Supplementary Material for “PoWER-BERT: Accelerating BERT Inference via
Progressive Word-vector Elimination”

1. Additional Results

1.1. Validation of the Scoring Function Using Mutual
Information.

PoWER-BERT uses a scoring mechanism for estimating the
significance of the word-vectors satisfying the following
criterion: the score of a word-vector must be positively
correlated with its influence on the final classification out-
put (namely, word-vectors of higher influence get higher
score).

For a word-vector w and a head h, we define the signif-
icance score of w for h as Sig,(w) = >, Aplw’, w]
where Ay, is the attention matrix for head h and w’ signifies
other words in the input sequence. The overall significance
score of w is then defined as the aggregate over the heads:

Sig(w) = _), Sigy,(w).

We validate the scoring function using the well-known con-
cept of mutual information and show that the significance
score of a word is positively correlated with the classifica-
tion output. Let X and Y be two random variables. Re-
call that the mutual information between X and Y is de-
fined as MI(X;Y) = H(X) — H(X]Y), where H(X) is
the entropy of X and H(X|Y) is the conditional entropy
of X given Y. The quantity is symmetric with respect to
the two variables. Intuitively, Mutual information measure
how much X and Y agree with each other. It quantifies the
information that can be gained about X from information
about Y. If X and Y are independent random variables,
then MI(X;Y) = 0. On the other hand, if the value of one
variable can be determined with certainty given the value of
the other, then MI(X;Y) = H(X) = H(Y).

For this demonstration, we consider the SST-2 dataset from
our experimental study with input length N = 128 and
number of classification categories C' = 2 (binary classi-
fication). Consider an encoder j and we shall measure the
mutual information between the classification output of the
original model and a modified model that eliminates a sin-
gle word at encoder j. Consider the trained BERT model
without any word elimination and let X denote the classi-
fication label output by the model on a randomly chosen
input from the training data. Fix an integer £ < ¢;_;
and let w be the word with the k' highest significance
score. Consider a modified model that does not eliminate
any words on encoders 1,2, ...,j — 1, eliminates w at en-
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Figure 1: Demonstration of mutual information

coder 7, and does not eliminate any further words at en-
coders j+1,5+2,...,12. Let Y}, be the random variable
that denotes the classification output of the above model on
a randomly chosen input. The mutual information between
X and Y, can be computed using the formula:

_ _ Pr(X=b,Y=b")
Zb,b/e{O,l} Pr(X=05,Y =b')-In [Pr(X(:b)-Pr(Y:b’)}

We measured the mutual information between X and Y,
for all encoders j and for all & € [1,128]. Figure 1
shows the above data, wherein for the simplicity of presen-
tation, we have restricted to encoders j = 1, 3,6, 9. In this
case, since the model predictions are approximately bal-
anced between positive and negative, the baseline entropy
is H(X) ~ In(2) = 0.69. We can make two observa-
tions from the figure. First is that as k increases, the mu-
tual information increases. This implies that deleting words
with higher score results in higher loss of mutual informa-
tion. Alternatively, deleting words with lower score results
in higher mutual information, meaning the modified model
gets in better agreement with the original model. Secondly,
as the encoder number j increases, the mutual information
approaches the baseline entropy faster, confirming our hy-
pothesis that words of higher significance scores (or more
words) can be eliminated from the later encoders. The fig-
ure demonstrates that the score Sig(-) captures the signifi-
cance of the words in an effective manner.

1.2. Comparison to Prior Methods.

Figure 2 presents the pareto curves for the three remain-
ing datasets: SST-2, MNLI-mm and STS-B from the
GLUE benchmark. These curves shows that POWER-BERT
achieves better trade-off between accuracy and inference
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Figure 2: Comparison to prior methods. Pareto curves showing accuracy vs. inference time for three GLUE benchmark datasets: SST-2,
MNLI-mm and STS-B. Rest of the datasets have been shown in the main paper.

Table 1: Hyper-parameters to reproduce the results in Table 2 in the main paper. Each experiment was repeated 3 times and average of
these runs were reported in the paper. LR signifies the Learning Rate.

BERT PARAMS  SOFT-EXTRACT LAMBDA BATCH

DATASET LR LR A SIZE

CoLA 0.00002 0.0015 0.007 32

RTE 0.00003 0.003 0.001 16

QQP 0.00003 0.0001 0.0003 64

MRPC 0.00006 0.003 0.003 64

SST-2 0.00003 0.0005 0.0002 64

MNLI-M 0.00003 0.0002 0.0001 64

MNLI-MM 0.00003 0.0001 0.0001 64

QNLI 0.00003 0.0002 0.00015 16

STS-B 0.00003 0.003 0.001 64

IMDB 0.00003 0.0002 0.0007 8

RACE 0.00001 0.0002 0.0001 4
time compared to other state-of-the-art inference time re- tion methods: DistilBERT, BERT-PKD and Head-Prune.
duction methods. For DistilBERT two hyper-parameters were tuned: learn-

ing rate - [2x 10,6 x 10~°] and batch size - {16, 32, 64}.

2. Hyper-parameter details. For BERT-PKD four hyper-parameters were tuned: Temper-

ature (7") that controls the extend to which the student rely
on the teacher’s soft predictions, « that balances the cross-
entropy and the distillation loss, 3 that weights the feature
importance for distillation in the intermediate layers and
learning rate for the teacher model. The ranges used for
each of these hyper-parameters was: T - {5,10,20}, « -
{0.2,0.5,0.7}, 8 - {10, 100, 500, 1000} and learning rate -
[2x 107°,6 x 107°].

Dataset specific Hyper-parameters for POWER-BERT.
Training PoWER-BERT primarily involves four hyper-
parameters, which we select from the ranges listed below:
a) learning rate for the newly introduced soft-extract
layers - [1074,1072]; b) learning rate for the parameters
from the original BERT model - [2 x 107°,6 x 107°]; ¢)
regularization parameter A that controls the trade-off be-
tween accuracy and inference time - [10~%, 1073]; d) batch
size - {4,8,16,32,64}. Table 1 presents the dataset spe- For Head-Prune the only tunable hyper-parameter is the
cific hyper-parameters used to obtain the results in Table 2 learning rate and we set the range to be: [2 x 107°,6 x
of the main paper. The code for POWER-BERT is publicly 10-7].

available at https://github.com/IBM/PoWER-BERT. For all the baseline methods, the hyper-parameters were

tuned using the Dev set and the accuracy were reported on
Hyper-parameters for Baseline Methods. We compare  the publicly available Test set
PoWER-BERT with the state-of-the-art inference time reduc-
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