Appendices

A. Definitions

We repeat the relevant definitions in our paper.

A1. Safe Space: For more details, see Turchetta et al. (2016).

Set of the states identified as safe up to some confidence level of ϵ_g:

$$R_{\epsilon_g}^{\text{safe}}(X) = X \cup \{ s \in S | \exists s' \in X : g(s') - \epsilon_g - Ld(s, s') \geq h \}.$$

Set of states with reachability from X:

$$R_{\text{reach}}(X) = X \cup \{ s \in S | \exists s' \in X, a \in A(s') : s = f(s', a) \}.$$

Set of states with returnability to X:

$$R_{\text{ret}}(X, \bar{X}) = \bar{X} \cup \{ s \in X | \exists a \in A : f(s, a) \in \bar{X} \},$$

$$R_{\text{ret}}^n(X, \bar{X}) = R_{\text{ret}}(X, R_{\text{ret}}^{n-1}(X, \bar{X})), \text{ with } R_{\text{ret}}^1(X, \bar{X}) = R_{\text{ret}}(X, \bar{X}),$$

$$\bar{R}_{\text{ret}}(X, \bar{X}) = \lim_{n \to \infty} R_{\text{ret}}^n(X, \bar{X}).$$

Set of safe states with reachability and returnability:

$$R_{\epsilon_g}(X) = R_{\epsilon_g}^{\text{safe}}(X) \cap R_{\text{reach}}(X) \cap R_{\text{ret}}(R_{\epsilon_g}^{\text{safe}}(X), X),$$

$$\bar{R}_{\epsilon_g}(X) = R_{\epsilon_g}(R_{\epsilon_g}^{n-1}(X)), \text{ with } R_{\epsilon_g}^1(X) = R_{\epsilon_g}(X),$$

$$\bar{R}_{\epsilon_g}(X) = \lim_{n \to \infty} R_{\epsilon_g}^n(X).$$

Pessimistic safe space:

$$S^-_t = \{ s \in S | \exists s' \in X_{t-1}^- : t_\epsilon(s') - L \cdot d(s, s') \geq h \},$$

$$X_{t^-} = \{ s \in S^-_t | s \in R_{\text{reach}}(X_{t-1}^-) \cap \bar{R}_{\text{ret}}(S^-_t, X_{t-1}^-) \}.$$

Optimistic safe space:

$$S^+_t = \{ s \in S | \exists s' \in X_{t-1}^+ : u_\epsilon(s') - L \cdot d(s, s') \geq h \},$$

$$X_{t^+} = \{ s \in S^+_t | s \in R_{\text{reach}}(X_{t-1}^+) \cap \bar{R}_{\text{ret}}(S^+_t, X_{t-1}^+) \}.$$

A2. Optimization of Cumulative Reward

For optimal policy:

$$V^{*}_{\lambda}(s_t) = \max_{s_{t+1} \in R_{\lambda}(s_t)} [r(s_{t+1}) + \gamma V^{*}_{\lambda}(s_{t+1})].$$

For balancing exploration and exploitation (neither ES^2 nor $P-ES^2$ is used):

$$U_t(s) = \mu_t(s) + \alpha_t \frac{1}{2} \sigma_t^2(s),$$

$$J_{\lambda}(s_t, b^*_t, b^*_t) = \max_{s_{t+1} \in X_{t^+}^*} \left[U_t(s_{t+1}) + \gamma J_{\lambda}(s_{t+1}, b^*_t, b^*_t) \right].$$
A3. ES² Algorithm

For checking whether the termination condition is satisfied:

\[V_{\mathcal{M}_t}(s_t) = \max_{s_{t+1} \in \mathcal{X}_t^+} \left[r'(s_{t+1}) + \gamma V_{\mathcal{M}_t}(s_{t+1}) \right], \]

\[\mathcal{Y}_t = \{ s' \in \mathcal{S}^+ \mid \forall s \in \mathcal{X}_t^- : s' = f(s, \pi^*_t(a \mid s)) \}, \]

\[\mathcal{Y}_t \subseteq \mathcal{X}_t^- . \]

For balancing exploration and exploitation in terms of reward:

\[J^*_x(s_t, b^*_t, b^*_t) = \max_{s_{t+1} \in \mathcal{Y}_t} \left[U_t(s_{t+1}) + \gamma J^*_x(s_{t+1}, b^*_t, b^*_t) \right] . \]

A4. P-ES² Algorithm

For checking whether the termination condition is satisfied:

\[V_{\mathcal{M}_t}(s_t) = \max_{s_{t+1} \in \mathcal{X}_t^+} \left[P^z \cdot \{ r'(s_{t+1}) + \gamma V_{\mathcal{M}_t}(s_{t+1}) \} \right], \]

\[\mathcal{Z}_t = \{ s' \in \mathcal{S}^+ \mid \forall s \in \mathcal{X}_t^- : s' = f(s, \pi^*_t(a \mid s)) \}, \]

\[\mathcal{Z}_t \subseteq \mathcal{X}_t^- . \]

For balancing exploration and exploitation in terms of the reward:

\[J^*_z(s_t, b^*_t, b^*_t) = \max_{s_{t+1} \in \mathcal{Z}_t} \left[U_t(s_{t+1}) + \gamma J^*_z(s_{t+1}, b^*_t, b^*_t) \right] . \]

B. Preliminary Lemma

Lemma 3. For two arbitrary functions \(f_1(x) \) and \(f_2(x) \), the following inequality holds:

\[\max_x f_1(x) - \max_x f_2(x) \geq \min_x (f_1(x) - f_2(x)). \]

Proof. For two arbitrary functions \(f_4(x) \) and \(f_5(x) \), the following inequality holds:

\[\max_x f_4(x) + \max_x f_5(x) \geq \max_x \{ f_4(x) + f_5(x) \} . \]

Let \(f_2(x) = f_4(x) + f_5(x) \) and \(f_3(x) = -f_4(x) \). Then,

\[\max_x \{-f_3(x)\} + \max_x \{ f_2(x) + f_3(x) \} \geq \max_x f_2(x) , \]

\[\max_x \{ f_2(x) + f_3(x) \} - \max_x f_2(x) \geq -\max_x \{-f_3(x)\} , \]

\[\max_x \{ f_2(x) + f_3(x) \} - \max_x f_2(x) = \min_x f_3(x) . \]

Finally, let \(f_1(x) = f_2(x) + f_3(x) \). Then, the desired lemma is obtained. \(\square \)

C. Near-optimality

Lemma 4. Let \(J^*_x(s_t, b^*_t, b^*_t) \) be the value function calculated by SNO-MDP without the ES² algorithm. Then, \(J^*_x(s_t, b^*_t, b^*_t) \) satisfies the following inequality:

\[J^*_x(s_t, b^*_t, b^*_t) \geq V^*(s_t) . \]

Proof. Consider a state \(s_t \) and beliefs \(b^*_t \) and \(b^*_t \). Also, let \(I \) denote the following safety indicator function:

\[I(s) := \begin{cases} 1 & \text{if } s \in \bar{R}_{\epsilon_*}(S_0), \\ 0 & \text{otherwise}. \end{cases} \]
Then, the following chain of equations and inequalities holds:

\[
J^*_X(s_t, b^r_t, b^g_t) - V^*(s_t) \\
= \max_{s_{t+1} \in X^*_t} \left[U_t(s_{t+1}) + \gamma J^*_X(s_{t+1}, b^r_{t+1}, b^g_{t+1}) \right] - \max_{s_{t+1} \in R_g(S_0)} \left[r(s_{t+1}) + \gamma V^*_M(s_{t+1}) \right] \\
\geq \max_{s_{t+1} \in R_g(S_0)} \left[U_t(s_{t+1}) + \gamma J^*_X(s_{t+1}, b^r_{t+1}, b^g_{t+1}) \right] - \max_{s_{t+1} \in R_g(S_0)} \left[r(s_{t+1}) + \gamma V^*_M(s_{t+1}) \right] \\
= \max_{a_t} \left[I(s_{t+1}) \cdot \{ U_t(s_{t+1}) + \gamma J^*_X(s_{t+1}, b^r_{t+1}, b^g_{t+1}) \} \right] - \max_{a_t} \left[I(s_{t+1}) \cdot \{ r(s_{t+1}) + \gamma V^*_M(s_{t+1}) \} \right] \\
\geq \min_{a_t} \left[I(s_{t+1}) \cdot \{ U_t(s_{t+1}) - r(s_{t+1}) \} + \gamma I(s_{t+1}) J^*_X(s_{t+1}, b^r_{t+1}, b^g_{t+1}) - \gamma I(s_{t+1}) V^*(s_{t+1}) \right] \\
= \min_{a_t} \left[I(s_{t+1}) \cdot \{ U_t(s_{t+1}) - r(s_{t+1}) \} + \gamma I(s_{t+1}) \{ J^*_X(s_{t+1}, b^r_{t+1}, b^g_{t+1}) - V^*(s_{t+1}) \} \right].
\]

The third line follows from \(X^*_t \supseteq \tilde{R}_{g}(S_0) \) in Theorem 1. Also, the fourth line follows from the definition of \(I \), and the fifth line follows from Lemma 3. Because \(s \) is arbitrary in the above derivation, we have

\[
\min_{a_t} \left[J^*_X(s_t, b^r_t, b^g_t) - V^*(s_t) \right] \geq \min_{a_t} \left[I(s_{t+1}) \{ U_t(s_{t+1}) - r(s_{t+1}) \} + \gamma I(s_{t+1}) \{ J^*(s_{t+1}, b^r_{t+1}, b^g_{t+1}) - V^*(s_{t+1}) \} \right].
\]

By Lemma 2, the following equation holds with probability at least \(1 - \Delta^r \):

\[
\min_{a_t} \left[J^*_X(s_t, b^r_t, b^g_t) - V^*(s_t, b^r_t, b^g_t) \right] \geq \gamma \cdot \min_{a_t} \left[I(s_{t+1}) \{ J^*(s_{t+1}, b^r_{t+1}, b^g_{t+1}) - V^*(s_{t+1}) \} \right].
\]

Repeatedly applying this equation proves the desired lemma. Therefore, we have

\[
J^*_X(s_t, b^r_t, b^g_t) \geq V^*(s_t)
\]

with high probability.

\[\text{Lemma 5. (Generalized induced inequality)}\]

Let \(b^r, b^g, r \) and \(\hat{b}^r, \hat{b}^g, \hat{r} \) be the beliefs (over reward and safety, respectively) and reward functions (including the exploration bonus) that are identical on some set of states \(\Omega \) — i.e., \(b^r = \hat{b}^r, b^g = \hat{b}^g \), and \(r = \hat{r} \) for all \(s \in \Omega \). Let \(P(A_{\Omega}) \) be the probability that a state not in \(\Omega \) is generated when starting from state \(s \) and following a policy \(\pi \). If the value is bound in \([0, V_{\text{max}}]\), then

\[V^*(s, b^r, b^g, r) \geq V^*(s, \hat{b}^r, \hat{b}^g, \hat{r}) - V_{\text{max}} P(A_{\Omega}),\]

where we now make explicit the dependence of the value function on the reward.

\[\text{Proof.}\] The lemma follows from Lemma 8 in Strehl & Littman (2005).

\[\text{Lemma 6.}\] Assume that the reward function \(r \) satisfies \(\|r\|^2_k \leq B^r \), and that the noise \(n^r_t \) is \(\sigma_r \)-sub-Gaussian. If \(\alpha_t = B^r + \sigma_r \sqrt{2(\Gamma_{t-1} + 1 + \log(1/\Delta^r))} \) and \(C_r = 8/\log(1 + \sigma_r^{-2}) \), then the following holds:

\[\frac{1}{2} \chi_{t} \sigma_r \sqrt{\Gamma_{t-1}} \geq \alpha_t^{1/2} \sigma_r^r(s),\]

with probability at least \(1 - \Delta^r \).

\[\text{Proof.}\] The lemma follows from Lemma 4 in Chowdhury & Gopalan (2017).

\[\text{D. ES}^2 \text{ algorithm}\]

\[\text{Lemma 7.}\] Assume that \(\mathcal{Y}_t \subseteq X^*_t \) holds. Suppose that we obtain the optimal policy, \(\pi^*_y \) on the basis of \(J^*_y(s_t, b^r_t, b^g_t) = \max_{s_{t+1} \in \mathcal{Y}_t} \left[U_t(s_{t+1}) + \gamma J^*_y(s_{t+1}, b^r_{t+1}, b^g_{t+1}) \right] \). Then, for all \(t \), the following holds:

\[s_t \in \mathcal{Y}_t \implies s_{t+1} \in \mathcal{Y}_t.\]
Lemma 8. Assume that \(\mathcal{Y}_t \subseteq \mathcal{X}_t^- \) holds, and let \(J^*_Y(s_t, b'_t, b''_t) \) be the value function calculated by SNO-MDP with the ES\(^2\) algorithm. Then, for all \(s_t \in \mathcal{X}_t^- \), \(J^*_Y(s_t, b'_t, b''_t) \) satisfies the following equation:

\[
J^*_Y(s_t, b'_t, b''_t) \geq V^*(s_t).
\]

Proof. Consider a state \(s_t \in \mathcal{X}_t^- \) and beliefs \(b'^* \) and \(b'' \). Also, we define the function \(I \) as in (5). Then, the following chain of the equations and inequalities holds:

\[
\begin{align*}
J^*_Y(s_t, b'_t, b''_t) - V^*(s_t) & = \max_{s_{t+1} \in \mathcal{Y}_t} \left[U_i(s_{t+1}) + \gamma J^*_Y(s_{t+1}, b'_t, b''_t) \right] - \max_{s_{t+1} \in \mathcal{Y}_t} \left[I(s_{t+1}) \cdot \left\{ r(s_{t+1}) + \gamma V^*_M(s_{t+1}) \right\} \right] \\
& = \max_{s_{t+1} \in \mathcal{Y}_t} \left[U_i(s_{t+1}) + \gamma J^*_Y(s_{t+1}, b'_t, b''_t) \right] - \max_{s_{t+1} \in \mathcal{Y}_t} \left[I(s_{t+1}) \cdot \left\{ r(s_{t+1}) + \gamma V^*_M(s_{t+1}) \right\} \right] \\
& = \max_{s_{t+1} \in \mathcal{Y}_t} \left[U_i(s_{t+1}) + \gamma J^*_Y(s_{t+1}, b'_t, b''_t) \right] - \max_{s_{t+1} \in \mathcal{Y}_t} \left[I(s_{t+1}) \cdot \left\{ r(s_{t+1}) + \gamma V^*_M(s_{t+1}) \right\} \right] \\
& \geq \min_{s_{t+1} \in \mathcal{Y}_t} \left[U_i(s_{t+1}) + \gamma J^*_Y(s_{t+1}, b'_t, b''_t) \right] - r(s_{t+1}) + \gamma V^*_M(s_{t+1}) \\
& \geq \min_{s_{t+1} \in \mathcal{Y}_t} \left[U_i(s_{t+1}) + \gamma J^*_Y(s_{t+1}, b'_t, b''_t) \right] - \{ r(s_{t+1}) + \gamma V^*_M(s_{t+1}) \} \\
& = \min_{s_{t+1} \in \mathcal{Y}_t} \left[U_i(s_{t+1}) - r(s_{t+1}) + \gamma J^*_Y(s_{t+1}, b'_t, b''_t) - \gamma V^*_M(s_{t+1}) \right].
\end{align*}
\]

The second and third lines follow from the definitions of \(I \) and \(V^*_M \). The forth line follows from the definition of \(\mathcal{Y} \) and the assumption of \(\mathcal{Y}_t \subseteq \mathcal{X}_t^- \). The fifth line follows from Lemma 3.

Then, by Lemma 2, the following equation holds with probability at least \(1 - \Delta^v \):

\[
\min_{s_t \in \mathcal{X}_t^-} \left[J^*_Y(s_t, b'_t, b''_t) - V^*(s_t) \right] \geq \gamma \cdot \min_{s_{t+1} \in \mathcal{Y}_t} \left[J^*_Y(s_{t+1}, b'_t, b''_t) - V^*_M(s_{t+1}) \right] \\
\geq \gamma^2 \cdot \min_{s_{t+1} \in \mathcal{Y}_t} \left[J^*_Y(s_{t+1}, b'_t, b''_t) - V^*_M(s_{t+1}) \right].
\]

The second line follows from Lemma 7. Repeatedly applying this equation proves the desired lemma. Therefore, for all \(s_t \in \mathcal{X}_t^- \), we have

\[
J^*_Y(s_t, b'_t, b''_t) \geq V^*(s_t).
\]

E. Main Theoretical Results

Theorem 1. Assume that the safety function \(g \) satisfies \(\|g\|_k^2 \leq B^g \) and is L-Lipschitz continuous. Also, assume that \(S_0 \neq \emptyset \) and \(g(s) \geq \bar{h} \) for all \(s \in S_0 \). Fix any \(\epsilon_g > 0 \) and \(\Delta^g \in (0, 1) \). Suppose that we conduct the stage of “exploration of safety” with the noise \(n^g_t \) being \(\sigma^* \)-sub-Gaussian, and that \(\beta_t = B^g + \sigma^g \sqrt{2(\Gamma_{t-1} + 1 + \log(1/\Delta^g))} \) until \(\max_{s \in G_t} w_t(s) < \epsilon_g \) is achieved. Finally, let \(t^* \) be the smallest integer satisfying

\[
\frac{t^*}{\beta_t \Gamma_t^g} \geq C_2 \frac{\tilde{P}_0(S_0)}{\epsilon_g^2} \cdot D(M),
\]

with \(C_2 = 8/\log(1 + \sigma_g^{-2}) \). Then, the following statements jointly hold with probability at least \(1 - \Delta^g \):
• ∀t ≥ 1, g(s_t) ≥ h,

• ∃t ≥ t^*, \bar{R}_t(s_0) ⊆ X_{t^*} ⊆ \bar{R}_0(s_0).

\textbf{Proof.} This is an extension of Theorem 1 in Turchetta et al. (2016) to our settings, where t represents not the number of samples but the number of actions. \hfill \square

\textbf{Theorem 2.} Assume that the reward function r satisfies \(\|r\|_r^2 ≤ B^r\), and that the noise is \(σ_r\)-sub-Gaussian. Let \(π_t\) denote the policy followed by SNO-MDP at time t, and let \(s_t\) and \(b_t\) be the corresponding state and beliefs, respectively. Let \(t^*\) be the smallest integer satisfying \(\frac{t^*}{βr + 1} ≥ \frac{C_1(\bar{R}_0(s_0))}{ε_σ} D(M)\), and fix any \(Δ^r ∈ (0, 1)\). Finally, set \(α_t = B^r + σ_r \sqrt{2(Γ_{t-1}^r + 1 + \log(1/Δ^r))}\) and

\[\epsilon^r_v = V_{\max} \cdot (Δ^g + Σ^r_t / R_{\max}),\]

with \(Σ^r_t = 1/2 \sqrt{\frac{C_1(α_t, Γ_{t-1}^r)}{r}}.\) Then, with high probability,

\[V^{π_t}(s_t, b_t^r, b_t^0) ≥ V^*(s_t) - \epsilon^r_v\]

— i.e., the algorithm is \(ε^r_v\)-close to the optimal policy — for all but \(t^*\) time steps, while guaranteeing safety with probability at least \(1 - Δ^g\).

\textbf{Proof.} Define \(\tilde{r}\) as the reward function (including the exploration bonus) that is used by SNO-MDP. Let \(r\) be a reward function equal to \(r\) on \(Ω\) and equal to \(\tilde{r}\) elsewhere. Furthermore, let \(\tilde{π}\) be the policy followed by SNO-MDP at time \(t\), that is, the policy calculated on the basis of the current beliefs, (i.e., \(b_t^r\) and \(b_t^0\)) and the reward \(\tilde{r}\). Finally, let \(A_Ω\) be the event in which \(\tilde{π}\) escapes from \(Ω\). Then,

\[V^{π_t}(r, s_t, b_t^r, b_t^0) ≥ V^{\tilde{π}}(\tilde{r}, s_t, b_t^r, b_t^0) - V_{\max} P(A_Ω)\]

by Lemma 5. In addition, note that, for all \(t \geq t^*\), because \(\tilde{r}\) and \(\tilde{r}\) differ by at most \(α_t \cdot σ_{t^*}^r\) at each state,

\[|V^{\tilde{π}}(\tilde{r}, s_t, b_t^r, b_t^0) - V^{\tilde{π}}(\tilde{r}, s_t, b_t^r, b_t^0)| ≤ \frac{1}{1 - γ} \cdot α_t \cdot σ_{t^*}^r(s)\]

\[≤ V_{\max}/R_{\max} \cdot Σ^r_t.\] \hfill (6)

For the above inequality, we used Lemma 6. Here, consider the case of \(Ω = X_{t^*}\). Once the safe region is fully explored, \(P(A_Ω) ≤ Δ^g\) holds after \(t^*\) time steps. Then, the following chain of equations and inequalities holds:

\[V^{π_t}(R, s, b) ≥ V^{\tilde{π}}(\tilde{R}, s, b) - V_{\max} \cdot P(A_Ω)\]

\[= V^{\tilde{π}}(\tilde{R}, s, b) - V_{\max} \cdot P(A_{X^c-})\]

\[≥ V^{\tilde{π}}(\tilde{R}, s, b) - V_{\max} \cdot Δ^g\]

\[≥ V^{\tilde{π}}(\tilde{R}, s, b) - V_{\max} \cdot (Δ^g + Σ^r_t / R_{\max})\]

\[= J^*_X(\tilde{R}, s, b) - V_{\max} \cdot (Δ^g + Σ^r_t / R_{\max})\]

\[≥ V^*(\tilde{R}, s, b) - V_{\max} \cdot (Δ^g + Σ^r_t / R_{\max}).\]

In this derivation, the second line follows from the assumption of \(Ω = X^c\), the third line follows from \(P(A_{X^-}) ≤ Δ^g\), the fourth line follows from (6), the fifth line follows from the fact that \(\tilde{π}\) is precisely the optimal policy for \(\tilde{R}\) and \(b\), and the final line follows from Lemma 4. \hfill \square

\textbf{Theorem 3.} Assume that the reward function r satisfies \(\|r\|_r^2 ≤ B^r\), and that the noise is \(σ_r\)-sub-Gaussian. Let \(π_t\) denote the policy followed by SNO-MDP with the ES² algorithm at time t, and let \(s_t\) and \(b_t^r\), \(b_t^0\) be the corresponding state and beliefs, respectively. Let \(\hat{t}\) be the smallest integer for which (4) holds, and fix any \(Δ^r ∈ (0, 1)\). Finally, set \(α_t = B^r + σ_r \sqrt{2(Γ_{t-1}^r + 1 + \log(1/Δ^r))}\) and

\[\hat{ε}_v = V_{\max} \cdot (Δ^g + Σ^r_t / R_{\max}),\]
Safe Reinforcement Learning in Constrained Markov Decision Processes

with $\Sigma_\tilde{t} = \frac{1}{2} \sqrt{\frac{\Sigma_\gamma \alpha \tilde{t}}{\tilde{t}}}$. Then, with high probability,

$$V^{\pi_t}(s_t, b_t^r, b_t^g) \geq V^*(s_t) - \tilde{\epsilon}_V$$

— i.e., the algorithm is $\tilde{\epsilon}_V$-close to the optimal policy — for all but \tilde{t} time steps while guaranteeing safety with probability at least $1 - \Delta^g$.

Proof. The proof of Theorem 3 is analogous to that of Theorem 2. Define \tilde{r} as the reward function (including the exploration bonus) that is used by SNO-MDP. Let \hat{r} be a reward function equal to r on \mathcal{Y} and equal to \tilde{r} elsewhere. Furthermore, let $\tilde{\pi}$ be the policy followed by SNO-MDP with the ES2 algorithm at time t, that is, the policy calculated on the basis of the current beliefs, (i.e., b_t^r and b_t^g) and the reward \tilde{r}. Finally, let $A_{\mathcal{Y}}$ be the event in which $\tilde{\pi}$ escapes from \mathcal{Y}. Then,

$$V^{\pi_t}(r, s_t, b_t^r, b_t^g) \geq V^{\tilde{\pi}}(\tilde{r}, s_t, b_t^r, b_t^g) - V_{\max} \cdot P(A_{\mathcal{Y}})$$

by Lemma 5. In addition, note that, for all $t \geq \tilde{t}$, because \hat{r} and \tilde{r} differ by at most $\alpha_1^{1/2} \sigma_t^r$ at each state,

$$|V^{\tilde{\pi}}(\hat{r}, s_t, b_t^r, b_t^g) - V^{\tilde{\pi}}(\tilde{r}, s_t, b_t^r, b_t^g)| \leq \frac{1}{1 - \gamma} \cdot \alpha_1^{1/2} \sigma_t^r(s) \leq V_{\max}/R_{\max} \cdot \Sigma_t^r.$$ (7)

For the above inequalities, we used Lemma 6. Then, the following chain of equations and inequalities holds:

$$V^{\pi_t}(R, s, b) = V^{\tilde{\pi}}(\tilde{R}, s, b) - V_{\max} \cdot P(A_{\mathcal{Y}})$$

$$\geq V^{\tilde{\pi}}(\tilde{R}, s, b) - V_{\max} \cdot \Delta^g$$

$$\geq V^{\tilde{\pi}}(\tilde{R}, s, b) - V_{\max} \cdot (\Delta^g + \Sigma_t^r/R_{\max})$$

$$= J^{\gamma}\ast(\tilde{R}, s, b) - V_{\max} \cdot (\Delta^g + \Sigma_t^r/R_{\max})$$

$$\geq V^*(R, s) - V_{\max} \cdot (\Delta^g + \Sigma_t^r/R_{\max}).$$

In this derivation, the second line follows from $P(A_{\mathcal{Y}}) \leq \Delta^g$, the third line follows from (7), the fourth line follows from the fact that $\tilde{\pi}$ is precisely the optimal policy for R and b, and the final line follows from Lemma 8. \[\Box\]