk functionals for the DRO problem under the true unmeasured variables

$$R_L(\theta) := \inf_{\eta} \sup_{h \in \mathcal{H}_L} \frac{1}{\alpha} \mathbb{E}_{x, y, c} [h(x, c)\ell(x, y) - \eta] + \eta,$$

and under the estimated ones

$$\overline{R}_L(\theta) := \inf_{\eta} \sup_{\overline{h} \in \overline{\mathcal{H}}_L} \frac{1}{\alpha} \mathbb{E}_{x, y, \tau} [\overline{h}(x, \tau)\ell(x, y) - \eta] + \eta.$$

(2)
We can define the upper bound for the Lipschitz case,

Proposition. Let \(f : \mathcal{C} \to \overline{\mathcal{C}} \) define \(\hat{h}(x, c) := \mathcal{H}(x, f(c)) \) such that \(\frac{1}{K_f} \hat{h} \in \mathcal{H}_L \) for all \(\mathcal{H} \in \mathcal{H}_L \). Then,

\[
\mathcal{R}_L(\theta) \leq K_f R_L(\theta) + \frac{LME_{xy}W_1(f(c|xy), \mathcal{C}|xy)}{\alpha}
\]

where \(f(c|xy) \) is the pushforward measure of \(c|xy \) under \(f \).

Proof. Let \(\mathcal{H}^\ast \) be the \(\mathcal{H} \in \mathcal{H}_L \) which is the maximizer to Eq (2). For convenience define

\[
\Delta f_y := E_{c|xy}[\hat{h}^*(x, c)] - E_{\mathcal{C}|xy}[\mathcal{H}^*(x, \mathcal{C})]
\]

\[
= E_{\mathcal{C}|xy}[\mathcal{H}^*(x, \mathcal{C})] - E_{\mathcal{C}|xy}[\mathcal{H}^*(x, \mathcal{C})]
\]

The equality follows the change of variables property of pushforward measures. Now rewriting the risk measure in terms of \(\Delta \),

\[
\mathcal{R}_L(\theta) = \inf_{\eta} \frac{1}{\alpha} E_{xy} \left[\left(E_{c|xy}[\hat{h}^*(x, c)] - \Delta f_y \right) \ell(x, y) - \eta \right] + \eta
\]

\[
\leq \inf_{\eta} \frac{1}{\alpha} E_{xy} \left[E_{c|xy}[\hat{h}^*(x, c)]\ell(x, y) - \eta \right] + \eta
\]

\[
+ E_{xy}[|\Delta f_y|] M
\]

\[
\leq \inf_{\eta} K_f \sup_{h \in \mathcal{H}_L} \frac{1}{\alpha} E_{xy} \left[E_{c|xy}[h(x, c)]\ell(x, y) - \eta \right] + \eta
\]

\[
+ E_{xy}[|\Delta f_y|] M
\]

\[
= K_f R_L(\theta) + \frac{E_{xy}[|\Delta f_y|] M}{\alpha}
\]

\[
\leq K_f R_L(\theta) + \frac{LMW_1(f(c|xy), \mathcal{C}|xy)}{\alpha}
\]

First inequality follows from Hölder’s inequality, and the fact that \(0 \leq \ell(x, y) \leq M \). The second one follows from the assertion that \(\frac{1}{K_f} \hat{h} \in \mathcal{H}_L \), and the last inequality follows from the fact that \(\mathcal{H} \) is \(L \)-Lipschitz, and utilizing the pushforward measure form of \(\Delta \).

A analogous argument shows the other side of this bound given by,

\[
R_L(\theta) \leq K_g \mathcal{R}_L(\theta) + \frac{LM_{XY}W_1(c|xy, g(\mathcal{C}|xy))}{\alpha}
\]

This shows that our DRO estimator achieves multiplicative error scaling with \(K_f, K_g \) and additive error scaling with the Wasserstein distance between the true and the estimated unmeasured variables.

Our assumptions on \(K_f \) and \(K_g \) are easily fulfilled in the case where there is a single bi-Lipschitz bijection \(f : \mathcal{C} \to \overline{\mathcal{C}} \). In this case, \(g = f^{-1} \) and \(K_f = K_g = K \).

We can interpret this bound as capturing two sources of error: our metric can be inappropriate and our estimates of \(\overline{\mathcal{C}} \) can be inherently noisy. For the first term, note that a map with higher metric distortion (e.g. bi-Lipschitz maps with large constants) results in a looser bound. This is because the Lipschitz function assumption in the original space \(\mathcal{C} \) does not correspond closely to Lipschitz functions in \(\overline{\mathcal{C}} \).

For the second term, we incur error whenever \(W_1(c|xy, g(\mathcal{C}|xy)) \) is large. The alignment map \(g \) takes our elicited unmeasured variables and approximates the true ones. However, if \(\mathcal{C} \) does not contain enough information to reconstruct \(c \) then no function \(g \) can exactly map \(\mathcal{C} \) to \(c \), and we incur an approximation error that scales as the transport distance between the two.

We can now provide a simple lemma that bounds the quality of the model estimate under the approximation \(\mathcal{C} \) compared to the minimizer of the exact unmeasured variables \(c \).
For convenience we will use the following shorthand for the additive error terms,

\[
A_f = \frac{\mathbb{E}_{X,Y} W_1(\tau|xy, f(c|xy))}{\alpha}
\]

\[
A_g = \frac{\mathbb{E}_{X,Y} W_1(c|xy, g(\tau|xy))}{\alpha}.
\]

Corollary. Let \(\theta^* := \arg\min_\theta \mathcal{R}_L(\theta) \), then

\[
\mathcal{R}_L(\theta^*) - \inf_\theta \mathcal{R}_L(\theta) \\
\leq \inf_\theta \mathcal{R}_L(\theta) (K_f K_g - 1) + K_g A_f + A_g
\]

Proof. By Proposition \(S4 \), we have both

\[
\inf_\theta \mathcal{R}_L(\theta) \leq \inf_\theta K_f \mathcal{R}_L(\theta) + A_f
\]

\[
\mathcal{R}_L(\theta^*) \leq K_g \mathcal{R}_L(\theta^*) + A_g.
\]

By definition of \(\theta^* \) as the minimizer of \(\mathcal{R}_L \), we obtain

\[
\mathcal{R}_L(\theta^*) \leq K_f K_g \inf_\theta \mathcal{R}_L(\theta) + K_g A_f + A_g
\]

which gives the stated result.

The corollary shows that the best model under the estimated unmeasured variables \(\tau \) performs well under the true DRO risk measure \(\mathcal{R}_L \) as long as \(K_f K_g \approx 1 \) and \(A_f, A_g \) are small. There are two sources of error: the metric distortion results in a relative error that scales as \(K_f K_g \), and the noise in estimation \((A_f, A_g) \) results in additive error. The \(K_g A_f \) scaling term arises from the fact that error is measured with respect to the metric over \(c \), not over \(\tau \).

Importantly, these bounds show that we need not directly estimate the true unmeasured variables \(c \) using \(\tau \) - our estimated unmeasured variables can live in an entirely different space, and as long as there exists some low-distortion alignment functions \(f, g \) that align the two spaces, the implied risk functions are similar.

S5. Reproducibility & Experiment Details

All experiments and data described below are available on CodaLab: \texttt{https://bit.ly/uvdro-codalab}.

S5.1. Simulated Medical Diagnosis Task

We simulate our data \((n=1,000) \) using the following generation procedure:

1. \(q_{\text{train}} = .05, .1, .2, .3, .4, .5, .6, .7, .8 \) and \(q_{\text{test}} = 0.8 \).
2. \(c \) is sampled from the \(c \sim 1 - 2 \text{Bernoulli}(q) \).
3. \(y \) is sampled from \(y \sim \mathcal{N}(0, 2) \), independent from from train or test.
4. For each \((c, y)\) sample, set \(x_1 = c * y \) and \(x_2 = y + \epsilon \) where \(\epsilon \sim \mathcal{N}(0, 4) \).

For both ERM and UV-DRO, we trained a linear regression model over \(p(y|x_1, x_2) \), optimized using batch gradient descent over 3k steps with AdaGrad with an optimal learning rate of .0001. We set UV-DRO parameter \(\alpha = 0.2 \), and tune \(\eta \) via grid-search for each \(q_{\text{train}} \) value. We present results (Mean Squared Error) on the same held-out test set for all models.
S5.2. MNIST Digit Classification with Confounding Transformations

We use the popular MNIST dataset (http://yann.lecun.com/exdb/mnist/). We train on only a subset (n=4000) of the training data due to the cost of collecting annotations, and tune parameters on a separate validation set. For all data points, we treat the pixels of a (possibly transformed) image as the features \(x \), the fact of whether a transformation occurred as the unmeasured variable \(c \), and the MNIST digit as label \(y \). We simulate a shift in an unmeasured rotation confounding variable using the following procedure:

1. \(q_{\text{train}} = .05, .1, .2, .4, .6 \) and \(q_{\text{test}} = 1.0 \).
2. \(c \) is sampled from the \(c \sim \text{Bernoulli}(q) \), where \(c = 1 \) means the image was rotated.
3. For each \((x, y)\) pair in the dataset, we rotate the original MNIST image \(x \) by 180 degrees if \(c = 1 \).

For all ERM, DRO, and UV-DRO models, we trained a logistic regression model, optimized with batch gradient descent using AdaGrad and an optimal learning rate of .001. The optimal \(l_2 \) penalty found for ERM models was 25. Optimal UV-DRO parameters (tuned on 20% of data as valid) include \(l_2 \) penalty of 50, a Lipschitz constant \(L \) of 1, \(\alpha = 0.2 \), and we explicitly solve for the minimizer of \(\eta \) with regards to the empirical distribution at each gradient step. We present results (Log-Loss, Accuracy) on the same held-out test set for all models.

S5.3. Police Stop Analysis with Confounding Locations

We use a dataset of NYPD police stops (https://www.nyclu.org/en/stop-and-frisk-data). We train on only a subset (n=2000) of the training data due to the cost of collecting annotations, and tune parameters on a separate validation set. For all data points, we filter out all variables except for 26 police stop observation as features \(x \) (i.e. “in a high crime area”), the NYC borough as the unmeasured location variable \(c \), and the label for arrest \(y \). We simulate a shift in the location variable \(c \) using the following procedure:

1. \(q_{\text{train}} = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 \) and \(q_{\text{test}} = 1.0 \).
2. \(c \) is sampled from the \(c \sim \text{Bernoulli}(q) \), where \(c = 1 \) means the location is Brooklyn.
3. We build the dataset by drawing from the entire dataset a \((x, y, c = c')\) example for each \(c' \) sampled.

For all ERM, DRO, and UV-DRO models, we trained a logistic regression model optimized with batch gradient descent using AdaGrad and an optimal learning rate of .005. The optimal \(l_2 \) penalty found for ERM models was 0. Optimal UV-DRO (tuned on 20% of data as valid) parameters include \(l_2 \) penalty of 50, a Lipschitz constant \(L \) of 1, \(\alpha = 0.2 \), and we explicitly solve for the minimizer of \(\eta \) with regards to the empirical distribution at each gradient step. We present results (Log-Loss, Accuracy) on the same held-out test set for all models.

References