Inducing and Exploiting Activation Sparsity for Fast Neural Network Inference

Mark Kurtz * 1 Justin Kopinsky * 1 Rati Gelashvili 1 Alexander Matveev 1 John Carr 1 Michael Goin 1
William Leiserson 1 Sage Moore 1 Bill Nell 1 Nir Shavit 1 Dan Alistarh 1 2

Abstract

Optimizing deep neural networks for inference has recently become an extremely active area of research. One of the go-to solutions in this context is weight pruning, which aims to reduce computational and memory footprint by removing large subsets of the connections in a neural network. Surprisingly, much less attention has been given to exploiting sparsity in the activation maps, which tend to be naturally sparse in many settings thanks to the structure of rectified linear (ReLU) activation functions. In this paper, we present an analysis of methods for maximizing the sparsity of the activations in a trained neural network, and show that, when coupled with an efficient sparse-input convolution algorithm, we can leverage this sparsity for significant performance gains. To induce highly sparse activation maps without accuracy loss, we introduce a new regularization technique, coupled with a new threshold-based sparsification method based on a parameterized activation function called Forced-Activation-Threshold Rectified Linear Unit (FATReLU). We examine the impact of our methods on popular image classification models, showing that most architectures can adapt to significantly sparser activation maps without any accuracy loss. Our second contribution is showing that these compression gains can be translated into inference speedups: we provide a new algorithm to enable fast convolution operations over networks with sparse activations, and show that it can enable significant speedups for end-to-end inference on a range of popular models on the large-scale ImageNet image classification task on modern Intel CPUs, with relatively low retraining cost.

1. Introduction

Deep neural networks (DNNs) are able to achieve state-of-the-art performance in several application domains, such as image classification, speech recognition, and automated decision making, e.g. (Krizhevsky et al., 2012; Vaswani et al., 2017; Silver et al., 2016). Along with this wide array of applications comes the need to reduce the significant computational and memory footprint of DNNs. To this end, several techniques have been designed to obtain optimized, resource-efficient variants of a given deep model. Pruning and quantization are arguably the standard methods for achieving resource-efficient models, which have received considerable attention, e.g. (Liu et al., 2017; Luo et al., 2017; Gray et al., 2017; Han et al., 2015; Li et al., 2016; Mishra et al., 2017; Zhu et al., 2016). However, the vast majority of existing work has focused on compressing the weights (connections) in the neural network, for which several regularization (Molchanov et al., 2017) and thresholding-based methods (Han et al., 2015; Gale et al., 2019) are now known.

It is therefore perhaps surprising that sparsifying activation maps has received relatively little attention. A non-trivial fraction of the activations are sparse as a natural consequence of the structure of Rectified Linear Unit (ReLU) activation functions. This observation has been leveraged by hardware accelerators, e.g. (Albericio et al., 2016; Han et al., 2016; Parashar et al., 2017), and reference (Rhu et al., 2018) performed an analysis of naturally-occurring activation sparsity. Recently, (Georgiadis, 2019) explored L1 regularization to increase the number of zeroes in the activation maps, showing that sparsity can be increased by up to 60% for image classification models.

A second gap in the literature is the absence of software support for sparsity, and in particular activation sparsity, on common hardware. Currently, running models with higher activation sparsity rates on common CPU or GPU platforms will not result in computational speedups, and improvements are only reported in relative sparsity percentage, or synthetic memory compression rates (Georgiadis, 2019). It is not at all clear how these compression rates will relate to speedup in real-world implementations, and it is therefore difficult to evaluate the practical impact of existing methods.

In this paper, we address both these gaps with respect to
Inducing and Exploiting Activation Sparsity for Fast Neural Network Inference

activation sparsity. We begin by performing an in-depth analysis of regularization and thresholding methods as a way to increase activation map sparsity in convolutional neural networks. Specifically, we present a set of techniques which can significantly boost naturally-occurring activation sparsity in CNNs, without loss of accuracy. Our methods can be both applied statically (requiring no retraining) and dynamically (if fine-tuning is possible), and significantly improve upon existing regularization-based methods (Georgiades, 2019), often by more than 2× in terms of relative improvement to baseline sparsity. We complement these techniques with negative results, showing that activation sparsification cannot smoothly recover accuracy through re-training (as opposed to weight sparsification (Gale et al., 2019)), and that applying thresholding independently per each channel is possible but only yields limited gains. Our second contribution is a general algorithm which can leverage activation sparsity for computational gains, and its efficient CPU-based implementation. The resulting framework can lead to inference speedups of more than 2× on a range of popular CNNs for image classification, relative to industrial CPU- and GPU-based inference frameworks, and to our optimized dense baseline.

Our sparsity-boosting methods combine a regularizer following the Hoyer sparsity metric (Hoyer, 2004), together with a variant of the classic ReLU activation, which we call Forced Activation Threshold ReLU (FATReLU). Simply put, FATReLU implements a variable threshold for the common ReLU activation function, below which all activations are set to zero, based on the intuition is that a non-trivial fraction of the positive activations can be eliminated without significant impact on the output. We develop techniques to determine and optimize FATReLU thresholds per layer, and perform an analysis of the interplay between these methods and the accuracy of the resulting model. In short, we find that sparsity can be significantly boosted via Hoyer regularization and thresholding, with no accuracy loss, beyond L1 regularization. The methods we propose induce negligible (< 0.3%) accuracy loss on ImageNet-scale models, and can even result in minor accuracy increase. However, contrary to weight pruning methods, which can gradually trade off accuracy for increased sparsity, we find that sharp thresholds exist for activations, beyond which accuracy drops, and cannot be recovered. This observation simplifies the fine-tuning process, since, up to this threshold, we are usually able to recover full accuracy, and there is little benefit in fine-tuning beyond this threshold.

Our second contribution is a computational framework to leverage activation sparsity for computational gains, tailored to CPUs. This framework is based on an algorithm for fast convolutions on sparse inputs, for which we present an efficient vectorized implementation, and back by several non-trivial optimizations. We implement our framework in C++, and test it on a range of popular CNNs for image classification on the classic ImageNet ILSVRC2012 dataset (Deng et al., 2009). We find that 1) many popular models have significant “natural” activation sparsity, without any specific activation regularization; 2) the natural activation sparsity of these networks can be consistently and significantly boosted using our techniques. We show the resulting boosted models can be executed with speedups of more than 2× compared to state-of-the-art CPU and GPU inferencing solutions.

Related Work. The literature on model compression for DNNs is extremely vast, so we restrict our attention to work on analyzing and leveraging activation sparsity. The fact that activation sparsity arises naturally is well-known, and has been leveraged by several architecture proposals, e.g. (Albericio et al., 2016; Han et al., 2016; Parashar et al., 2017); in particular, reference (Rhu et al., 2018) performed an in-depth analysis of activation sparsity on a range of convolutional models. We extend this analysis here.

Another related line of work is that on compressing activation maps. A common technique for reducing the memory footprint of activation maps is quantization, which has been employed successfully by several references, see e.g. (Mishra et al., 2017) and references therein. We do not investigate quantization here, and leave a thorough treatment of the impact of our sparsification techniques in conjunction with quantization for future work. Reference (Gudovskiy et al., 2018) proposed a projection technique coupled with non-linear dimensionality reduction, which required modifying the network structure, while (Alwani et al., 2016) proposed to stochastically prune activations as an adversarial defense. Both techniques cause significant accuracy loss, and are therefore outside the scope of our study. Agostinelli et al. (2014) propose learning piecewise linear activation functions to improve the accuracy of given models. FATReLU is piecewise linear, but the goals and methods we investigate in this paper are different.

The work closest to ours is (Georgiades, 2019), who proposed and investigated the use of L1-regularization applied to the activation maps, and showed that it can result in a significant increase (up to 60% relative to naturally-occurring activation sparsity) on a range of CNNs for image classification. The paper goes on to explore several efficient encoding techniques for the activations, and evaluates them synthetically in terms of their resulting compression factors, but provides no inference experiments. We show that Hoyer regularization is superior to L1, in the sense that it provides higher activation sparsity without accuracy loss on all the models we investigated. The thresholding methods we propose are complementary to regularization in the sense that they can be applied independently of whether the base model has been regularized or not, or of the regularization method. In addition, our paper provides a complete
framework for leveraging activation sparsity for fast inference on CPUs, as well as end-to-end inference speedup for activation-sparsified models.

To our knowledge, the only reference to explicitly leverage input sparsity for performance gains is the recent preliminary publication of (Dong et al., 2019). By contrast, their algorithm is more complex, and requires high input sparsity to be efficient: in particular, as stated in the reference, the resulting algorithm can only be applied to certain types of tasks and models, such as LiDAR-based detection, or character recognition. For this reason, we do not directly compare against it. Our technique is applicable and efficient in a much wider range of scenarios.

Related algorithmic ideas have been investigated in (Park et al., 2016b,a; Chen, 2018). The critical distinction is that all these references explore leveraging sparsity in the weights, rather than in the activations, leading to a different algorithm structure and implementation. For example, our procedure critically requires efficient on-the-fly input compression, whereas weight sparsity techniques can pre-compress the weights offline. Another key difference from these approaches is that they require retraining, since kernel sparsity is not naturally present in neural networks without specific regularization or thresholding. Second, the speedups achieved by these methods are bound to be limited by the fact that, even with thresholding, kernels cannot usually be sparsiﬁed to the extremely large ratios which can be naturally present in activations without loss, e.g. > 90%.

Our work can also be examined in the broader context of model compression methods, which is an extremely active research area, e.g. (Wu et al., 2016; Zhu et al., 2016; Mishra et al., 2017; Mellempudi et al., 2017; Zhang et al., 2017; Park et al., 2016b; Han et al., 2016; Polino et al., 2018; Frankle & Carbin, 2018). We develop the first thresholding-based method speciﬁcally for activations, along with speciﬁc sensitivity analysis and tuning techniques.

2. Activation Sparsity in CNNs

2.1. Natural and Regularized Activation Sparsity

Naturally-Arising Sparse Activations. We begin by examining the natural sparsity of activation maps in CNNs. For simplicity, we will focus on residual models trained on the ImageNet (ILSVRC2012) task, although our ﬁndings are generally valid across other datasets (in particular, CIFAR-10 and 100 (Krizhevsky et al., 2014)) and architectures (ResNet (He et al., 2016), Mobilenet (Howard et al., 2017))—please see Section 5 for full results.

Activation sparsity is linked with the structure of the ReLU non-linearity: if input data to this function were completely random and zero-centered, then we would expect an output activation sparsity concentrated around 50%. However, if we examine the average activation map sparsity across several batches, we notice that layers which are closer to the input tend to have activation sparsity that is lower than this threshold, whereas later layers tend to have higher activation sparsity. One intuitive (but imprecise) explanation for this phenomenon could be that earlier layers adapt to extract more numerous low-level features, whereas the later layers would extract higher-level features. Please see Figure 4 for an illustration. The standard deviation of the recorded sparsities is under 1% across batches, so we omit conﬁdence intervals for visibility, noting that this stable behaviour across batches is somewhat surprising.

The Impact of Network Depth and Width. In this context, it is natural to ask whether wider or deeper networks will tend to have higher activation sparsity. We examined this trend on pre-trained ImageNet models, in particular comparing ResNet50 with its 2x wide variant (Zagoruyko & Komodakis, 2016), as well as with the deeper ResNet101 and its 2x wide variant. We use the Torchvision pretrained models as examples. The results are provided in Table 3. (We observed similar results in a depth-width ablation study on residual networks on CIFAR-10, which we omit for brevity.) First, average activation sparsity does indeed increase with network depth (e.g. 53% to 57% for ResNet50 vs ResNet101), corroborating the intuition that “higher level features” develop deeper in the network. Second, wider networks do have a higher fraction of zero activations (e.g. 53% to 58% for ResNet50 vs 2xWideResNet50), matching the intuition that only a limited subset of the features are necessary to classify a certain input, whose proportion does not necessarily increase with layer width. Moreover, as can be seen from the result for 2xWide ResNet101 (63%), these trends compound.

L1 Regularization. In Figure 4(a), we also examine the impact of L1 regularization applied to the activations on the sparsity. We follow the proposal of (Georgiadis, 2019), which consists of ﬁne-tuning an accurate pre-trained model with L1 regularization for a number of epochs, as well as the carefully optimized regularization parameter values provided, which ensure no accuracy loss. We notice that this method can boost the sparsity of activations by an extra 1% and 4% on average on ResNet50 and Mobilenet, respectively. (See Table 1 for values across models.)

Hoyer Regularization. We go beyond the L1 sparsity-inducing regularization, and consider the square Hoyer regularizer, deﬁned for a vector \(|\vec{v}|_2\) as \(H(\vec{v}) = \frac{\left(\sum_{i=1}^{d} |v_i|^2\right)^2}{\sum_{i=1}^{d} v_i^4}\). This regularizer has a range of desirable properties as a measure of sparsity (Hoyer, 2004), such as scale-invariance and differentiability almost-everywhere. It is popular for compressed sensing, and has only recently been applied for weight sparsiﬁcation (Yang et al., 2019); to our knowledge, we are the ﬁrst to investigate it for activation sparsity.
Figure 1. Illustration of the impact of regularization and boosting on the output distribution of a convolutional layer (ResNet18, layer 5). The Y axis is log-scale. Notice that all methods significantly narrow the set of non-zero activations; however, Hoyer and boosted Hoyer allow for more “diversity” in the activations, which explains their better performance.

Figure 4(a) presents the output activation sparsities for each layer of ResNet18, when regularized with square Hoyer such that there is no accuracy loss. Specifically, for each ReLU’s output we apply the square Hoyer regularization multiplied by a hyperparameter determined experimentally to the cost function. We found values between 10^{-8} (conservative) to 10^{-7} (more aggressive) to work for this parameter, for all the models we considered. Our initial learning rate for retraining is 5×10^{-3}, and we maintain standard momentum and weight decay values. With these parameters, we retrain for 10 epochs to stabilize weights and recover accuracy. We note that this recalibration process is significantly less expensive than for L1 regularization (Georgiadis, 2019), which required 90 epochs of training for recovery. The improvements relative to the additional sparsity induced by L1 are of 2.4x and 8x, for Mobilenet and ResNet50, respectively. Our experimental results in Section 5 clearly suggest that square Hoyer is superior to classic L1 regularization.

2.2. The Distribution of Activations

We now focus our attention to the distribution of activations in the layers of a neural network. We performed a basic histogram analysis for layers of ResNet18, from the original pre-trained model, as well as from the L1, Hoyer-regularized, and boosted variants of the same model. We notice that, for all instances, a non-trivial fraction of the activations are clustered around zero. Next, we implement an activation sensitivity analysis procedure: independently for each layer, we fix a threshold T below which all of the activations will be set to zero. We then increase this threshold and examine the loss of accuracy. The resulting graph for a set of layers of pretrained ResNet18 is presented in Figure 2. Results suggest that a non-trivial fraction of the activations can be set to zero without affecting the loss. The results presented are averaged over a set of 128 mini-batches. We found these results to be extremely consistent, and therefore omit error bars for visibility.

Further, Figure 2 (center, right), shows that regularization may serve to stabilize activations, in the sense that a larger fraction can be thresholded on regularized models, without accuracy loss. Moreover, we found the benefits from regularization to be approximately independent from, and additive with, the benefits from thresholding. Layers other than the one depicted exhibited a similar pattern, with some variance in the particular sparsity values.

3. Boosting Activation Sparsity

In this section, we investigate generic ways to systematically produce networks with high activation sparsity. We begin with static methods (which require no retraining), and then continue with dynamic methods, which are allowed to retrain in order to recover accuracy.

Forced-Activation Thresholds. Formally, the Forced-Activation Threshold ReLU activation function (FATReLU) is simply defined as:

$$FATReLU_T(x) = \begin{cases} x & \text{when } x \geq T \\ 0 & \text{otherwise.} \end{cases}$$

Note that FATReLU cannot be simulated by simply adding a linear bias term to ReLU. Further, not only is FATReLU not differentiable at T, but it is not even continuous at T, which renders training neural networks from scratch with FATReLU cumbersome. However, our use case allows us to use it to directly replace ReLU on a pre-trained model whose activations we wish to further sparsify.

Baseline Model. We assume an accurate pre-trained model for the target architecture and task. We first fine-tune the provided model using the square Hoyer regularizer, which sets a fraction of the activations to zero, and also “stabilizes” the other activations, allowing a larger fraction to be thresholded via FATReLU.
Activation Sensitivity Analysis. We first aim to find layer-wise activation thresholds which sparsify a large fraction of the activations preserving accuracy. We adapt the weight sparsity sensitivity analysis (Han et al., 2015) for the case of activations. Intuitively, we estimate the “derivative” of the loss with respect to the activation sparsity of each layer. The procedure starts by identifying a set of target sparsity percentages for the outputs of the different layers. For each layer \(L \), we pick a maximal percentage \(T_L \) of the extra activations which should be set to zero, in addition to the natural sparsity. We evaluate and record the loss at discrete thresholds \(t \in [0, T_L] \). (This procedure exclusively uses batches from the training set.)

We thus obtain a “sensitivity profile” for each layer, based on which we set a threshold for the activations of the layer. We usually pick the threshold for each layer to be the largest value which did not result in accuracy loss, modulo some small error tolerance. A typical set of results is illustrated in Figure 2. It is not uncommon for \(\text{FATReLU} \) to improve accuracy at low threshold values—one possible explanation is that this serves to remove some of the noise from the activations close to the zero threshold.

Retraining and Sharp Activation Thresholds. The above procedure is static, in the sense that the model weights are not modified, and the model is not retrained. It results in consistent, but relatively limited improvements in terms of activation sparsity: for instance, for the ResNet18 model, the average increase across layers due to static boosting is under 3% globally. We wish to achieve higher thresholds by allowing retraining of the network to adapt the weights to the higher thresholds. Such procedures are common for weight sparsification (Zhu & Gupta, 2017; Gale et al., 2019).

Perhaps surprisingly, we find that this behavior is bi-modal for activations: we can increase activation sparsity within a continuous range and still have the model recover full accuracy through retraining at each level within the range. However, each layer appears to have a “sharp” activation threshold beyond which the model is no longer able to recover accuracy, even with significant retraining. Identifying the exact root cause of this phenomenon is difficult, but we conjecture that it is related to the fact that the forward and backward information flow through the layer is break down due to the high activation threshold.

Dynamic Thresholding. Due to this bi-modal recovery behavior, we use dynamic thresholding to simplify the process of finding the optimal thresholds per layer. We fix a small accuracy loss tolerance, \(\tau \) (0.2% in our experiments), and, for each layer, we refer to the static analysis results to identify the maximal threshold for which accuracy loss remained below \(\tau \), determined by binary search over the range of thresholds. Once this threshold is determined for each layer, we run one fine-tuning training epoch until either recovery is achieved, or recovery fails. Using this success or failure criterion, we can perform binary search on \(\tau \) to determine the largest \(\tau \) for which recovery is possible.

We adopt this procedure since it has low cost, and similar outcomes to more complex iterative procedures we have investigated, both in terms of sparsity and accuracy. In addition, Dynamic Thresholding performs particularly well when used in conjunction with sparsity and accuracy. In addition, Dynamic Thresholding performs particularly well when used in conjunction with Hoyer regularization (please see Figure 4(a)). We adopt Hoyer regularization plus Boosting via Dynamic Thresholding as our main method for generating activation-sparse models.

Channel-wise Thresholding. Next, we ask whether we could further increase activation sparsity by performing Dynamic Thresholding channel-wise, setting a distinct threshold for each channel of each layer. This procedure is costly, since it requires fine-grained tuning across each channel, and requires care, since the impact of each individual channel on the loss may be small. We proceed as follows.

We start from the layer-wise FATReLU thresholds determined above. Next, we perform a one-shot sensitivity analysis for each channel in each layer, by estimating the piece-wise integral of the cross-entropy loss relative to the channel threshold, obtained from sensitivity analysis. We adopt the maximum threshold across all channels as the maximum value to integrate for across all channels. A lower integral value suggests that the channel is less sensitive to thresholding. Based on the results of this channel-wise sensitivity procedure, we partition the channels into groups based on their sensitivity. For each channel group (e.g. the 25% least sensitive channels, and so on), we perform binary search on their joint thresholds, attempting to increase their FATReLU threshold, until the point where we reach the tolerance in terms of accuracy difference.

We have performed channel-wise thresholding for ResNet18 following the above procedure. Please see Figure 3 for a sample of the results. On the positive side, the procedure does not diverge—we are able to systematically increase thresholds per channels without accuracy loss. On the nega-
4. Leveraging Activation Sparsity

Background. To make use of activation sparsity at runtime, we implement an algorithm to perform sparse convolutions on data that is initially produced (e.g. from a previous layer) in a standard (i.e. dense) format. We make use of a variant of the Compressed Sparse Row (CSR) representation (e.g. as implemented in (Wang et al., 2014)). Prior work has taken advantage of CSR for computing convolutions when the kernels are sparse, on both GPUs (Park et al., 2016b) and CPUs (Park et al., 2016a), where one has the luxury of being able to pre-compress the sparse kernels prior to inference with no performance overhead. However, for activations, the location of the non-zero elements is not known until inference time, and so we must be able to efficiently compress the activations at run time. Once compressed, we can apply Algorithm 1 to the compressed input. Importantly, both CSR compression and sparse-input convolution can be implemented efficiently on modern hardware, i.e. without the need to branch on zero elements.

We use a “3-array” variation of CSR, wherein a sparse matrix \(M \) is represented with the following three arrays:

- **values**: Element \(j \) contains the \(j^{th} \) non-zero element of \(M \) in row-major order
- **columns**: Element \(j \) contains the column index in \(M \) of the corresponding element \(\text{values}[j] \)
- **row_pointers**: Element \(i \) contains a pointer to the first element in \(\text{values} \) which came from row \(i \) of \(M \)

Note that \(\text{row_pointers} \) serves the additional function of encoding the number of non-zero elements per row, \(i \), derivable as \(\text{row_pointers}[i + 1] - \text{row_pointers}[i] \).

The Algorithm. Algorithm 1 shows a simple pseudo-code implementation to compute the convolution of a dense kernel \(K \) with sparse input \(I \) given in CSR format to produce output \(O \). For simplicity, we assume that the input data has one channel dimension and one spatial dimension. In particular, the input \(I \) is aCSR representation of data with dimensionality \(I_C \times I_{\times} \), the output \(O \) is a matrix with dimensions \(O_{C} \times O_{\times} \), and the kernel \(K \) is a tensor with dimensions \(O_{C} \times I_{C} \times K_{\times} \). Extending to more spatial dimensions (as is typical, e.g., in image processing NNs) is straightforward and omitted for clarity.

AVX Implementation. We implemented Algorithm 1 on Intel’s Skylake architecture with x86+AVX512 instruction set. Both CSR compression and Algorithm 1 can be implemented efficiently using available SIMD instructions. Algorithm 2 demonstrates how to implement Algorithm 1 in a SIMD way. Note that \(O_{C} \) refers to the number of vectors of output channels to be computed, i.e. \(O_{C} = O_{\times}/r \) when there are \(r \) values per vector. In our implementation, \(r = 16 \), as we use FP32 data stored in 512-bit vector registers. Note that we assume that there are \(O_{\times} \) vector registers, \(v_{\times}^{(0)}, \ldots, v_{\times}^{(15)} \), available to hold intermediate results. Otherwise, we can subdivide the output tensor \(O \) along its channel dimension into blocks small enough to be held in register, and execute Algorithm 2 independently for each block.

SIMD Compression. Because we must compress our input data at runtime, we also require an efficient algorithm to compress a matrix \(M \) to CSR format. This can be done as follows: given a SIMD vector, \(v \), of 16 floats, which we want to compress, we use the \(\text{vcmp} \) instruction to identify the locations of the non-zero elements in \(v \) stored in a mask register \(m \). Then use the \(\text{vcompress} \) instruction twice: once applied to \(v \) with mask \(m \) to produce contiguous non-zero elements to be written to \(\text{values} \), and a second time applied to the vector \(\{j, \ldots, j + 15\} \) with mask \(m \) (where \(j \) is the column index of the first element of \(v \) in \(M \)) to produce column indices to be written to \(\text{columns} \). The
Algorithm 1 Sparse Convolution
1: for \((ox, kx)\) \(\in [0, O_x) \times [0, K_x)\) do
2: \(ix \leftarrow ox + kx\)
3: for \(in_loc \in [\text{row_points}[ix], \text{row_points}[ix + 1))\) do
4: \(ic \leftarrow \text{columns}[ix][f]\)
5: for \(oc \in [0, O_C)\) do
6: \(0[oc][ox] += \text{values}[\text{in_loc}] * K[oc][ic][kx]\)
7: end for
8: end for
9: end for

Algorithm 2 AVX Sparse Convolution
1: for \((ox, kx)\) \(\in [0, O_x) \times [0, K_x)\) do
2: initialize \(v_{out}^{(0)} \cdots v_{out}^{(K)}\) to 0
3: \(ix \leftarrow ox + kx\)
4: for \(in_loc \in [\text{row_points}[ix], \text{row_points}[ix + 1))\) do
5: \(v_{in} \leftarrow \text{vbroadcast(values[\text{in_loc}])}\)
6: \(ic \leftarrow \text{columns}[ix][f]\)
7: for \(oc = 1\) to \(O_C\) do
8: \(// K[oc][ic][kx] \text{ points to a kernel vector in memory}\)
9: \(v_{out}^{(oc)} \leftarrow \text{vfmadd}(v_{in}, K[oc][ic][kx], v_{out}^{(oc)})\)
10: end for
11: end for
12: Store \(v_{out}^{(0)} \cdots v_{out}^{(K)}\) to memory locations \([0 \cdots O_C][ox]\)
13: end for

Next, we discuss a number of optimizations which we apply to our framework, focusing on CPU-based implementations.

Multicore. Our sparse convolution framework is embarrassingly parallel: we partition \(O\) into blocks \(O_1, \ldots, O_n\) and assign blocks to \(n\) threads. Each thread fully computes its corresponding block of \(O\). In order to avoid many threads having to load the same input data, we minimize the overlaps between pre-images of the blocks \(O_i\). Observing that two elements of \(O\) with different channel coordinates, but which share the same spatial coordinate, have identical pre-images, we partition \(O\) spatially as much as possible, rather than partitioning along channels. In some cases, image sizes are too small to get spatial partitions with enough work to saturate threads, in which case we can choose to additionally partition along channels after all.

Input Pre-loading. We observe that the input broadcast on line 4 of Algorithm 2 has the potential to be high latency since it must read from memory. Fortunately, modern CPUs can hide the latency of such memory accesses via pipelining them, i.e. executing instructions which do not depend on the results of the load while waiting for the values from memory to become available. In order to take full advantage of this pipeline, we re-order the memory loads to be as early as possible, by issuing each broadcast instruction \(s\) loop iterations before it is actually needed, at the cost of requiring \(s\) additional registers to hold pending input values.

Hot kernels in cache. In some layers of some networks, convolutional kernels are so large that they do not fit in cache. For instance, the last several convolutions of ResNet50 are either \(2048 \times 512 \times 1\) or \(512 \times 512 \times 3 \times 3\), which, at 4 bytes per (floating point) value, are 4MB and 9MB respectively, yet L2 cache sizes of Intel machines are commonly only 1MB. Keeping kernels in L2 is critical for performance since every iteration of the inner-most loop accesses a different kernel value (line 4). To ensure that kernels remain hot, we use a combination of two techniques.

Firstly, if the kernel dimensions are such that the values associated with a single spatial pixel do fit in cache (i.e. \(4C_O < 1MB\)), then we can order the outer loops of Algorithm 2 so that the loops over the spatial dimensions of the kernels is outermost. That is, for each of the \(K_x\) spatial coordinates of the kernel, we will compute partial results by performing all of the multiply-adds involving kernel values that share that coordinate, ultimately accumulating all of the partial results together. Thus, we only need to move the kernel values into L2 cache once and reuse them from there, at the cost of a few extra reads and writes of the (typically smaller) inputs and outputs.

Hot compression. To save on expensive memory accesses, we ensure that the results of the input pre-compression are used before being evicted from cache. To accomplish this, we subdivide the Sparse Convolutional operation into sub-tasks, each of which contains a block of data which fits entirely in cache. Then, we can process each block by first running the CSR compressor on only that block, and then immediately applying Algorithm 2 to the resulting compressed data while it is still hot.

5. Experimental Results

Goals, Setup and Tasks. We experimentally validate our methods by applying them to a range of classic convolutional models for image classification. We aim to determine the extent to which our techniques can boost activation sparsity, and the impact this has in terms of layer-wise and end-to-end inference speedup on real models and tasks, compared against optimized baselines which do not leverage activation sparsity. We focus on the ResNet (He et al., 2016), and MobileNet (Howard et al., 2017) architectures, applied to ImageNet ILSVRC2012 (Deng et al., 2009).

We implemented our thresholding methods in Pytorch, making use of the provided pre-trained models as starting points for the regularization and thresholding procedures. We implemented our sparse-input convolution in C++, on top of an existing fully-dense baseline framework, which uses optimized direct convolution or general matrix multiply (GeMM) operations for all layers. This framework gets an
ONNX file (Bai et al., 2019) describing the network architecture as an input, parses and optimizes the graph, and then generates the Just-in Time compiled (JITted) assembly code for each layer. This baseline framework is well-optimized: as evident in Table 2, inference numbers using Dense match a state-of-the-art industrial solutions (MXNet 1.3 (Chen et al., 2015) using Intel MKL-DNN for CPU inference, and Pytorch/CUDA10 for GPU inference).

We perform our performance experiments on an AWS C5.12xlarge instance which sports an Intel Cascade Lake chip with 24 physical cores, has 96 GB of memory and runs Ubuntu 18.04, as well as on a local server with the same configuration. For GPU inference, we used P2.xlarge instance with one NVIDIA K80 GPU, running Pytorch 1.2.0 with CUDA10, using 16bit half precision.

Boosting Activation Sparsity. Our first experiments evaluate the ability of various methods to induce a large subset of activations to be zero. In particular, we study the average activation sparsity of 1) the baseline pre-trained models from Pytorch, 2) the L1-regularized models following the optimized hyperparameter values from (Georgiadis, 2019), 3) the (square) Hoyer-regularized models whose hyperparameters we identify through grid search, 4) the dynamically-boosted variants of the Hoyer-regularized models, following the algorithm from Section 3. For methods 2)–4) we performed fine-tuning for 20 epochs to recover or even increase accuracy under regularization. ((Georgiadis, 2019) recommends 90 epochs of retraining with regularization, but we were able to reproduce their results with this compressed
end-to-end inference on the respective models. Figures 4 and 5 present execution times layer-by-layer, whereas Tables 2 and 3 presents average total execution times for the models at batch size 64 under various configurations and speedup.

<table>
<thead>
<tr>
<th>Model</th>
<th>MXNet+MKL-DNN</th>
<th>NVIDIA K80</th>
<th>Dense</th>
<th>Natural Sparsity</th>
<th>Hoyer Reg.</th>
<th>Boosted Hoyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet18</td>
<td>113.4</td>
<td>100.16</td>
<td>107.25</td>
<td>68.40</td>
<td>63.67</td>
<td>60.92 (1.86x)</td>
</tr>
<tr>
<td>ResNet50</td>
<td>317.49</td>
<td>350.2</td>
<td>256.06</td>
<td>194.86</td>
<td>183.21</td>
<td>180.5 (1.75x)</td>
</tr>
<tr>
<td>Mobilenet</td>
<td>88.55</td>
<td>114.3</td>
<td>62.64</td>
<td>58.93</td>
<td>51.80</td>
<td>49.77 (1.78x)</td>
</tr>
</tbody>
</table>

Table 2. Average inference running times in ms for batch size 64 on various models and variants (AWS C5.24xlarge for CPU and AWS P2.xlarge for GPU). Speedups are presented in brackets relative to the state-of-the art MXNet/MKL-DNN CPU inference framework.

A sample of layer-wise results are presented in Figures 4 (ResNet18) and 5 (Mobilenet), while the average sparsities are presented in Table 1. One salient trend is that Hoyer and Dynamic Boosting are able to consistently boost sparsities, significantly beyond the baseline or L1 regularization. For instance, for the input layer of Mobilenet, they both reduce density by $\sim 2 \times$ versus the natural sparsity, and by 50% versus L1 regularization. We note that, across all layers of all networks, there are only two layers where L1 regularization provides higher sparsity (the input layers of the residual networks), and by a very narrow margin. The second noticeable trend is that Dynamic Boosting can consistently reduce the density of activations without accuracy loss: for Mobilenet, these margins are almost negligible, but they become significant for the residual models, where boosting almost doubles the sparsity improvement of the best regularizer (Hoyer). A third observation (Table 3) is that our methods are especially effective in the context of accurate but heavy wide and deep models, where activation density can be effectively halved through boosting, without accuracy loss.

<table>
<thead>
<tr>
<th>Model</th>
<th>Natural AS</th>
<th>Boosted</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet50</td>
<td>53%</td>
<td>65%</td>
<td>1.67x</td>
</tr>
<tr>
<td>2x Wide ResNet50</td>
<td>58%</td>
<td>81%</td>
<td>2.04x</td>
</tr>
<tr>
<td>ResNet101</td>
<td>57%</td>
<td>79%</td>
<td>1.53x</td>
</tr>
<tr>
<td>2x Wide ResNet101</td>
<td>63%</td>
<td>84%</td>
<td>2.57x</td>
</tr>
</tbody>
</table>

Table 3. Average activation sparsity and speedup.

End-to-End Inference Performance. We now turn our attention to how well the activation sparsity numbers we saw in the previous section translate to actual speedups in end-to-end inference on the respective models. Figures 4 and 5 presents execution times layer-by-layer, whereas Tables 2 and 3 presents average total execution times for the models at batch size 64 under various configurations and speedup.

Generally, we find that activation sparsity can lead to significant and consistent speedups across the layers, roughly proportional to the amount of activation sparsity. A significant fraction of the speedup can already be obtained on top of the pretrained models, by exploiting their natural sparsity. At the same time, regularization and boosting consistently provide additional speedups, in particular for the computationally-heavy but accurate wide/deep models. In fact, fortunately, the layers with the largest computational overhead have high input sparsity (especially with boosting).

The end-to-end results are summarized in the last column of each table. Experiments confirm that Hoyer with Dynamic Boosting consistently provides the highest speedups for ResNets and Mobilenet, in the range of 1.67x (ResNet50) to 2.57x (WideResNet101), relative to our optimized dense implementation.

6. Conclusions and Future Work

We have presented a framework for augmenting and leveraging activation sparsity in DNNs for computational speedups. Our framework leverages two new techniques: on the machine learning side, a set of regularization and thresholding tools to boost the average and peak activation sparsity of networks; on the technical side, an algorithm for efficiently performing convolutions on sparse inputs, along with its optimized implementation in C++. Our techniques are implemented in an extensible, modular framework, which could be leveraged by researchers wishing to extend our results for both creating models with higher activation sparsity, or faster algorithms for sparse convolutions. Our framework is particularly well-suited for speeding-up inference on accurate, but heavy, deep and wide models.

In future work, we plan to explore additional strategies for memory-bound layers, and investigate the impact of quantization on sparsity on computational speedups.
References

Inducing and Exploiting Activation Sparsity for Fast Neural Network Inference

