
Supplementary Material for “PoWER-BERT: Accelerating BERT Inference via
Progressive Word-vector Elimination”

1. Additional Results
1.1. Validation of the Scoring Function Using Mutual

Information.

PoWER-BERT uses a scoring mechanism for estimating the
significance of the word-vectors satisfying the following
criterion: the score of a word-vector must be positively
correlated with its influence on the final classification out-
put (namely, word-vectors of higher influence get higher
score).

For a word-vector w and a head h, we define the signif-
icance score of w for h as Sigh(w) =

∑
w′ Ah[w

′, w]
whereAh is the attention matrix for head h andw′ signifies
other words in the input sequence. The overall significance
score of w is then defined as the aggregate over the heads:
Sig(w) =

∑
h Sigh(w).

We validate the scoring function using the well-known con-
cept of mutual information and show that the significance
score of a word is positively correlated with the classifica-
tion output. Let X and Y be two random variables. Re-
call that the mutual information between X and Y is de-
fined as MI(X;Y) = H(X)−H(X|Y), where H(X) is
the entropy of X and H(X|Y) is the conditional entropy
of X given Y. The quantity is symmetric with respect to
the two variables. Intuitively, Mutual information measure
how much X and Y agree with each other. It quantifies the
information that can be gained about X from information
about Y. If X and Y are independent random variables,
then MI(X;Y) = 0. On the other hand, if the value of one
variable can be determined with certainty given the value of
the other, then MI(X;Y) = H(X) = H(Y).

For this demonstration, we consider the SST-2 dataset from
our experimental study with input length N = 128 and
number of classification categories C = 2 (binary classi-
fication). Consider an encoder j and we shall measure the
mutual information between the classification output of the
original model and a modified model that eliminates a sin-
gle word at encoder j. Consider the trained BERT model
without any word elimination and let X denote the classi-
fication label output by the model on a randomly chosen
input from the training data. Fix an integer k ≤ `j−1
and let w be the word with the kth highest significance
score. Consider a modified model that does not eliminate
any words on encoders 1, 2, . . . , j − 1, eliminates w at en-
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Figure 1: Demonstration of mutual information

coder j, and does not eliminate any further words at en-
coders j+1, j+2, . . . , 12. Let Yk be the random variable
that denotes the classification output of the above model on
a randomly chosen input. The mutual information between
X and Yk can be computed using the formula:∑

b,b′∈{0,1} Pr(X = b,Y = b′) · ln
[

Pr(X=b,Y=b′)
Pr(X=b)·Pr(Y=b′)

]
We measured the mutual information between X and Yk

for all encoders j and for all k ∈ [1, 128]. Figure 1
shows the above data, wherein for the simplicity of presen-
tation, we have restricted to encoders j = 1, 3, 6, 9. In this
case, since the model predictions are approximately bal-
anced between positive and negative, the baseline entropy
is H(X) ∼ ln(2) = 0.69. We can make two observa-
tions from the figure. First is that as k increases, the mu-
tual information increases. This implies that deleting words
with higher score results in higher loss of mutual informa-
tion. Alternatively, deleting words with lower score results
in higher mutual information, meaning the modified model
gets in better agreement with the original model. Secondly,
as the encoder number j increases, the mutual information
approaches the baseline entropy faster, confirming our hy-
pothesis that words of higher significance scores (or more
words) can be eliminated from the later encoders. The fig-
ure demonstrates that the score Sig(·) captures the signifi-
cance of the words in an effective manner.

1.2. Comparison to Prior Methods.

Figure 2 presents the pareto curves for the three remain-
ing datasets: SST-2, MNLI-mm and STS-B from the
GLUE benchmark. These curves shows that PoWER-BERT
achieves better trade-off between accuracy and inference
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Figure 2: Comparison to prior methods. Pareto curves showing accuracy vs. inference time for three GLUE benchmark datasets: SST-2,
MNLI-mm and STS-B. Rest of the datasets have been shown in the main paper.

Table 1: Hyper-parameters to reproduce the results in Table 2 in the main paper. Each experiment was repeated 3 times and average of
these runs were reported in the paper. LR signifies the Learning Rate.

DATASET
BERT PARAMS SOFT-EXTRACT LAMBDA BATCH

LR LR λ SIZE

COLA 0.00002 0.0015 0.007 32
RTE 0.00003 0.003 0.001 16
QQP 0.00003 0.0001 0.0003 64
MRPC 0.00006 0.003 0.003 64
SST-2 0.00003 0.0005 0.0002 64
MNLI-M 0.00003 0.0002 0.0001 64
MNLI-MM 0.00003 0.0001 0.0001 64
QNLI 0.00003 0.0002 0.00015 16
STS-B 0.00003 0.003 0.001 64

IMDB 0.00003 0.0002 0.0007 8
RACE 0.00001 0.0002 0.0001 4

time compared to other state-of-the-art inference time re-
duction methods.

2. Hyper-parameter details.
Dataset specific Hyper-parameters for PoWER-BERT.
Training PoWER-BERT primarily involves four hyper-
parameters, which we select from the ranges listed below:
a) learning rate for the newly introduced soft-extract
layers - [10−4, 10−2]; b) learning rate for the parameters
from the original BERT model - [2 × 10−5, 6 × 10−5]; c)
regularization parameter λ that controls the trade-off be-
tween accuracy and inference time - [10−4, 10−3]; d) batch
size - {4, 8, 16, 32, 64}. Table 1 presents the dataset spe-
cific hyper-parameters used to obtain the results in Table 2
of the main paper. The code for PoWER-BERT is publicly
available at https://github.com/IBM/PoWER-BERT.

Hyper-parameters for Baseline Methods. We compare
PoWER-BERTwith the state-of-the-art inference time reduc-

tion methods: DistilBERT, BERT-PKD and Head-Prune.
For DistilBERT two hyper-parameters were tuned: learn-
ing rate - [2×10−5, 6×10−5] and batch size - {16, 32, 64}.

For BERT-PKD four hyper-parameters were tuned: Temper-
ature (T ) that controls the extend to which the student rely
on the teacher’s soft predictions, α that balances the cross-
entropy and the distillation loss, β that weights the feature
importance for distillation in the intermediate layers and
learning rate for the teacher model. The ranges used for
each of these hyper-parameters was: T - {5, 10, 20}, α -
{0.2, 0.5, 0.7}, β - {10, 100, 500, 1000} and learning rate -
[2× 10−5, 6× 10−5].

For Head-Prune the only tunable hyper-parameter is the
learning rate and we set the range to be: [2 × 10−5, 6 ×
10−5].

For all the baseline methods, the hyper-parameters were
tuned using the Dev set and the accuracy were reported on
the publicly available Test set

https://github.com/IBM/PoWER-BERT
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